动物营养学报
         首页        期刊介绍        编委会         编辑部         投稿须知        英文刊IFA        会议信息        联系我们      留言与回复
动物营养学报 2019, Vol. 31 Issue (3) :1250-1258    DOI: 10.3969/j.issn.1006-267x.2019.03.030
特种经济动物营养 Special Economic Animal Nutrition 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << Previous Articles | Next Articles >>
低温胁迫对越冬期中华蜜蜂体内抗氧化指标及耐寒基因表达的影响
夏振宇, 秦明, 王红芳, 刘振国, 王颖, 张卫星, 胥保华
山东农业大学动物科技学院, 泰安 271018
Effects of Low Temperature Stress on Antioxidant Indexes and Cold-Resistance Gene Expression of Apis cerana cerana during Over-Wintering Period
XIA Zhenyu, QIN Ming, WANG Hongfang, LIU Zhenguo, WANG Ying, ZHANG Weixing, XU Baohua
College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
Download: PDF (2033KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 低温环境造成蜜蜂的冷伤害,是养蜂生产中制约蜂群发展的主要因素之一。本试验旨在通过研究低温胁迫下越冬期中华蜜蜂(Apis cerana cerana)体内抗氧化指标及耐寒基因表达的变化,探索低温胁迫对蜜蜂的冷伤害机制。以中国北方越冬期的中华蜜蜂作为研究对象,选取蜂群中的越冬工蜂900只,随机分为6个组,1个对照组和5个试验组,每组3个重复,每个重复50只。5个试验组于实验室内饲养,于低温条件(16℃)下分别暴露15、30、45、60和90 min,对照组不在低温条件下暴露。暴露结束后各组取20只蜜蜂样品,立即置于液氮保存,用于测定蜂体总抗氧化能力(T-AOC)及超氧化物歧化酶(SOD)、过氧化物酶(POD)活性,并采用实时荧光定量PCR方法检测蜂体耐寒基因类致死必需蛋白[L(2)efl]、SOD、海藻糖-6-磷酸合成酶(TPS)、卵黄蛋白原(Vg)、过氧化氢酶(CAT)的相对表达量。结果显示:1)低温胁迫下,中华蜜蜂体内T-AOC及SOD、POD活性随着暴露时间的延长基本呈逐渐升高趋势,并均在低温暴露90 min时达到峰值,分别为(57.62±5.95)U/mL、(21.39±1.77)U/mL和(27.24±2.41)U/mL,与对照组差异显著(P<0.05)。2)低温胁迫下,随着暴露时间的延长,中华蜜蜂体内L(2)efl基因的相对表达量升高,TPSSOD基因的相对表达量先升高后降低,而CAT基因的相对表达量则一直处于较低水平。与对照组相比,各试验组L(2)efl基因的相对表达量显著升高(P<0.05);低温暴露15和30 min组TPS基因的相对表达量显著升高(P<0.05);低温暴露30和45 min组Vg基因的相对表达量显著降低(P<0.05),而低温暴露60 min组Vg基因的相对表达量则显著升高(P<0.05);低温暴露15、30、45和60 min组CAT基因的相对表达量显著降低(P<0.05);低温暴露30、45 min组SOD基因的相对表达量显著升高(P<0.05)。由此得出,低温胁迫下越冬期中华蜜蜂抗氧化系统的防御能力趋强,耐寒基因L(2)eflTPSSOD表达上调,CAT表达下调,提示中华蜜蜂对低温胁迫存在耐寒响应的生理机制。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词中华蜜蜂   低温胁迫   抗氧化   耐寒基因     
Abstract: The cold damage caused by the low temperature environment is one of the main factors restricting the development of Apis cerana cerana colonies in beekeeping production. In this study, the changes of antioxidant indexes and cold-resistance gene expression of Apis cerana cerana during over-wintering period under low temperature stress were observed, and the cold damage mechanism of low temperature stress on bees was explored. Apis cerana cerana during the wintering period in northern China as the study subject. A total of 900 wintering worker bees in the bee colony were randomly divided into six groups including one control group and five test groups, each group had three replicates, and each replicate had fifty bees. Bees in the five test groups were kept in the laboratory, and exposed under low temperature (16℃) for 15, 30, 45, 60 and 90 min, respectively, while bees in the control group without any treatment. After exposure, twenty bee samples were taken from each group and immediately placed in liquid nitrogen for storage. The total antioxidant capacity (T-AOC) and the activities of superoxide dismutase (SOD) and catalase (CAT) of bees were determined, and five cold-resistance genes protein lethal (2) essential for life[l(2)efl], SOD, trehalose-6-phosphate synthase (TPS), vitellogenin (Vg) and catalase (CAT) relative expression levels were detected by real-time fluorescent quantitative PCR method. The results showed as follows:1) under the low temperature stress, the T-AOC and the activities of SOD and CAT of Apis cerana cerana gradually increased with the prolongation of low temperature exposure time (P<0.05), and all of them reached the highest after low temperature exposure 90 min, they were (57.62±5.95) U/mL, (21.39±1.77) U/mL and (27.24±2.41) U/mL, respectively, and there were significant differences with the control group (P<0.05). 2) Under the low temperature stress, with the prolongation of low temperature exposure time, the relative expression level of L(2)efl gene of Apis cerana cerana was up-regulated, the relative expression levels of TPS and SOD genes were up-regulated first and then down-regulated, while the relative expression level of CAT gene was in lower level constantly. Compared with the control group, the relative expression level of L(2)efl gene in five test groups was significantly increased (P<0.05), the relative expression level of TPS gene in low temperature exposure 15 and 30 min groups was significantly increased (P<0.05), the relative expression level of Vg gene in low temperature exposure 30 and 45 min groups was significantly increased (P<0.05) and in low temperature exposure 60 min group was significantly decreased (P<0.05), the relative expression level of CAT gene in low temperature exposure 15, 30, 45 and 60 min groups was significantly decreased (P<0.05), and the relative expression level of SOD gene in low temperature exposure 15, 30, 45 and 60 min groups was significantly increased (P<0.05). In conclusion, under the low temperature stress, the defense ability of antioxidant system of Apis cerana cerana during over-wintering period is stronger, cold-resistance genes L(2)efl, TPS and SOD are expressed in a higher level and CAT gene is expressed in a lower level. It is indicated that Apis cerana cerana to low temperature stress exists the physiological mechanism of cold tolerance response.
KeywordsApis cerana cerana,   low temperature stress,   antioxidant,   cold-resistance genes     
收稿日期: 2018-08-20;
基金资助:

国家蜂产业技术体系建设专项资金(CARS-44);山东省农业良种工程(南种北繁)项目(2017LZN006)

通讯作者 胥保华,教授,博士生导师,E-mail:bhxu@sdau.edu.cn     Email: bhxu@sdau.edu.cn
作者简介: 夏振宇(1994-),男,山东烟台人,硕士研究生,动物营养与饲料科学专业。E-mail:18706381570@163.com
引用本文:   
. 低温胁迫对越冬期中华蜜蜂体内抗氧化指标及耐寒基因表达的影响[J]. 动物营养学报, 2019,V31(3): 1250-1258
. Effects of Low Temperature Stress on Antioxidant Indexes and Cold-Resistance Gene Expression of Apis cerana cerana during Over-Wintering Period[J]. Chinese Journal of Animal Nutrition, 2019,V31(3): 1250-1258.
链接本文:  
http://www.chinajan.com/CN/10.3969/j.issn.1006-267x.2019.03.030     或     http://www.chinajan.com/CN/Y2019/V31/I3/1250
 
[1] 孟飞,胥保华,郭兴启.中华蜜蜂重要生物学特性相关功能基因研究进展[J].应用昆虫学报,2012,49(5):1338-1344.
[2] 康乐.环境胁迫下的昆虫-植物相互关系[J].生态学杂志,1995,14(5):51-57,50.
[3] SINCLAIR B J,VERNON P,KLOK C J,et al.Insects at low temperatures:an ecological perspective[J].Trends in Ecology & Evolution,2003,18(5):257-262.
[4] 常志光,牛庆生,闫德斌,等.不同蜜蜂品种越冬后期血淋巴总SOD活力与抗寒力的相关性研究[J].中国蜂业,2015,66(3):16-18.
[5] 赵静,李姝,陈珍珍,王甦,等.低温胁迫对异色瓢虫成虫存活及体内几种酶活力的影响[J].植物保护学报,2014,41(5):513-518.
[6] GHISELLI A,SERAFINI M,NATELLA F,et al.Total antioxidant capacity as a tool to assess redox status:critical view and experimental data[J].Free Radical Biology and Medicine,2000,29(11):1106-1114.
[7] 张青,涂永勤,刘怀,等.温度胁迫对小金蝠蛾幼虫抗氧化酶活性的影响[J].环境昆虫学报,2016,38(1):47-53.
[8] HOFFMANN A A,SØRENSEN J G,LOESCHCKE V.Adaptation of Drosophila to temperature extremes:bringing together quantitative and molecular approaches[J].Journal of Thermal Biology,2003,28(3):175-216.
[9] KURZIK-DUMKE U,LOHMANN E.Sequence of the new Drosophila melanogaster small heat-shock-related gene,lethal (2) essential for life[L(2)efl],at locus 59F4,5[J].Gene,1995,154(2):171-175.
[10] 秦资.异色瓢虫TPSTreh1基因低温诱导表达分析[D].硕士学位论文.杭州:杭州师范大学,2012.
[11] 赵晓峰,刘新生,李化龙,等.冬季外界环境温度变化对中、意蜜蜂箱内温度影响的试验分析[J].陕西农业科学,2008,54(4):35-38.
[12] 李周直,沈惠娟,蒋巧很,等.几种昆虫体内保护酶系统活力的研究[J].昆虫学报,1994,37(4):399-403.
[13] 刘井兰,于建飞,吴进才,等.昆虫活性氧代谢[J].应用昆虫学报,2006,43(6):752-756.
[14] 于平.超氧化物歧化酶研究进展[J].生物学通报,2006,41(1):4-6.
[15] 郑玉涛.高温胁迫对西花蓟马抗氧化酶活性的影响及CAT基因的克隆与表达[D].硕士学位论文.扬州:扬州大学,2015.
[16] 李庆,吴蕾,杨刚,等.温度和紫外辐射胁迫对西藏飞蝗抗氧化系统的影响[J].生态学报,2012,32(10):3189-3197.
[17] YILDIRIM Ö,BVYVKBINGÖL Z.Effects of supplementation with a combination of cobalt and ascorbic acid on antioxidant enzymes and lipid peroxidation levels in streptozocin-diabetic rat liver[J].Biological Trace Element Research,2002,90(1/2/3):143-154.
[18] 张卫星,胥保华.蜜蜂卵黄原蛋白的研究进展[J].蜜蜂杂志,2014,34(5):5-7.
[19] ZHANG Y Y,LIU Y L,GUO X L,et al.SHsp22.6,an intronless small heat shock protein gene,is involved in stress defence and development in Apis cerana cerana[J].Insect Biochemistry and Molecular Biology,2014,53:1-12.
[20] Scaron;LACHTA M,BERKOVÁ P,VAMBERA J,et al.Physiology of cold-acclimation in non-diapausing adults of Pyrrhocoris apterus (Heteroptera)[J].European Journal of Entomology,2013,99(2):181-187.
[21] 于彩虹,卢丹,林荣华,等.海藻糖——昆虫的血糖[J].应用昆虫学报,2008,45(5):832-837.
[22] 秦加敏,罗术东,和绍禹,等.昆虫海藻糖与海藻糖酶的特性及功能研究[J].环境昆虫学报,2015,37(1):163-169.
[23] 史彩华,胡静荣,李传仁,等.环境胁迫下昆虫的耐寒适应机制研究进展[J].植物保护,2016,42(6):21-28.
[24] KLOWDEN M J.Physiological systems in insects[M].3rd ed.Amsterdam:Academic Press,2013.
[25] 秦资.异色瓢虫TPSTreh1基因低温诱导表达分析[D].硕士学位论文.杭州:杭州师范大学,2012.
[26] 王建华,刘鸿先,徐同.超氧物歧化酶(SOD)在植物逆境和衰老生理中的作用[J].植物生理学通讯,1989(1):1-7.
[27] AHMAD S,DUVAL D L,WEINHOLD L C,et al.Cabbage looper antioxidant enzymes:tissue specificity[J].Insect Biochemistry,1991,21(5):563-572.
[28] 吴启仙,夏嫱,重金属对昆虫抗氧化酶影响研究进展[J].环境昆虫学报,2014,36(2):247-251.
[1] 王晓翠, 武书庚, 张海军, 齐广海.鸡蛋蛋清品质营养调控的研究进展[J]. 动物营养学报, 2019,31(4): 1491-1498
[2] 闫昭明, 郭秋平, 仲银召, 陈清华.茶多酚的生物学特性及其在畜牧生产中的应用[J]. 动物营养学报, 2019,31(4): 1525-1532
[3] 文伟, 杨泰, 韦良开, 黄兴国.德氏乳杆菌的生物学功能及其在动物生产中的应用[J]. 动物营养学报, 2019,31(4): 1533-1539
[4] 罗斌, 乐科明, 陈代文, 毛湘冰, 郑萍, 虞洁, 何军, 罗玉衡, 罗钧秋, 黄志清, 余冰.陈化玉米及谷胱甘肽酵母粉对断奶仔猪生长性能、养分表观消化率、血清抗氧化和免疫指标的影响[J]. 动物营养学报, 2019,31(4): 1574-1584
[5] 陈志敏, 张海生, 陈将, 常文环, 郑爱娟, 蔡辉益, 刘国华.腐殖酸钠对肉仔鸡生长性能、免疫功能和抗氧化能力的影响[J]. 动物营养学报, 2019,31(4): 1733-1742
[6] 张红瑞, 高燕, 闫灵敏, 杨改青, 王林枫, 付彤, 廉红霞, 高腾云, 李明.α-硫辛酸对热应激绵羊生长性能、抗氧化及免疫的影响[J]. 动物营养学报, 2019,31(4): 1754-1764
[7] 毛俊舟, 董丽, 彭程, 张永胜, 喻礼怀.凹土纳米氧化锌对断奶仔猪血清、肝脏和肠道黏膜抗氧化指标的影响[J]. 动物营养学报, 2019,31(4): 1789-1796
[8] 李开放, 徐奇友.白藜芦醇对松浦镜鲤生长性能、肠道消化酶活性、肝脏抗氧化指标和血清生化指标的影响[J]. 动物营养学报, 2019,31(4): 1833-1841
[9] 吴峰洋, 史酉川, 崔嘉, 王浩男, 常兴发, 陈宝江.啤酒酵母对生长獭兔免疫和抗氧化性能的影响[J]. 动物营养学报, 2019,31(4): 1850-1856
[10] 李潇, 王玲, 张春晓, 鲁康乐, 宋凯.啤酒酵母粉替代部分鱼粉对牛蛙生长、抗氧化能力以及肝脏和肠道组织形态学的影响[J]. 动物营养学报, 2019,31(4): 1864-1876
[11] 杨玲, 何荣香, 马玉静, 贺建华.壳聚糖的生物学功能及其在畜禽生产中的应用[J]. 动物营养学报, 2019,31(3): 1037-1043
[12] 陈甫, 刘帅杰, 朱风华, 高善颂, 朱连勤.鸭油过氧化值对肉仔鸡生长和屠宰性能、脏器指数及血浆抗氧化、免疫、抗体指标的影响[J]. 动物营养学报, 2019,31(3): 1111-1118
[13] 贾红杰, 史兆国, 武书庚, 王晶, 张海军, 齐广海, 吕慧源, 王志明.山黄粉和黄芪多糖配伍使用对产蛋鸡生产性能、蛋品质、血清抗氧化和生化指标的影响[J]. 动物营养学报, 2019,31(3): 1334-1341
[14] 刘国栋, 王宝维, 黄燕萍, 葛文华, 张名爱, 岳斌, 李凯玲, 孔敏.枯草芽孢杆菌铜对先天性缺铜仔鼠生长发育、器官指数、铜沉积量、血清生化和抗氧化指标的影响[J]. 动物营养学报, 2019,31(3): 1367-1375
[15] 刘娇, 常文环, 陈志敏, 郑爱娟, 张姝, 刘国华, 蔡辉益.爱拔益加肉鸡对饲粮中添加的辣木提取物的耐受性评价[J]. 动物营养学报, 2019,31(2): 839-849
Copyright 2010 by 动物营养学报