动物营养学报    2017, Vol. 29 Issue (10): 3541-3550    PDF    
饲喂高淀粉饲粮时不同瘤胃降解淀粉水平对奶牛泌乳性能、营养物质表观消化率和氮平衡的影响
雒国彬, 孙凯晶, 王馨影, 张广宁, 刘岩, 王利军, 徐宏建, 张永根     
东北农业大学动物科学技术学院, 哈尔滨 150030
摘要: 本试验旨在研究饲喂高淀粉饲粮时不同瘤胃降解淀粉水平对奶牛泌乳性能、营养物质表观消化率和氮平衡的影响。选用10头荷斯坦经产奶牛[平均泌乳天数为(214±38)d,平均乳产量为(26.2±2.4)kg/d,平均体重为(727±65)kg]作为试验动物,随机分成2组,每组5头。试验设计2种不同瘤胃降解淀粉水平的试验饲粮,分别为瘤胃降解淀粉水平为62.3%(占总淀粉的百分比)的低瘤胃降解淀粉水平饲粮(L-RDS)和瘤胃降解淀粉水平为72.1%(占总淀粉的百分比)的高瘤胃降解淀粉水平饲粮(H-RDS)。采用交叉试验设计,试验分为2期,过渡期7 d,每期试验21 d,其中适应期14 d,采样期7 d。结果显示:1)相比L-RDS组,H-RDS组有机物和淀粉的表观消化率显著升高(P<0.05),中性洗涤纤维和酸性洗涤纤维的表观消化率显著降低(P<0.05),干物质表观消化率有升高趋势(P=0.07),蛋白质表观消化率无显著差异(P>0.05)。2)相比L-RDS组,H-RDS组尿素氮及它们占摄入氮比例有降低趋势(P=0.09),摄入氮、乳氮、粪氮、尿氮和沉积氮及它们占摄入氮比例无显著变化(P>0.05),尿中总嘌呤衍生物排出量和微生物蛋白产量亦无显著变化(P>0.05)。3)饲粮瘤胃降解淀粉水平对奶牛干物质采食量、乳产量和乳成分均无显著影响(P>0.05)。综合以上结果可知,饲喂高淀粉饲粮时不同瘤胃降解淀粉水平影响饲粮营养物质的表观消化率,对泌乳性能和氮平衡无显著影响。
关键词: 奶牛     瘤胃降解淀粉     乳产量     氮平衡     表观消化率    
Effects of Different Ruminally Degradable Starch Levels on Lactation Performance, Nutrient Apparent Digestibility and Nitrogen Balance of Dairy Cows Fed High Starch Diets
LUO Guobin, SUN Kaijing, WANG Xinying, ZHANG Guangning, LIU Yan, WANG Lijun, XU Hongjian, ZHANG Yonggen     
School of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
Abstract: This trial was performed to examine the effects of different ruminally degradable starch levels on lactation performance, nutrient apparent digestibility and nitrogen balance of dairy cows fed high starch diets. Ten multiparous Holstein cows[(average lactation days:(214±38) d; average milk yield:(26.2±2.4) kg/d; average body weight:(727±65) kg] were randomly assigned to 2 groups, and each group had 5 dairy cows. Two types of diets with different ruminally degradable starch levels were formulated, one of them contained 62.3% (percentage of total starch) ruminally degradable starch which named as low-ruminally degradable starch diet (L-RDS), and the other contained 72.1% (percentage of total starch) ruminally degradable starch which named as high-ruminally degradable starch diet (H-RDS). A crossover experimental design was applied. There were two experimental periods, the transition period lasted for 7 d, and each period lasted for 21 d (14 d of pretrial period, and 7 d of sampling period). The results showed as follows:1) the apparent digestibility of starch and organic matter was significantly increased (P < 0.05), the apparent digestibility of neutral detergent fiber and acid detergent fiber was significantly decreased (P < 0.05), and the apparent digestibility of dry matter had a rising trend (P=0.07) for H-RDS group compared with L-RDS group, but no significant difference in the apparent digestibility of crude protein among them (P > 0.05). 2) Compared with L-RDS group, urinary urea-nitrogen and the proportion of urinary urea-nitrogen in nitrogen intake had a decrease trend for H-RDS group (P=0.09). The nitrogen intake, milk nitrogen, urinary nitrogen, fecal nitrogen, nitrogen retention and the proportions of them in nitrogen intake were not significantly affected by dietary ruminally degradable starch level (P > 0.05), and the urinary excretion of purine derivatives and microbial protein yield were also not significantly affected by dietary ruminally degradable starch level (P > 0.05). 3) Dry matter intake, milk yield and milk composition of dairy cows were not significantly affected by dietary ruminally degradable starch level (P > 0.05). Results of this study show that different ruminally degradable starch levels can affect the nutrient apparent digestibility of dairy cows fed high starch diets, with no significant influences on lactation performance and nitrogen balance.
Key words: dairy cows     ruminally degradable starch     milk yield     nitrogen balance     apparent digestibility    

奶牛不断从饲粮中摄取能量来满足生命维持和生产活动的需要。能量状况很大程度上决定高峰期乳产量和泌乳持续力。同时,体况下降与血液代谢产物和激素水平的改变相关,继而影响奶牛繁殖力[1]。碳水化合物是奶牛饲粮中能量的主要来源,通常占饲粮的60%~70%。通过饲喂更易发酵的谷物饲料来提高饲粮的能量浓度是提高奶牛能量摄入量的途径之一。Theurer等[2]综述对比蒸汽压片玉米和蒸汽碾压玉米以及蒸汽压片高粱和蒸汽碾压高粱后发现蒸汽压片处理提高了乳产量,对干物质采食量没显著影响,并将其归因于瘤胃降解淀粉水平的提高和流入十二指肠微生物蛋白质量的提高。然而,饲粮淀粉的高瘤胃降解率在不同动物身上的表现并不完全一致[3-4]

淀粉占谷物中非结构碳水化合物的70%~80%,通常在瘤胃中被迅速降解,几乎全部被消化(很多谷物淀粉的消化率在90%以上)。NRC(2001)[5]给出了泌乳牛全混合日粮中中性洗涤纤维(NDF)最小推荐量和非纤维性碳水化合物(NFC)最大推荐量,而瘤胃降解淀粉水平会影响到饲粮中NDF和NFC的适宜水平,所以,适宜的瘤胃降解淀粉水平对奶牛生产性能发挥十分必要。普遍推荐泌乳奶牛饲粮淀粉水平在23%~30%(干物质基础)[6],然而,饲喂高淀粉饲粮时不同瘤胃降解淀粉水平对奶牛生产性能的影响少有报道。在我国,玉米是奶牛饲粮的主要淀粉来源,压片玉米和粉碎玉米是奶牛场常用的玉米加工和饲喂形式,压片玉米相比粉碎玉米提高了淀粉的瘤胃降解率(80.3% vs. 67.9%)[7]。本试验通过改变饲粮中粉碎玉米和蒸汽压片玉米的比例设计出不同瘤胃降解淀粉水平的饲粮,研究饲喂高淀粉饲粮(干物质基础下淀粉水平为30%)时不同瘤胃降解淀粉水平对奶牛泌乳性能、营养物质表观消化率和氮平衡的影响,为高淀粉饲粮在奶牛生产中的有效应用提供理论依据。

1 材料与方法 1.1 试验动物和试验设计

本试验在黑龙江省山东屯荷斯坦奶牛繁育场进行。试验选用10头荷斯坦奶牛作为试验动物,平均泌乳天数为(214±38) d,平均乳产量为(26.2±2.4) kg/d,平均体重为(727±65) kg,随机分成2组,每组5头。通过改变饲粮中粉碎玉米和压片玉米的比例调节瘤胃降解淀粉水平,设计2种不同瘤胃降解淀粉水平的试验饲粮,分别为瘤胃降解淀粉水平为62.3%的低瘤胃降解淀粉水平饲粮(L-RDS)和瘤胃降解淀粉水平为72.1%的高瘤胃降解淀粉水平饲粮(H-RDS)。压片玉米和粉碎玉米均由黑龙江省天正鼎泰饲料有限公司提供,压片玉米容重为360 g/L。试验采用交叉试验设计,分为2期,过渡期7 d,每期试验21 d,其中适应期14 d,采样期7 d。试验饲粮组成及营养水平见表 1,饲粮淀粉瘤胃降解参数见表 2

表 1 试验饲粮组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of experimental diets (DM basis)
表 2 饲粮淀粉瘤胃降解参数 Table 2 Rumen degradation constants of starch in diets
1.2 饲养管理

试验奶牛采用单栏饲养,自由饮水,卧床采用沙子填充。全混合日粮饲喂,每天饲喂2次(05:30和17:30),保证每天奶牛剩料量占饲喂量的5%~10%。每天挤奶2次(09:00和21:00)。

1.3 样品采集与测定 1.3.1 饲料样的采集与指标测定

试验第15、16和17天连续采集饲料和剩料,采样完毕混合样品并缩样至500 g左右,于-20 ℃保存待测。饲料和剩料样品65 ℃烘48 h后,粉碎过1 mm筛密封保存待测。干物质、粗灰分和粗蛋白质含量的测定参照AOAC(1990)[10]方法,中性洗涤纤维和酸性洗涤纤维含量的测定参照Van Soest等[11]的方法,淀粉含量测定采用淀粉葡萄糖苷酶/α-淀粉酶方法,测定试剂盒购自Megazyme公司。

1.3.2 粪样的采集与指标测定

试验第19、20和21天点收粪法连续收集粪样,每天间隔6 h奶牛直肠收集200 g粪样,将每头牛每个时间点粪样混匀后分成2份,一份加10 mL 6 mol/L盐酸后-20 ℃保存用于氮的分析,另一份-20 ℃保存用于其他养分(除粗蛋白质)测定。最后将每头牛3 d收集的样品进行混匀缩样至500 g,粪样于60 ℃烘72 h,粉碎过1 mm筛密后封保存待测。干物质、粗灰分、粗蛋白质、中性洗涤纤维、酸性洗涤纤维和淀粉含量的测定方法同1.3.1。营养物质表观消化率采用内源指示剂不可降解中性洗涤纤维(iNDF)计算得出,粪氮由粗蛋白质表观消化率和摄入氮计算得出。

1.3.3 尿样的采集与指标测定

试验第19、20和21天点收尿法连续收集尿样,每天间隔6 h收集尿样50 mL,尿样采集后按照0.036 mol/L的硫酸与尿液4:1比例添加固氮,采样完成后混合尿样缩样至100 mL,于-20 ℃保存用于尿液中尿氮、肌酐、尿囊素、尿素氮和尿酸含量的测定。尿液中尿氮含量测定采用凯氏定氮法测定,肌酐含量采用苦味酸比色法测定,尿酸含量采用磷钨酸比色法,尿素氮含量采用二乙酰肟法测定,尿囊素含量采用比色法[12]测定。尿素氮、尿肌酐和尿酸含量测定试剂盒均购自南京建成生物工程研究所。

1.3.4 乳样的采集与指标测定

试验第15、16和17天连续3 d记录乳产量和采集乳样,每天早和晚分别采集乳样50 mL,每天采集完按照6:4比例混合乳样,50 mL乳样加入重铬酸钾0.03 g,采用大庆市家畜繁育指导站的红外光谱乳成分自动分析仪(MilkoScan FT6000,丹麦FOSS公司)测定乳蛋白率、乳脂率、乳糖率以及乳中干物质和尿素氮含量。

1.3.5 瘤胃微生物蛋白产量测定

瘤胃微生物蛋白产量采用嘌呤衍生物法[13]测定。根据尿液中肌酐含量计算每天排尿量以及尿氮和嘌呤衍生物(尿囊素和尿酸)排出量,肌酐排出量固定为29 mg/kg BW[14],计算公式如下:

式中:X为十二指肠处微生物蛋白嘌呤衍生物吸收量(mmol/d);Y为尿液中嘌呤衍生物排出量(mmol/d);0.385×W0.75为内源蛋白质的嘌呤衍生物排出量(mmol/d);0.85为十二指肠吸收的嘌呤衍生物排到尿中的比例;70为嘌呤衍生物氮含量(mg/mmol);0.116为嘌呤衍生物氮与瘤胃微生物总氮之比;0.83为瘤胃微生物嘌呤衍生物在十二指肠的消化率。

1.3.6 饲粮淀粉瘤胃降解率的测定

试验饲粮淀粉瘤胃降解参数的测定采用瘤胃尼龙袋法,试验在东北农业大学阿城试验农场进行,试验动物为3头装有永久瘘管的荷斯坦奶牛[体重:(678.0±26.5) kg;乳产量:(20.6±2.5) kg;泌乳天数:(276±19) d],单栏饲喂,基础饲粮(干物质基础)由28.9%全株青贮、24.2%的羊草和46.9%的精料组成。每天饲喂2次(05:30和17:30),饲喂量为饲粮干物质占体重的3%左右。样品粉碎过3 mm筛,准确称取5 g待测样品,装入已知重量标号的尼龙袋(10 cm×20 cm,孔眼为50 μm,美国Ankom公司),样品分别在瘤胃中培养72、48、24、12、8、4、2和0 h。尼龙袋瘤胃培养和培养后操作步骤参照Yu等[15],样品65 ℃烘48 h后回潮,粉碎过1.0 mm孔径筛用于淀粉含量的测定,淀粉含量测定方法同1.3.1。

1.4 数据分析

根据瘤胃动力学数学指数模型计算淀粉瘤胃降解率[16],运用SAS 9.2非线性回归最小二乘法对数据进行处理。采用SAS 9.1软件中的MIXED模型进行统计分析。P<0.05表示差异显著,0.05≤P<0.10表示具有差异显著的趋势。

2 结果与分析 2.1 饲喂高淀粉饲粮时不同瘤胃降解淀粉水平对奶牛营养物质表观消化率的影响

表 3可知,H-RDS组有机物和淀粉的表观消化率显著高于L-RDS组(P<0.05),而L-RDS组中性洗涤纤维和酸性洗涤纤维的表观消化率显著高于H-RDS组(P<0.05)。升高瘤胃降解淀粉水平有提高干物质表观消化率的趋势(P=0.07),饲粮瘤胃降解淀粉水平对粗蛋白质的表观消化率无显著影响(P>0.05)。

表 3 饲喂高淀粉饲粮时不同瘤胃降解淀粉水平对奶牛营养物质表观消化率的影响 Table 3 Effects of different ruminally degradable starch levels on nutrient apparent digestibility in dairy cows fed high starch diets
2.2 饲喂高淀粉饲粮时不同瘤胃降解淀粉水平对奶牛氮平衡的影响

表 4可知,L-RDS组摄入氮、乳氮、粪氮、尿氮和沉积氮及乳氮、粪氮、尿氮和沉积氮占摄入氮比例与H-RDS组无显著差异(P>0.05)。H-RDS组相比L-RDS组,尿素氮及其占摄入氮比例有降低趋势(P=0.09)。L-RDS组尿中尿囊素、尿酸、总嘌呤衍生物排出量和微生物蛋白产量与H-RDS组无显著差异(P>0.05)。

表 4 饲喂高淀粉饲粮时不同瘤胃降解淀粉水平对奶牛氮平衡的影响 Table 4 Effects of different ruminally degradable starch levels on N balance in dairy cows fed high starch diets
2.3 饲喂高淀粉饲粮时不同瘤胃降解淀粉水平对奶牛泌乳性能的影响

表 5可知,饲粮瘤胃降解淀粉水平对干物质采食量、乳产量、能量校正乳产量、4%乳脂校正乳产量、乳脂产量、乳蛋白产量和乳糖产量均无显著影响(P>0.05);同时,饲粮瘤胃降解淀粉水平对乳脂率、乳蛋白率、乳糖率、乳总固形物比例、乳尿素氮含量和产乳效率也无显著影响(P>0.05)。

表 5 饲喂高淀粉饲粮时不同瘤胃降解淀粉水平对奶牛泌乳性能的影响 Table 5 Effects of different ruminally degradable starch levels on lactation performance of dairy cows fed high starch diets
3 讨论 3.1 饲喂高淀粉饲粮时不同瘤胃降解淀粉水平对奶牛营养物质表观消化率的影响

本试验结果表明H-RDS组淀粉的表观消化率显著高于L-RDS组,Zhong等[17]和Shen等[3]研究表明饲粮中蒸汽压片玉米替代粉碎玉米显著提高了饲粮中淀粉的表观消化率,与本试验结果一致,原因是玉米蒸汽压片处理后,淀粉发生凝胶糊化,破坏了细胞内紧密结合的氢键,淀粉分子间作用力减弱,容易接受酶的作用,从而提高了玉米淀粉瘤胃降解率,同时提高了过瘤胃淀粉的小肠消化率[18]。但本试验中L-RDS组和H-RDS组淀粉表观消化率之间的差异(97.84% vs. 98.78%)比瘤胃降解淀粉水平之间的差异(62.3% vs. 72.1%)小,表明L-RDS组比H-RDS组有更多的淀粉在过瘤胃后消化。H-RDS组中性洗涤纤维和酸性洗涤纤维的表观消化率显著低于L-RDS组,Zhong等[17]研究表明随着饲粮中蒸汽压片玉米替代粉碎玉米比例的提高,中性洗涤纤维和酸性洗涤纤维的表观消化率逐渐下降,Ferraretto等[19]研究表明饲粮蒸汽压片玉米替代粉碎玉米降低了中性洗涤纤维的表观消化率,与本试验结果一致,其原因是由于淀粉在瘤胃中发酵降低了pH,进而抑制纤维物质的降解[20],同时淀粉的快速发酵影响了瘤胃微生物的某些菌株,也会抑制纤维物质的降解[21]。而Manríquez等[22]和Shen等[3]的报道结果与本试验结果并不一致,原因可能是由于瘤胃pH变化和淀粉瘤胃降解率存在差异造成的。从本试验结果看,不同瘤胃降解淀粉水平对粗蛋白质的表观消化率没有产生显著影响,这与Shen等[3]和Hatew等[23]报道的一致,而Zhong等[17]研究表明随着饲粮中蒸汽压片玉米替代粉碎玉米比例的提高,粗蛋白质表观消化率先升高后降低,最大值出现在20%蒸汽压片饲粮。乔富强[24]认为蒸汽压片技术破坏了玉米蛋白质的空间结构,提高了蛋白质瘤胃降解率。上述试验结果不完全一致,其原因有待进一步研究。本试验中,H-RDS组有机物表观消化率显著高于L-RDS组,该结果与Miyaji等[4]的报道一致,可能是因为高瘤胃降解淀粉水平饲粮淀粉的表观消化率高于低瘤胃降解淀粉水平饲粮造成的,而Zhou等[25]报道饲粮不同瘤胃降解淀粉水平对有机物表观消化率没有产生显著影响,结果不一致可能是由于饲粮的组成和营养组分的消化率不同所造成的。

3.2 饲喂高淀粉饲粮时不同瘤胃降解淀粉水平对奶牛氮平衡的影响

本试验中饲粮瘤胃降解淀粉水平对摄入氮没有产生显著影响,这主要因为2组奶牛有相似的干物质采食量,同时2组饲粮为等氮饲粮。本试验结果表明饲粮瘤胃降解淀粉水平对尿氮及其占摄入氮比例没有产生显著影响,结果与Shen等[3]的报道一致。而Miyaji等[4]报道提高饲粮饲粮瘤胃降解淀粉水平会降低尿氮及其占摄入氮比例。Ghorbani等[26]研究表明高瘤胃降解淀粉水平饲粮有降低尿氮的趋势。Ohtani等[27]研究表明饲粮中高水平的瘤胃降解淀粉能够提高生糖前体丙酸产量,减少氨基酸糖异生数量,从而减少尿素氮产量。Nocek等[28]认为饲粮中可利用氮来源和可利用能量来源的不平衡促使氨基酸被利用供能,导致更多氨通过瘤胃壁被吸收。因此,上述报道中乳中尿素氮和尿氮不一致可能由于瘤胃能氮平衡造成。本试验中H-RDS组相比L-RDS组尿素氮有降低趋势,结果与申军士[29]报道类似,原因可能与蒸汽压片处理提高了蛋白质的消化利用率,增加机体内脏及乳腺组织的尿素再循环数有关[2]。本试验结果显示饲粮瘤胃降解淀粉水平对乳氮及其占摄入氮比例没有显著影响,与之前Chibisa等[30]和Miyaji等[31]的报道一致;此外,饲粮瘤胃降解淀粉水平对沉积氮也没有显著影响,与之前Hatew等[23]和Chibisa等[30]的报道一致,而与Miyaji等[4]的报道不一致,结果不一致可能与氮摄入和淀粉水平及淀粉瘤胃降解率有关。Burkholder等[32]研究表明提高饲粮瘤胃降解淀粉水平可以提高微生物对氮的利用。因此,高瘤胃降解淀粉水平饲粮提供更多的瘤胃降解淀粉,提高了微生物蛋白产量。然而,本试验中,2组奶牛尿中总嘌呤衍生物排出量和微生物蛋白产量没有显著差异,这与之前Zhou等[25]和申军士[29]的报道一致,高瘤胃降解淀粉水平饲粮降低了瘤胃中纤维物质的消化,提高了淀粉瘤胃降解率,导致与低瘤胃降解淀粉水平饲粮含有类似的瘤胃可发酵有机物,而瘤胃中可发酵有机物是决定流入十二指肠微生物蛋白数量的重要因素[33]。然而,Cabrita等[34]的报道与本试验结果并不完全一致,可能是由于采食量、饲粮氮和能量来源以及瘤胃外流速度差异造成的瘤胃能氮平衡差异导致的。

3.3 饲喂高淀粉饲粮时不同瘤胃降解淀粉水平对奶牛泌乳性能的影响

本试验结果显示饲粮瘤胃降解淀粉水平对干物质采食量没有显著影响,淀粉的高瘤胃降解率并不一定降低干物质采食量[25, 35-36]。Zhou等[25]研究表明,饲喂含压片玉米替代粉碎玉米(25.5%,干物质基础)饲粮对奶牛干物质采食量无显著影响,而Shen等[3]报道奶牛饲喂高瘤胃降解淀粉水平饲粮会降低干物质采食量。普遍认为提高淀粉瘤胃降解率同时提高了瘤胃中丙酸产量,从而降低了干物质采食量[4, 36]。通过向瘤胃内灌注等浓度[37]或等能值[38]的乙酸和丙酸,分析丙酸相比乙酸具有更强的降低食欲的作用。而饲粮瘤胃降解淀粉水平对干物质采食量的影响不一致说明丙酸对干物质采食量的影响可能存在临界点,丙酸相关的机制替代瘤胃压力感受器反射机制对采食行为进行调节。本试验中饲粮瘤胃降解淀粉水平对乳产量没有产生显著影响,这与Zhou等[25]和Joy等[39]报道的结果一致,主要归因于2组有类似的干物质采食量。乳成分的差异通常反映饲粮瘤胃发酵模式[40]和谷物消化位点和消化程度的差异[41]。Zhong等[17]和Gozho等[42]均报道提高瘤胃降解淀粉水平会降低乳脂率。普遍观点认为提高可发酵碳水化合物水平增加短链脂肪酸产量和瘤胃酸中毒的风险,导致瘤胃pH降低[30],在这种情况下,瘤胃C18不饱和脂肪酸的氢化过程受阻,导致乳腺组织对反式C18:1的吸收增多,这些反式脂肪酸抑制乳脂合成[43]。本试验中饲粮瘤胃降解淀粉水平对乳脂率没有产生显著影响,这与Oba等[36]和Miyaji等[44]的报道一致,与Zhong等[17]和Gozho等[42]的报道不一致,可能是由于谷物消化位点和消化程度的差异造成[41]。本试验中饲粮瘤胃降解淀粉水平对乳蛋白率没有产生显著影响,结果与Oba等[36]和Hatew等[23]的报道一致。

4 结论

饲喂高淀粉(30%)饲粮时不同瘤胃降解淀粉水平对奶牛干物质采食量、乳产量和乳成分均无显著影响,高瘤胃降解淀粉水平饲粮相比低瘤胃降解淀粉水平饲粮显著降低了中性洗涤纤维和酸性洗涤纤维的表观消化率,显著提高了淀粉和有机物的表观消化率,对氮平衡无显著影响。

参考文献
[1]
PRYCE J E, COFFEY M P, SIMM G. The relationship between body condition score and reproductive performance[J]. Journal of Dairy Science, 2001, 84(6): 1508-1515. DOI:10.3168/jds.S0022-0302(01)70184-1
[2]
THEURER C, HUBER J, DELGADO-ELORDUY A, et al. Invited review:summary of steam-flaking corn or sorghum grain for lactating dairy cows[J]. Journal of Dairy Science, 1999, 82(9): 1950-1959. DOI:10.3168/jds.S0022-0302(99)75431-7
[3]
SHEN J S, SONG L J, SUN H Z, et al. Effects of corn and soybean meal types on rumen fermentation, nitrogen metabolism and productivity in dairy cows[J]. Asian-Australasian Journal of Animal Sciences, 2015, 28(3): 351-359. DOI:10.5713/ajas.14.0504
[4]
MIYAJI M, MATSUYAMA H, HOSODA K. Effect of substituting brown rice for corn on lactation and digestion in dairy cows fed diets with a high proportion of grain[J]. Journal of Dairy Science, 2014, 97(2): 952-960. DOI:10.3168/jds.2013-7046
[5]
NRC.Nutrient requirements of dairy cattle[S].7th ed.Washington, D.C.:National Academy Press, 2001.
[6]
GRANT R.Optimizing starch concentrations in dairy rations[C]//Proceedings of the Tri-State Dairy Nutrition Conference.Fort Wayne, Indiana:Ohio State University, 2005:73-79.
[7]
ZEBELI Q, MANSMANN D, STEINGASS H, et al. Balancing diets for physically effective fibre and ruminally degradable starch:a key to lower the risk of sub-acute rumen acidosis and improve productivity of dairy cattle[J]. Livestock Science, 2010, 127(1): 1-10. DOI:10.1016/j.livsci.2009.09.003
[8]
TAMMINGA S, VAN STRAALEN W, SUBNEL A P J, et al. The Dutch protein evaluation system:the DVE/OEB system[J]. Livestock Production Science, 1994, 40(2): 139-155. DOI:10.1016/0301-6226(94)90043-4
[9]
VAN DUINKERKEN G, BLOK M C, BANNINK A, et al. Update of the Dutch protein evaluation system for ruminants:the DVE/OEB2010 system[J]. Journal of Agricultural Science, 2011, 149(3): 351-367. DOI:10.1017/S0021859610000912
[10]
AOAC.Official methods of analysis of AOAC International[S].Arlington, VA:AOAC, 1990.
[11]
VAN SOEST P J, ROBERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 1991, 74(10): 3583-3597. DOI:10.3168/jds.S0022-0302(91)78551-2
[12]
YOUNG E G, CONWAY C F. On the estimation of allantoin by the rimini-schryver reaction[J]. Journal of Biological Chemistry, 1942, 142(2): 839-853.
[13]
CHEN X B, GOMES M. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives-an overview of the technical details[M]. Bucksburn Aberdeen: International Feed Resources Unit, 1992.
[14]
VALADARES R F D, BRODERICK G A, VALADARES FILHO S C, et al. Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives[J]. Journal of Dairy Science, 1999, 82(12): 2686-2696. DOI:10.3168/jds.S0022-0302(99)75525-6
[15]
YU P, CHRISTENSEN D, MCKINNON J. In situ rumen degradation kinetics of timothy and alfalfa as affected by cultivar and stage of maturity[J]. Canadian Journal of Animal Science, 2004, 84(2): 255-263. DOI:10.4141/A03-116
[16]
ØRSKOV E R. The effect of processing on digestion and utilization of cereals by ruminants[J]. Proceedings of the Nutrition Society, 1976, 35(2): 245-252. DOI:10.1079/PNS19760038
[17]
ZHONG R Z, LI J G, GAO Y X, et al. Effects of substitution of different levels of steam-flaked corn for finely ground corn on lactation and digestion in early lactation dairy cows[J]. Journal of Dairy Science, 2008, 91(10): 3931-3937. DOI:10.3168/jds.2007-0957
[18]
VONNIE D.C. SHIELD.Herbivore[M]. Rijeka: InTech, 2017, 117-130.
[19]
FERRARETTO L F, CRUMP P M, SHAVER R D. Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a meta-analysis[J]. Journal of Dairy Science, 2013, 96(1): 533-550. DOI:10.3168/jds.2012-5932
[20]
SUTTON J D, BINES J A, MORANT S V, et al. A comparison of starchy and fibrous concentrates for milk production, energy utilization and hay intake by Friesian cows[J]. The Journal of Agricultural Science, 1987, 109(2): 375-386. DOI:10.1017/S0021859600080801
[21]
SMITH W R, YU I, HUNGATE R E. Factors affecting cellulolysis by Ruminococcus albus[J]. Journal of Bacteriology, 1973, 114(2): 729-737.
[22]
MANRÍQUEZ O M, MONTANO M F, CALDERON J F, et al. Influence of wheat straw pelletizing and inclusion rate in dry rolled or steam-flaked corn-based finishing diets on characteristics of digestion for feedlot cattle[J]. Asian-Australasian Journal of Animal Sciences, 2016, 29(6): 823-829.
[23]
HATEW B, PODESTA S C, VAN LAAR H, et al. Effects of dietary starch content and rate of fermentation on methane production in lactating dairy cows[J]. Journal of Dairy Science, 2015, 98(1): 486-499. DOI:10.3168/jds.2014-8427
[24]
乔富强. 玉米、小麦、稻谷蒸汽压片处理对其化学成分、瘤胃发酵和能量价值的影响[D]. 博士学位论文. 北京: 中国农业大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10019-1015500589.htm
[25]
ZHOU X Q, ZHANG Y D, ZHAO M, et al. Effect of dietary energy source and level on nutrient digestibility, rumen microbial protein synthesis, and milk performance in lactating dairy cows[J]. Journal of Dairy Science, 2015, 98(10): 7209-7217. DOI:10.3168/jds.2015-9312
[26]
GHORBANI G R, RAFIEE H, ALIKHANI M. Effects of different protein levels and corn processing methods on nitrogen metabolism in dairy cows and environmental pollution[J]. Journal of Animal Science, 2016, 94(Suppl.5): 764-765.
[27]
OHTANI F, TAKUSARI N, UENO T. Influence of readily fermentable carbohydrate supplementation to the diet on nitrogen excretion in lactating cows[J]. Nihon Chikusan Gakkaiho, 2001, 72(8): 239-246. DOI:10.2508/chikusan.72.8_239
[28]
NOCEK J E, RUSSELL J B. Protein and energy as an integrated system.relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production[J]. Journal of Dairy Science, 1988, 71(8): 2070-2107. DOI:10.3168/jds.S0022-0302(88)79782-9
[29]
申军士. 日粮能氮释放同步性对奶牛瘤胃代谢、生产效率与性能的影响研究[D]. 博士学位论文. 杭州: 浙江大学, 2013: 61-77. http://cdmd.cnki.com.cn/Article/CDMD-10335-1013186929.htm
[30]
CHIBISA G E, GORKA P, PENNER G B, et al. Effects of partial replacement of dietary starch from barley or corn with lactose on ruminal function, short-chain fatty acid absorption, nitrogen utilization, and production performance of dairy cows[J]. Journal of Dairy Science, 2015, 98(4): 2627-2640. DOI:10.3168/jds.2014-8827
[31]
MIYAJI M, MATSUYAMA H, HOSODA K, et al. Effect of replacing corn with brown rice grain in a total mixed ration silage on milk production, ruminal fermentation and nitrogen balance in lactating dairy cows[J]. Animal Science Journal, 2012, 83(8): 585-593. DOI:10.1111/asj.2012.83.issue-8
[32]
BURKHOLDER K M, GUYTON A D, MCKINNEY J M, et al. The effect of steam flaked or dry ground corn and supplemental phytic acid on nitrogen partitioning in lactating cows and ammonia emission from manure[J]. Journal of Dairy Science, 2004, 87(8): 2546-2553. DOI:10.3168/jds.S0022-0302(04)73379-2
[33]
CLARK J H, KLUSMEYER T H, CAMERON M R. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows[J]. Journal of Dairy Science, 1992, 75(8): 2304-2323. DOI:10.3168/jds.S0022-0302(92)77992-2
[34]
CABRITA A R J, DEWHURST R J, ABREU J M F, et al. Evaluation of the effects of synchronising the availability of N and energy on rumen function and production responses of dairy cows-a review[J]. Animal Research, 2006, 55(1): 1-24. DOI:10.1051/animres:2005045
[35]
DHIMAN T R, ZAMAN M S, MACQUEEN I S, et al. Influence of corn processing and frequency of feeding on cow performance[J]. Journal of Dairy Science, 2002, 85(1): 217-226. DOI:10.3168/jds.S0022-0302(02)74070-8
[36]
OBA M, ALLEN M S. Effects of corn grain conservation method on feeding behavior and productivity of lactating dairy cows at two dietary starch concentrations[J]. Journal of Dairy Science, 2003, 86(1): 174-183. DOI:10.3168/jds.S0022-0302(03)73598-X
[37]
FARNINGHAM D A, WHYTE C C. The role of propionate and acetate in the control of food intake in sheep[J]. British Journal of Nutrition, 1993, 70(1): 37-46. DOI:10.1079/BJN19930103
[38]
SHEPERD A C, COMBS D K. Long-term effects of acetate and propionate on voluntary feed intake by midlactation cows[J]. Journal of Dairy Science, 1998, 81(8): 2240-2250. DOI:10.3168/jds.S0022-0302(98)75803-5
[39]
JOY M T, DEPETERS E J, FADEL J G, et al. Effects of corn processing on the site and extent of digestion in lactating cows[J]. Journal of Dairy Science, 1997, 80(9): 2087-2097. DOI:10.3168/jds.S0022-0302(97)76154-X
[40]
MORAN J B. Cereal grains in complete diets for dairy cows:a comparison of rolled barley, wheat and oats and of three methods of processing oats[J]. Animal Production, 1986, 43(1): 27-36. DOI:10.1017/S0003356100018316
[41]
KHORASANI G R, OKINE E K, KENNELLY J J. Effects of substituting barley grain with corn on ruminal fermentation characteristics, milk yield, and milk composition of Holstein cows[J]. Journal of Dairy Science, 2001, 84(12): 2760-2769. DOI:10.3168/jds.S0022-0302(01)74730-3
[42]
GOZHO G N, MUTSVANGWA T. Influence of carbohydrate source on ruminal fermentation characteristics, performance, and microbial protein synthesis in dairy cows[J]. Journal of Dairy Science, 2008, 91(7): 2726-2735. DOI:10.3168/jds.2007-0809
[43]
KENNELLY J J, ROBINSON B, KHORASANI G R. Influence of carbohydrate source and buffer on rumen fermentation characteristics, milk yield, and milk composition in early-lactation Holstein cows[J]. Journal of Dairy Science, 1999, 82(11): 2486-2496. DOI:10.3168/jds.S0022-0302(99)75500-1
[44]
MIYAJI M, MATSUYAMA H, HOSODA K, et al. Milk production, nutrient digestibility and nitrogen balance in lactating cows fed total mixed ration silages containing steam-flaked brown rice as substitute for steam-flaked corn, and wet food by-products[J]. Animal Science Journal, 2013, 84(6): 483-488. DOI:10.1111/asj.2013.84.issue-6