动物营养学报    2018, Vol. 30 Issue (2): 624-634    PDF    
低鱼粉饲料中补充蛋氨酸对军曹鱼生长性能、体成分及肌肉氨基酸组成的影响
何远法1, 郭勇1*, 迟淑艳1, 谭北平1,2, 董晓慧1,2, 杨奇慧1, 刘泓宇1, 章双1     
1. 广东海洋大学水产学院, 湛江 524088;
2. 南海生物资源开发与利用协同创新中心, 广州 510275
摘要: 本试验旨在研究低鱼粉饲料中补充蛋氨酸对军曹鱼(Rachycentron canadum)生长性能、体成分及肌肉氨基酸组成的影响。在低鱼粉饲料中添加DL-蛋氨酸,配制蛋氨酸水平分别为0.72%、0.90%、1.00%、1.24%、1.41%、1.63%和1.86%的7种等氮等脂饲料。选取初始体重为(9.79±0.04)g的军曹鱼840尾,随机分为7组,每组3个重复,每个重复40尾鱼,进行为期16周的饲养试验。结果表明:0.90%和1.00%组的成活率显著高于0.72%组(P < 0.05)。随着饲料中蛋氨酸水平的升高,军曹鱼的增重率、特定生长率、蛋白质效率均呈先升高后降低的变化趋势,在1.00%组达到最大值,显著高于其余各组(P < 0.05)。1.00%组的饲料系数最低,除与0.90%和1.24%组差异不显著(P > 0.05)外,显著低于其余各组(P < 0.05)。0.72%组全鱼粗蛋白质含量显著低于其余各组(P < 0.05);0.90%组全鱼粗脂肪含量达到最高,除与0.72%和1.00%组差异不显著(P > 0.05)外,显著高于其余各组(P < 0.05);1.24%组全鱼粗灰分含量显著高于0.72%和0.90%组(P < 0.05)。随着饲料蛋氨酸水平的升高,军曹鱼肌肉中苯丙氨酸、赖氨酸、亮氨酸、丙氨酸、蛋氨酸以及必需氨基酸和总氨基酸含量均无显著差异(P > 0.05),但1.00%组肌肉中苏氨酸、缬氨酸、异亮氨酸、组氨酸含量显著高于1.63%组(P < 0.05)。由此可见,在低鱼粉饲料中补充蛋氨酸可提高军曹鱼的生长性能和体蛋白质含量;以增重率作为评价指标,经二次回归分析可知,军曹鱼对饲料中蛋氨酸的需要量为1.12%(占饲料蛋白质的2.43%)。
关键词: 军曹鱼     蛋氨酸     生长性能     体成分     肌肉氨基酸含量    
Effects of Methionine Supplementation in Low Fish Meal Diet on Growth Performance, Body Composition and Muscle Amino Acid Composition of Cobia (Rachycentron canadum)
HE Yuanfa1, GUO Yong1*, CHI Shuyan1, TAN Beiping1,2, DONG Xiaohui1,2, YANG Qihui1, LIU Hongyu1, ZHANG Shuang1     
1. College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China;
2. South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
Abstract: A 16-week feeding trial was carried out to investigate the effects of methionine supplementation in low fish meal diet on growth performance, body composition and muscle amino acid composition of cobia (Rachycentron canadum). Seven isonitrogenous and isolipidic diets were prepared by adding DL-methionine in a diet with low fish meal, and the methionine level in the seven diets was 0.72%, 0.90%, 1.00%, 1.24%, 1.41%, 1.63% and 1.86%, respectively. A total of 840 cobia with an initial body weight of (9.79±0.04) g were randomly assigned into 7 groups with 3 replicates per group and 40 individuals per replicate. The results showed that the survival rate (SR) in 0.90% and 1.00% groups was significantly higher than that in 0.72% group (P < 0.05). The weight gain rate (WGR), specific growth rate (SGR) and protein efficiency ratio (PER) were increased firstly and then decreased as dietary methionine level increasing, and the WGR, SGR and PER in 1.00% group had the highest values which were significantly higher than those in other groups (P < 0.05). The feed conversation ratio (FCR) in 1.00% group had the lowest value, which was significantly lower than that in other groups except 0.90% and 1.24% groups (P < 0.05). The crude protein content of whole body in 0.72% group was significantly lower than that in other groups (P < 0.05). The maximum crude lipid content was observed in 0.90% group, and the difference was significant compared with the other groups except 0.72% and 1.00% groups (P < 0.05). The ash content of whole body in 1.24% group was significantly higher than that in 0.72% and 0.90% groups (P < 0.05). The contents of phenylalanine, lysine, leucine, alanine, methionine, essential amino acid and total amino acid in muscle had no significant differences with dietary methionine level increasing (P > 0.05), but the contents of threonine, valine, isoleucine and histidine in muscle in 1.00% group were significantly higher than those in 1.63% group (P < 0.05). It can be concluded that the supplementation of methionine in low fish meal diet can significantly enhance the growth performance and body protein content of cobia, since the methionine requirement of cobia is 1.12% of diet (2.43% of dietary protein) which is estimated by quadratic regression analysis with WGR as the evaluation index.
Key words: cobia     methionine     growth performance     body composition     muscle amino acid composition    

鱼粉具有蛋白质含量高,必需氨基酸、长链ω-3脂肪酸、维生素和矿物质含量丰富等特点,一直以来都是水生动物的优质蛋白质源之一[1]。近几年来,有限的鱼粉资源和日益高涨的价格使得水生动物饲料中的鱼粉用量不得不减少[2-3]。替代鱼粉的常用植物蛋白质源,如豆粕、花生粕和棉籽粕等,往往因为必需氨基酸缺乏或含量很低,易引起饲料中氨基酸不平衡,导致养殖的水生动物不能高效利用其饲料蛋白质或氨基酸,进而影响机体相关代谢[4-5]。在鱼粉被常用的植物蛋白质源替代后,蛋氨酸成为影响鱼类正常生长的第一限制性氨基酸[6-7]。在动物体内,蛋氨酸以S-腺苷甲硫氨酸的形式将活性甲基传递给核酸和磷脂等,增强膜流动性和Na+-K+-ATP酶活性,减少胆汁酸在肝脏内聚积,加强其解毒作用[8]。蛋氨酸缺乏会导致鱼体生长和蛋白质效率降低[9-10],引起动物食欲减退、生长减缓或停滞、肾脏肿大或肝脏铁堆积,甚至造成肝坏死或纤维化[11],影响动物肌肉品质和其抗氧化能力[12]。虹鳟(Oncorhynchus mykiss)、大西洋鲑(Atlantic salmon)、河鳟(Salvelinus namaycush)等鲑科鱼类在饲喂蛋氨酸缺乏的饲料后还会罹患白内障[13]。适宜的饲料蛋氨酸水平能够提高斜带石斑鱼(Epinephelus coioides)[14]、军曹鱼(Rachycentron canadum)[7, 15]、建鲤(Cyprinus carpio var. Jian)[8]、大鳞鲆(Psetta maxima)[16]、虹鳟[17]等水产动物的增重率、饲料利用率和免疫应答能力。

军曹鱼是一种近海网箱养殖系统最具潜力的海水经济鱼类,主产地为中国、巴拿马和越南[18-19],2016年的总产量约为4.4万t[20]。目前,军曹鱼的养殖在一定程度上仍然依赖冰鲜鱼,限制了其大规模养殖。本试验通过在低鱼粉饲料中补充不同水平的蛋氨酸,探究其对军曹鱼生长性能、体成分及肌肉氨基酸组成的影响,为军曹鱼高效配合饲料的配制提供理论依据。

1 材料与方法 1.1 试验饲料和试验设计

以红鱼粉、去皮豆粕、玉米蛋白粉、小麦谷朊粉和晶体氨基酸[必需氨基酸(EAA)和非必需氨基酸(NEAA)]为主要蛋白质源,豆油、鱼油和大豆磷脂为脂肪源,配制鱼粉含量为20%的低鱼粉饲料。在低鱼粉饲料中分别添加0、0.20%、0.40%、0.80%、1.00%和1.20%的DL-蛋氨酸,通过调整饲料中甘氨酸的含量,配制7种等氮等脂饲料(表 1)。饲料原料经粉碎后按配方称重,逐级混合均匀后制粒成Φ2.5 mm×5.0 mm和Φ4.0 mm×5.0 mm的2种浮性膨化饲料,晾干后于-20 ℃冰箱中储存备用。试验饲料的氨基酸组成见表 2

表 1 试验饲料组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of experimental diets (DM basis)
表 2 试验饲料中氨基酸组成(干物质基础) Table 2 Amino acid composition of experimental diets (DM basis)
1.2 试验用鱼及饲养管理

养殖试验在湛江市南三岛附近海域的渔排上进行。试验用军曹鱼苗购自海南省文昌市育苗厂。正式试验开始前将试验鱼置于网箱(6 m×3 m×2 m)中暂养1周,然后挑选体格健壮、规格均一的初始体重为(9.79±0.04) g的军曹鱼幼鱼,随机分成7组,每组随机分配3个浮式海水网箱(1.0 m×1.0 m×2.0 m),每个网箱放鱼40尾。每天人工投喂2次(06:00和18:00),循环投喂至表观饱食状态(以大部分鱼不再游到水层表面摄食为准)。养殖周期为16周,水温28~33 ℃,盐度27‰~30‰,溶氧浓度 > 6 mg/L。

1.3 样品采集和分析

在养殖试验结束后,饥饿24 h,用丁香酚(1 : 10 000)麻醉后计数、称重。每个网箱随机抽取3尾鱼,-20 ℃冰箱保存,备测全鱼常规养分含量;每个网箱再随机抽取4尾鱼,解剖分离得到内脏和肝脏,并称量其湿重,用于计算形体指标;取背肌于冻存管并迅速放入液氮保存,后置于-80 ℃冷冻保存,用于肌肉氨基酸组成测定。

饲料原料、试验饲料以及鱼体常规养分含量测定参照AOAC(1995)[21]的方法。将饲料原料、试验饲料及鱼体样品均在105 ℃烘至恒重,获得水分含量;凯氏定氮法测定粗蛋白质含量;索氏抽提法测定粗脂肪含量;低温碳化,550 ℃灼烧5 h后测定粗灰分含量。

1.4 饲料与肌肉氨基酸组成测定

试验样品氨基酸组成使用全自动氨基酸分析仪(A300,membraPure,德国)检测。饲料和鱼体肌肉样品经冷冻干燥后称取50~200 mg(准确至0.1 mg)于10 mL顶空进样瓶中,加入10 mL 6 mol/L的盐酸,真空干燥10 min,再于氮吹仪下充氮气用铝箔加盖密封。将顶空进样瓶放在105 ℃恒温干燥箱中水解24 h,超纯水定容至50 mL,吸取定容后的样品1 mL于10 mL烧杯中,置真空干燥箱中脱酸(60 ℃)。加入1 mL乙酸钠缓冲液,混匀,经0.22 μm滤膜过滤至上样瓶中,上机检测。

1.5 计算公式
1.6 统计分析方法

试验数据采用SPSS 17.0统计软件对数据进行单因素方差分析(one-way ANOVA),如有显著性差异(P < 0.05),则进行Duncan氏法多重比较。试验数据用“平均值±标准误”表示。

2 结果 2.1 饲料蛋氨酸水平对军曹鱼生长性能的影响

表 3可知,各组军曹鱼的SR介于77.15%~92.86%,且0.90%和1.00%组的SR显著高于0.72%组(P < 0.05)。随着饲料中蛋氨酸水平的升高,军曹鱼的WGR、SGR、PER均呈先升高后降低的变化趋势,在1.00%组达到最大值,显著高于其余各组(P < 0.05)。1.00%组军曹鱼的FCR最低,与0.90%和1.24%组差异不显著(P > 0.05),显著低于其余各组(P < 0.05)。

表 3 饲料蛋氨酸水平对军曹鱼生长性能的影响 Table 3 Effects of dietary methionine level on growth performance of cobia (Rachycentron canadum)

将各组军曹鱼的WGR(y)与饲料蛋氨酸水平(x)进行回归分析,发现二者存在二次回归关系(图 1),回归方程为y=-734.1x2+1 644.2x+200.89(R2=0.627)。当饲料蛋氨酸水平为1.12%时,军曹鱼的WGR最大,由7组饲料蛋氨酸水平估计军曹鱼饲料蛋氨酸水平的95%置信区间为0.87%~1.63%。

图 1 饲料蛋氨酸水平与军曹鱼增重率的关系 Figure 1 The relationship between dietary methionine level and WGR of cobia (Rachycentron canadum)
2.2 饲料蛋氨酸水平对军曹鱼形体指标的影响

表 4可知,1.41%组军曹鱼的CF显著低于0.72%组(P < 0.05),与其余各组差异不显著(P > 0.05)。饲料蛋氨酸水平对军曹鱼的VSI、HSI均无显著影响(P > 0.05)。

表 4 饲料蛋氨酸水平对军曹鱼形体指标的影响 Table 4 Effects of dietary methionine level on morphological parameters of cobia (Rachycentron canadum)
2.3 饲料蛋氨酸水平对军曹鱼体成分的影响

表 5可知,各组全鱼水分含量无显著差异(P > 0.05);0.72%组全鱼粗蛋白质含量显著低于其余各组(P < 0.05);0.90%组全鱼粗脂肪含量最高,达到30.81%,除与0.72%和1.00%组差异不显著(P > 0.05)外,显著高于其余各组(P < 0.05);1.24%组全鱼粗灰分含量显著高于0.72%和0.90%组(P < 0.05)。

表 5 饲料蛋氨酸水平对军曹鱼全鱼体成分的影响(干物质基础) Table 5 Effects of dietary methionine level on body composition of cobia (Rachycentron canadum) (DM basis)
2.4 饲料蛋氨酸水平对军曹鱼肌肉氨基酸组成的影响

随饲料蛋氨酸水平的升高,军曹鱼肌肉中苯丙氨酸、赖氨酸、亮氨酸、丙氨酸、蛋氨酸以及EAA和总氨基酸(TAA)含量均无显著变化(P > 0.05);1.00%组军曹鱼肌肉中苏氨酸、缬氨酸、异亮氨酸、组氨酸含量显著高于1.63%组(P < 0.05)。

3 讨论 3.1 饲料蛋氨酸水平对军曹鱼生长性能和形体指标的影响

本研究中,饲喂蛋氨酸缺乏的饲料(蛋氨酸水平0.72%)后发现军曹鱼的生长减慢及SR降低。类似的现象在斜带石斑鱼[14]、黑鲷(Sparus macrocephalus)[22]、印度鲶鱼(Heteropneustes fossilis)[23]、团头鲂(Megalobrama amblycephala)[24]等鱼类上均有报道。蛋氨酸缺乏导致蛋白质合成受阻,影响正常生长;此外,还可能引起抗氧化产物的减少和耗尽,导致不可逆的氧化应激,进一步加剧生长停滞[9]。随着饲料中蛋氨酸水平升高到1.00%,军曹鱼的生长性能和饲料利用率得到显著改善,表明低鱼粉且蛋氨酸突出缺乏的条件下将蛋氨酸补充到适宜水平可以改善军曹鱼的生长。本试验中,以WGR为评价指标,军曹鱼对饲料中蛋氨酸的需要量为1.12%(占饲料蛋白质的2.43%),说明该蛋氨酸水平可促进军曹鱼的生长,提高其饲料效率。军曹鱼的蛋氨酸需要量占饲料蛋白质的比值与早期军曹鱼的2.64%[7]、鲱鱼(Seriola quinqueradiataja)的2.56%[25]、团头鲂的2.47%~2.50%[24]等相接近,但低于黑鲷的4.50%~4.53%[22]、鲈鱼(Dicentrarchus zubrax)的4.4%[26]、黄颡鱼(Pseudobagrus ussuriensis)的3.48%~3.53%[9]、大黄鱼(Pseudosciaena crocea R.)的3.22%~3.34%[27]、黄鲈(Perca flavescens)的3.10%~3.40%[28]、鲮鱼(Cirrhinus mrigala)的3.0%[6],并且高于虹鳟的1.49%[29]、异育银鲫(Carassius auratus gibelio)的2.17%[30]。上述研究所得蛋氨酸需要量的不同可能是由试验鱼对象、规格、饲料配方、饲养管理和养殖条件的差异造成的。例如,本试验中军曹鱼饲料粗蛋白质含量为46%,高于虹鳟的35%[29]、异育银鲫的37%[30]。另外,蛋氨酸的吸收率、添加形式和生物利用效率也可能影响其需要量[31-32]。当饲料蛋氨酸水平达到或超过1.24%时,军曹鱼的WGR、SGR和PER逐渐降低,这与早期团头鲂[24]、军曹鱼[15]的研究结果一致。饲料中不平衡的氨基酸模式可能使鱼类生长与蛋白质沉积降低、氮排泄增加以及氨基酸氧化[33]。有研究表明,蛋氨酸添加过量能引起蛋氨酸积累和氧化,以及产生对生长有害的代谢产物,例如氨基酸进行脱羧作用后,生成相应的一级胺,但大多数胺类对动物有毒,胺通过体内胺氧化酶氧化为醛和氨,氨对生物机体有毒,因此,脱去的氨必须排出体外[34-36]。同时,鱼体中多余的蛋氨酸通过脱氨基的方式导致额外能量的消耗,引起PER下降[24]。然而,有研究报道,饲料蛋氨酸升高到适宜水平后鱼体的WGR显著增加,然后继续升高蛋氨酸水平WGR基本保持不变[14, 37-38]。此外,饲料中半胱氨酸的含量可能会影响鱼类对蛋氨酸的需要量。早期的研究表明,半胱氨酸能够替代饲料中蛋氨酸的量,其中斑点叉尾(Ictalurus punctalus)饲料中替代量为60%[38]、美国红鱼(Sciaenops ocellatus)饲料中替代量为40%~50%[39]、罗非鱼(Oreochromis niloticus)饲料中替代量为49%[37]、印度鲶鱼饲料中替代量为39.6%~40.2%[40]。因此,在配方设计过程中,推荐分别考虑蛋氨酸和半胱氨酸的需要量,以确保动物能够有效满足这2种氨基酸的需要[41]。但在实际操作中,由于很多饲料原料中半胱氨酸的含量超过蛋氨酸,往往只需要关注蛋氨酸的需要量[42],并且军曹鱼饲料中蛋氨酸到半胱氨酸的转化效率以及半胱氨酸替代蛋氨酸的比例还不明确,有待进一步研究。本研究中,饲料蛋氨酸水平对军曹鱼的HSI和VSI无显著影响,这与在早期军曹鱼[7]中的报道一致。然而,在黄颡鱼[9]、虹鳟[43]和大西洋鲑[44]等鱼类的研究中发现,饲喂蛋氨酸缺乏饲料后鱼体HSI显著高于饲喂蛋氨酸过量的饲料。此外,饲喂蛋氨酸缺乏的饲料在斜带石斑鱼[14]、岩鱼(Sebastes schegelc)[45]上有较低的HSI。上述研究结果表明不同的养殖对象,饲料蛋氨酸水平对HSI和VSI的影响不一致。

3.2 饲料蛋氨酸水平对军曹鱼体成分的影响

据报道,全鱼粗蛋白质含量随饲料蛋氨酸水平的升高呈先升高后降低的变化趋势[6, 40, 45]。本试验中,饲喂蛋氨酸缺乏饲料的军曹鱼全鱼粗蛋白质含量较饲喂其他饲料的军曹鱼显著降低。造成这种差异的原因可能是,在蛋氨酸缺乏的情况下,饲料中氨基酸模式失衡,限制了军曹鱼对其他氨基酸的利用,加重了多余氨基酸的脱氨基作用,最终导致了体蛋白质合成受限,而补充蛋氨酸,增强了军曹鱼对其他氨基酸的利用,促进了体蛋白质的合成[46]。Luo等[14]结果表明,随着饲料蛋氨酸升高到适宜水平,点带石斑鱼全鱼粗蛋白质含量增加,然后基本保持稳定。另外,该试验中饲喂低蛋氨酸水平饲料的军曹鱼具有较高的全鱼粗脂肪含量。这与在团头鲂[24]、印度鲶鱼[40]、罗非鱼[47]上所得结果一致,表明摄食蛋氨酸水平低的饲料鱼体可能利用蛋白质而不是脂肪作为能源来降低长链脂酰辅酶A从胞浆转运到线粒体内进行脂肪酸的β-氧化[24, 48]。然而,另有研究表明,随着饲料蛋氨酸水平的升高,全鱼粗脂肪含量增加[14, 23, 25],与上述结果存在差异,其原因有待进一步研究。

表 6 饲料蛋氨酸水平对军曹鱼肌肉氨基酸组成的影响(干物质基础) Table 6 Effects of dietary methionine level on amino acid composition in muscle of cobia (Rachycentron canadum) (DM basis)
3.3 饲料蛋氨酸水平对军曹鱼肌肉氨基酸组成的影响

水产动物对蛋白质的积累是通过饲料氨基酸的合成来实现的,不同饲料氨基酸模式将影响鱼类的生长、体蛋白质结合态氨基酸的组成以及蛋白质的合成[27, 49]。据报道,黄颡鱼肌肉EAA含量不随饲料蛋氨酸水平的升高而变化[10];牛蛙[Rana (Lithobates) catesbeiana]肌肉EAA、NEAA和TAA含量随饲料蛋氨酸水平的升高不发生任何改变[50];博氏巨鲶(Pangasius bocourti)全鱼EAA和TAA含量不受饲料蛋氨酸水平的显著影响[51]。本试验中,饲料蛋氨酸水平对军曹鱼肌肉中EAA和TAA含量均无显著影响,这与上述研究结果一致,但与黑鲷[22]、大黄鱼[27]、胭脂鱼(Myxocyprinus asiaticus)[52]的研究结果存在差异,表现为饲料蛋氨酸缺乏或不足降低了其肌肉中EAA含量,并且抑制其蛋白质的合成。有意思的是,饲料蛋氨酸水平对军曹鱼肌肉中苏氨酸、缬氨酸、异亮氨酸、组氨酸和精氨酸的含量有显著影响,这与早期的研究结果[14, 52]类似,表明一种氨基酸的摄入能够影响其他氨基酸含量的改变[53],饲料中某一种EAA的限制可能会通过增加其他EAA和NEAA的氧化来达到饲料中氨基酸的平衡[22]

4 结论

① 低鱼粉饲料中补充蛋氨酸可提高军曹鱼的生长性能和体蛋白质含量。

② 以WGR作为评价指标,经二次回归分析可知,军曹鱼对饲料中蛋氨酸需要量为1.12%(占饲料蛋白质的2.43%)。

参考文献
[1]
OLSEN R L, HASAN M R. A limited supply of fishmeal:impact on future increases in global aquaculture production[J]. Trends in Food Science & Technology, 2012, 27(2): 120-128.
[2]
LU F, HAGA Y, SATOH S. Effects of replacing fish meal with rendered animal protein and plant protein sources on growth response, biological indices, and amino acid availability for rainbow trout Oncorhynchus mykiss[J]. Fisheries Science, 2015, 81(1): 95-105. DOI:10.1007/s12562-014-0818-7
[3]
SHAN L L, LI X Q, ZHENG X M, et al. Effects of feed processing and forms of dietary methionine on growth and IGF-1 expression in Jian carp[J]. Aquaculture Research, 2015, 48(1): 56-67.
[4]
KEREMAH R I, ALFREDOCKIYA J F. Effects of dietary protein level on growth and body composition of mudfish, Heterobranchus longifilis fingerlings[J]. African Journal of Business Management, 2013, 12(9): 971-975.
[5]
VAN DER INGH T S G A M, OLLI J J, KROGDAHL Å. Alcohol-soluble components in soybeans cause morphological changes in the distal intestine of Atlantic salmon, Salmon salar L[J]. Journal of Fish Diseases, 2010, 19(1): 47-53.
[6]
AHMED I, KHAN M A, JAFRI A K. Dietary methionine requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton)[J]. Aquaculture International, 2003, 11(5): 449-462. DOI:10.1023/B:AQUI.0000004181.89420.a2
[7]
ZHOU Q C, WU Z H, TAN B P, et al. Optimal dietary methionine requirement for juvenile cobia (Rachycentron canadum)[J]. Aquaculture, 2006, 258(1/2/3/4): 551-557.
[8]
TANG L, WANG G X, JIANG J, et al. Effect of methionine on intestinal enzymes activities, microflora and humoral immune of juvenile Jian carp (Cyprinus carpio var.Jian)[J]. Aquaculture Nutrition, 2009, 15(5): 477-483. DOI:10.1111/anu.2009.15.issue-5
[9]
WANG Y Y, CHE J F, TANG B B, et al. Dietary methionine requirement of juvenile Pseudobagrus ussuriensis[J]. Aquaculture Nutrition, 2016, 22(6): 1293-1300. DOI:10.1111/anu.2016.22.issue-6
[10]
ELMADA C Z, HUANG W, JIN M, et al. The effect of dietary methionine on growth, antioxidant capacity, innate immune response and disease resistance of juvenile yellow catfish (Pelteobagrus fulvidraco)[J]. Aquaculture Nutrition, 2016, 22(6): 1163-1173. DOI:10.1111/anu.2016.22.issue-6
[11]
王蕾蕾, 邵庆均. 饲料中添加蛋氨酸对鱼类生长的影响[J]. 水生态学杂志, 2007, 27(1): 108-110.
[12]
PÉREZ-JIMÉNEZ A, PERES H, CRUZ R V, et al. The effect of dietary methionine and white tea on oxidative status of gilthead sea bream (Sparus aurata)[J]. British Journal of Nutrition, 2012, 108(7): 1202-1209. DOI:10.1017/S0007114511006556
[13]
POSTON H A, RⅡS R C, RUMSEY G L, et al. The effect of supplemental dietary amino acids, minerals and vitamins on salmonids fed cataractogenic diets[J]. Cornell Veterinarian, 1977, 67(4): 472-509.
[14]
LUO Z, LIU Y J, MAI K S, et al. Dietary L-methionine requirement of juvenile grouper Epinephelus coioides at a constant dietary cystine level[J]. Aquaculture, 2005, 249(1/2/3/4): 409-418.
[15]
WANG Z, MAI K S, XU W, et al. Dietary methionine level influences growth and lipid metabolism via GCN2 pathway in cobia (Rachycentron canadum)[J]. Aquaculture, 2016, 454: 148-156. DOI:10.1016/j.aquaculture.2015.12.019
[16]
MA R, HOU H P, MAI K S, et al. Comparative study on the effects of L-methionine or 2-hydroxy-4-(methylthio) butanoic acid as dietary methionine source on growth performance and anti-oxidative responses of turbot (Psetta maxima)[J]. Aquaculture, 2013, 412/413: 136-143. DOI:10.1016/j.aquaculture.2013.07.021
[17]
ROLLAND M, DALSGAARD J, HOLM J, et al. Dietary methionine level affects growth performance and hepatic gene expression of GH-IGF system and protein turnover regulators in rainbow trout (Oncorhynchus mykiss) fed plant protein-based diets[J]. Comparative Biochemistry & Physiology Part B:Biochemistry & Molecular Biology, 2015, 181: 33-41.
[18]
CHOU R L, SU M S, CHEN H Y. Optimal dietary protein and lipid levels for juvenile cobia (Rachycentron canadum)[J]. Aquaculture, 2003, 193(1/2): 81-89.
[19]
ZHOU Q C, TAN B P, MAI K S, et al. Apparent digestibility of selected feed ingredients for juvenile cobia Rachycentron canadum[J]. Aquaculture, 2004, 241(1/2/3/4): 441-451.
[20]
农业部渔业局. 中国渔业统计年鉴2016[M]. 北京: 中国农业出版社, 2016.
[21]
AOAC. Official methods of analysis[S]. Arlington, VA: Association of Official Analytical Chemists, 1995.
[22]
ZHOU F, XIAO J X, HUA Y, et al. Dietary L-methionine requirement of juvenile black sea bream (Sparus macrocephalus) at a constant dietary cystine level[J]. Aquaculture Nutrition, 2011, 17(5): 469-481. DOI:10.1111/anu.2011.17.issue-5
[23]
AHMED I. Dietary amino acid L-methionine requirement of fingerling Indian catfish, Heteropneustes fossilis (Bloch-1974) estimated by growth and haemato-biochemical parameters[J]. Fish Physiology and Biochemistry, 2012, 38(4): 1195-1209. DOI:10.1007/s10695-012-9609-1
[24]
LIAO Y J, REN M C, LIU B, et al. Dietary methionine requirement of juvenile blunt snout bream (Megalobrama amblycephala) at a constant dietary cystine level[J]. Aquaculture Nutrition, 2014, 20(6): 741-752. DOI:10.1111/anu.2014.20.issue-6
[25]
RUCHIMAT T, MASUMOTO T, HOSOKAWA H, et al. Quantitative methionine requirement of yellowtail (Seriola quinqueradiata)[J]. Aquaculture, 1997, 150(1/2): 113-122.
[26]
HIDALGO F, ALLIOT E, THEBAULT H. Methionine-and cystine-supplemented diets for juvenile sea bass (Dicentrarchus labrax)[J]. Aquaculture, 1987, 64(3): 209-217. DOI:10.1016/0044-8486(87)90326-7
[27]
MAI K S, WAN J L, AI Q H, et al. Dietary methionine requirement of large yellow croaker, Pseudosciaena crocea R[J]. Aquaculture, 2006, 253(1/2/3/4): 564-572.
[28]
TWIBELL R G, WILSON K A, BROWN P B. Dietary sulfur amino acid requirement of juvenile yellow perch fed the maximum cystine replacement value for methionine[J]. The Journal of Nutrition, 2000, 130(3): 612-616. DOI:10.1093/jn/130.3.612
[29]
KIM K, KAYES T B, AMUNDSON C H. Requirement of sulfur amino acids and utilization of D-methionine by rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 1992, 101(1/2): 95-103.
[30]
贾鹏, 薛敏, 朱选, 等. 饲料蛋氨酸水平对异育银鲫幼鱼生长性能影响的研究[J]. 水生生物学报, 2013, 37(2): 217-226. DOI:10.7541/2013.7
[31]
LI P, BURR G S, WEN Q, et al. Dietary sufficiency of sulfur amino acid compounds influences plasma ascorbic acid concentrations and liver peroxidation of juvenile hybrid striped bass (Morone chrysops×M. saxatilis)[J]. Aquaculture, 2009, 287(3/4): 414-418.
[32]
WILSON R P. Amino acids and proteins[M]//HALVER J E, HARDY R W. Fish nutrition. 3rd ed. San Diego, CA: Academic Press, 2002: 143-179.
[33]
ARAGÀO C, Conceição L E C, MARTINS D, et al. A balanced dietary amino acid profile improves amino acid retention in post-larval Senegalese sole (Solea senegalensis)[J]. Aquaculture, 2004, 233(1/2/3/4): 293-304.
[34]
MURTHY H S, VARGHESE T J. Total sulphur amino acid requirement of the Indian major carp, Labeo rohita (Hamilton)[J]. Aquaculture Nutrition, 1998, 4(1): 61-65. DOI:10.1046/j.1365-2095.1998.00045.x
[35]
SHUSAKU T, SHIMENO S, HOSOKAWA H, et al. Effect of lysine and methionine supplementation to a soy protein concentrate diet for red sea bream Pagrus major[J]. Fisheries Science, 2001, 67(6): 1088-1096. DOI:10.1046/j.1444-2906.2001.00365.x
[36]
SVEIER H, NORDÅS H, BER G E, et al. Dietary inclusion of crystalline D-and L-methionine:effects on growth, feed and protein utilization, and digestibility in small and large Atlantic salmon (Salmon salar L.)[J]. Aquaculture Nutrition, 2001, 7(3): 169-181. DOI:10.1046/j.1365-2095.2001.00169.x
[37]
NGUYEN T N, DAVIS D A. Re-evaluation of total sulphur amino acid requirement and determination of replacement value of cystine for methionine in semi-purified diets of juvenile Nile tilapia, Oreochromis niloticus[J]. Aquaculture Nutrition, 2009, 15(3): 247-253. DOI:10.1111/anu.2009.15.issue-3
[38]
HARDING D E, ALLEN A O, J r, WILSON R P. Sulfur amino acid requirement of channel catfish:L-methionine and L-cystine[J]. Journal of Nutrition, 1977, 107(11): 2031-2035. DOI:10.1093/jn/107.11.2031
[39]
GOFF J B, DMⅢ G. Evaluation of different sulfur amino acid compounds in the diet for red drum, Sciaenops ocellatus, and sparing value of cystine for methionine[J]. Aquaculture, 2004, 241(1/2/3/4): 465-477.
[40]
FHRHAT, KHAN M A. Total sulfur amino acid requirement and cystine replacement value for fingerling stinging catfish, Heteropneustes fossilis (Bloch)[J]. Aquaculture, 2014, 426-427: 270-281. DOI:10.1016/j.aquaculture.2014.02.023
[41]
RODEHUTSCORD M, JACOBS S M, PACK M, et al. Response of rainbow trout (Oncorhynchus mykiss) growing from 50 to 150 g to supplements of DL-methionine in a semipurified diet containing low or high levels of cystine[J]. Journal of Nutrition, 1995, 125(4): 964-969.
[42]
NRC. Nutrient requirements of fish and shrimp[S]. Washington, D. C. : National Academic Press, 2011.
[43]
WALTON M J, COWEY C B, ADRON J W. Methionine metabolism in rainbow trout fed diets of differing methionine and cystine content[J]. The Journal of Nutrition, 1982, 112(8): 1525-1535. DOI:10.1093/jn/112.8.1525
[44]
ESPE M, HEVRØY E M, LIASET B, et al. Methionine intake affect hepatic sulphur metabolism in Atlantic salmon, Salmo salar[J]. Aquaculture, 2008, 274(1): 132-141. DOI:10.1016/j.aquaculture.2007.10.051
[45]
YAN Q, XIE S, ZHU X, et al. Dietary methionine requirement for juvenile rockfish, Sebastes schlegeli[J]. Aquaculture Nutrition, 2007, 13(3): 163-169. DOI:10.1111/anu.2007.13.issue-3
[46]
朱杰, 蒋广震, 徐维娜, 等. 日本沼虾的蛋氨酸需求量[J]. 经济动物学报, 2014, 18(3): 151-158.
[47]
EL-WAHAB A A, AZIZA A, MAHGOUB H, et al. Effects of dietary methionine levels and sources on performance, blood lipid profile and histopathology in Nile tilapia (Oreochromis niloticus)[J]. International Journal of Fisheries and Aquatic Studies, 2016, 4(4): 89-98.
[48]
WALTON M J, COWEY C B, ADRON J W. The effect of dietary lysine levels on growth and metabolism of rainbow trout (Salmo gairdneri)[J]. British Journal of Nutrition, 1984, 52(1): 115-122. DOI:10.1079/BJN19840077
[49]
ALAM M S, TESHIMA S, ISHIKAWA M, et al. Methionine requirement of juvenile Japanese flounder Paralichthys olivaceus estimated by the oxidation of radioactive methionine[J]. Aquaculture Nutrition, 2001, 7(3): 201-209. DOI:10.1046/j.1365-2095.2001.00171.x
[50]
ZHANG C X, FENG W, WANG L, et al. Optimal dietary methionine requirement of bullfrog Rana (Lithobates) catesbeiana[J]. Aquaculture, 2016, 464: 576-581. DOI:10.1016/j.aquaculture.2016.08.011
[51]
YUANGSOI B, WONGMANEEPRATEEP S, SANGSUE D. The optimal dietary DL-methionine on growth performance, body composition and amino acids profile of Pangasius catfish (Pangasius bocourti)[J]. Aquaculture, Aquarium, Conservation & Legislation-Internationa, 2016, 9(2): 369-378.
[52]
CHU Z J, GONG Y, LIN Y C, et al. Optimal dietary methionine requirement of juvenile Chinese sucker, Myxocyprinus asiaticus[J]. Aquaculture Nutrition, 2014, 20(3): 253-264. DOI:10.1111/anu.2014.20.issue-3
[53]
COLOSO R M, MURILLO-GURREA D P, BORLONGAN I G, et al. Sulphur amino acid requirement of juvenile Asian sea bass Lates calcarifer[J]. Journal of Applied Ichthyology, 2010, 15(2): 54-58.