动物营养学报    2018, Vol. 30 Issue (12): 4776-4785    PDF    
芳香烃受体调控肠道炎症的研究进展
李成良1, 齐广海1,2, 彭鹏1, 方热军1     
1. 湖南农业大学动物科技学院, 长沙 410128;
2. 中国农业科学院饲料研究所, 农业部饲料生物技术重点开放实验室, 北京 100081
摘要: 芳香烃受体(AhR)是一种需配体激活的转录因子,对环境毒素、机体异物质代谢和免疫调节等具有重要作用。近年研究发现,AhR是参与免疫调控的关键因子,其对炎症性肠道疾病(IBD)的调控已成为当前研究热点。本文综述了AhR结构、配体、信号传导通路及AhR参与调控肠道炎症的最新研究进展,为治疗IBD提供新的思路。
关键词: 芳香烃受体     配体     免疫调控     炎症性肠病    
Research Progress of Aryl Hydrocarbon Receptor in Regulating Intestinal Inflammation
LI Chengliang1, QI Guanghai1,2, PENG Peng1, FANG Rejun1     
1. College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
2. Feed Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Beijing 100081, China
Abstract: The aryl hydrocarbon receptor (AhR) is a transcription factor activated by synthetic ligands, and has important role on environmental toxins, organism metabolism and immunomodulatory. It has recently reported that AhR is a key factor in immune regulation, AhR regulating the inflammatory bowel disease (IBD) has become hot topic in current research. This article reviews the latest research on structure, ligand and signal transduction pathway of AhR and AhR regulating the intestinal inflammation, and provide new ideas for cure the IBD.
Key words: aryl hydrocarbon receptor     ligands     immunomodulatory     inflammatory bowel disease    

多环芳香烃化合物(polycyclic aromatic hydrocarbons,PAHs)是重要的环境污染物,具有强烈的致癌性。Poland等[1]应用核素标记配体法测定技术证明一种受体可介导PAHs的毒性作用,而命名为芳香烃受体(aryl hydrocarbon receptor,AhR)。以前研究多集中于AhR对环境芳香烃化合物的代谢反应,近年研究发现,AhR是参与免疫调节的关键因子,AhR存在于大多数免疫细胞,参与调控细胞增殖、分化、适应性及先天免疫细胞亚细胞群的细胞因子分泌[2]。AhR在调节性T细胞(regulatory T cell,Treg)、辅助性T细胞17(T helper cells 17,Th17)、肠上皮内淋巴细胞(intestinal intraepithelial lymphocytes,IELs)、固有淋巴细胞(innate lymphoid cells,ILCs)等自身免疫调节中具有重要作用。越来越多的研究表明,AhR在调控溃烂性结肠炎(ulcerated colitis,UC)、克罗恩病(Crohn’s disease,CD)、抑制肠道感染和维护肠道健康方面有重要作用,其对肠道炎症的调控已成为当前研究热点。

1 AhR的一级结构

AhR是分子量较大的蛋白质,是由805个氨基酸构成的转录因子,属于配体依赖性的碱性螺旋-环-螺旋(basic helix-loop-helix,bHLH)超家族中的PAS(period-aryl hydrocarbon receptor nuclear translocator-single minded,Pre-Arnt-Sim)亚家族成员[1]。所有哺乳动物bHLH-PAS蛋白质具有相似的分子结构,表明AhR进化过程中具有高度保守性。AhR结构从N端到C端主要分成bHLH、PAS和C端谷氨酰胺富集区3部分(图 1)。bHLH具有高度保守性,对基本生理活动具有重要作用,PAS包括重复序列PAS-A和PAS-B 2部分[3]。C端具有物种差异性,呈多态性,其蛋白质长度长短不一[4]。N端bHLH帮助DNA结合和蛋白质二聚化,AhR受体C端约50%的蛋白质富含谷氨酸,该区具有转录激活作用,保护相关辅酶因子的结合位点如E1A结合蛋白P300(E1 A binding protein p300,P300)和固醇受体共激活因子-1(steroid receptor coactivator-1,SRC1)。PAS-B区为配体绑定区[5],PAS区主要发挥DNA识别、与配体和分子伴侣蛋白质相互结合的功能。PAS-B结构域与AhR配体结合区相重叠,赋予了蛋白质之间的相互作用,如与热休克蛋白90(heat shock protein 90,HSP90)、成视网膜母细胞瘤蛋白(retinoblastoma protein,pRb)的相互作用[6-7]

图 1 AhR的结构功能域 Figure 1 Functional domains of AhR[3]

但由于AhR高级结构尚未被解析,其涉及与配体结合、转运等机制研究受到一定限制。近年来,研究者采用同源模建法,获得了AhR配体结合区三维空间结构[8],该结构由5个β折叠和1个α螺旋构成,并包含1个疏水的配体结合口袋。目前认为配体结合口袋附近的芳香族氨基酸残基如谷氨酸(Gln)377、苯丙氨酸(Phe)318、Phe289、半胱氨酸(Cys)294,Gln317、苏氨酸(Thr)283等通过它们的芳香族侧链与配体的芳香环(所有配体都具有芳香环特征)之间产生的堆积力相互作用,实现配体与受体结合,其中Phe318在配体结合中起到关键性作用[8-9]

2 AhR的配体

AhR需要配体激活才能发挥其相关功能,其配体至少具有芳香化合物结构特征和疏水性。传统意义上AhR配体主要有两大类:卤代芳烃(halogenated aromatic hydrocarbons,HAHs)和多环芳香烃(polycyclic aromatic hydrocarbons,PAHs),越来越多的研究显示,一些与二者结构上有很大差异的人工合成和天然化合物也可以与AhR结合,说明AhR具有高度的配体多样性特点[10]。AhR的配体主要包括外源性配体和内源性配体,表 1总结了具有代表性的AhR配体[10-15]

表 1 代表性的AhR配体 Table 1 Representative AhR ligands
3 AhR的信号传导过程

无配体时,AhR与辅助伴侣蛋白23(co-chaperone protein 23,p23)、HSP90和乙型肝炎病毒X相关蛋白-2(hepatitis B virus X-associated protein 2,XAP2)形成复合物,存在于细胞质内。AhR配体根据其分子量大小,通过被动运输、主动转运、易化扩散和胞饮等方式进入细胞内[16]。当配体与AhR结合后,该复合物构象改变,再与核输入蛋白β结合,从而控制复合物核质穿梭[17]。在核内AhR与芳香烃受体转运蛋白(AhR nuclear translocator,ARNT)组成异源二聚体。活化后的AhR-配体-ARNT异源二聚体与DNA片段上二噁英反应元件(dioxin-responsive element,DRE)也叫外源反应元件(xenobiotic-responsive element,XRE)特异结合而发挥转录作用,下游被调控基因的XRE含有共同核心序列(N-GCGTG-C)。

AhR激活诱导可氧化AhR配体的细胞色素酶P4501A1(cytochrome P-4501 A1,CYP1A1),并导致配体的代谢清除与解毒。AhR-配体复合物入核和XRE/DRE区域相互联系时,4 h左右配体-AhR复合物会从核中移出并被相关酶如CYP1A1所降解。但当CYP1A1表达异常时,会耗尽细胞核内AhR配体,形成一个类似于AhR缺乏状态,从而影响后续基因表达,导致机体病变[18]。同时还存在2条独立通路防止AhR被过度活化:泛素/蛋白酶途径将激活的AhR降解及转运出核,芳香烃受体抑制因子(aryl hydrocarbon receptor repressor,AhRR)与AhR竞争结合ARNT。激活的AhR可诱导AhRR表达,达到对AhR通路活性的负反馈调节(图 1)[19]

4 AhR与炎症性肠道疾病(inflammatory bowel disease,IBD)

多位学者研究了AhR与肠道炎症之间的关系。Qiu等[20]发现无菌条件下与野生型小鼠(AhR+/+)相比,40%的AhR敲除小鼠(AhR-/-)出现了结肠炎,肠道组织出现了增厚和纤维化。小鼠肠道出现隐窝损伤和脓创、杯状细胞减少、腺体结构变形,炎症延伸至黏膜下层属于典型的IBD症状。Arsenescu等[21]在无菌条件下,使用右旋葡聚糖硫酸钠(dextran sodium sulfate,DSS)诱导小鼠产生结肠炎,发现在饲喂DSS的7 d时间里,AhR-/-小鼠全部死亡。Monteleone等[22]发现,与对照组(健康人体结肠组织)相比,UC组和克罗恩病病人的AhR mRNA表达丰度显著下降,体重减轻。后期通过小鼠试验发现添加AhR拮抗剂后,加重小鼠结肠炎。这些试验说明AhR是维护肠道健康的必需因子,当AhR缺失或AhR表达受阻时,加重了肠道炎症。而AhR必须被各种配体活化后才能进入细胞核发挥相关功能。许多学者针对配体活化AhR介导肠炎信号在IBD模型中进行了大量研究[23-26]

AhR:芳香烃受体aryl hydrocarbon receptor;XAP2:乙型肝炎病毒X相关蛋白-2 hepatitis B virus X-associated protein 2;HSP90:热应激蛋白90 heat shock protein 90;ARNT:AhR转运蛋白AhR nuclear translocator;DREs:二英反应元件dioxin-responsive element;CYP1A1:细胞色素酶P4501A1 cytochrome P-4501A1。 图 2 AhR的信号途径 Figure 2 AhR signaling pathway[19]

李良子等[27]发现6-甲酰基吲哚并[3, 2-b]咔唑(FICZ)可缓解DSS诱导的结肠炎,同时减少了促炎因子白细胞介素-1β(interleukin-1β,IL-1β)、白细胞介素-6(interleukin-6,IL-6)和肿瘤坏死因子-α(tumor necrosis factor-alpha,TNF-α)表达,提高了抗炎因子白细胞介素-10(interleukin-10,IL-10)的表达。DSS型结肠炎导致肠黏膜CYP1A1表达量下降,加入FICZ后明显增加了肠黏膜CYP1A1表达量。FICZ为色氨酸光化产物,是AhR重要的内源性配体,其不仅可以缓解DSS诱导肠炎,还可以缓解三硝基苯磺酸(trinitrobenenze sulfonic acid,TNBS)或是T细胞转移诱导型结肠炎[25-27]。许多研究也都得到了类似结果[28-29]

以上研究表明,AhR在缓解炎症性肠疾病中具有重要作用,内外源性配体均可激活AhR信号通路,活化的AhR可缓解由AhR缺失、DSS和TNBS诱导产生的结肠炎,而非AhR配体(如二甲基亚枫)不能激活AhR通路,不能缓解肠道炎症。

5 AhR调控肠道炎症的主要方式 5.1 AhR调控肠上皮内淋巴及其相关因子

作为肠黏膜免疫系统的一个关键组分,IELs是存在与小肠黏膜上皮的一类独特的细胞群。IELs具有自然杀伤活性,并能分泌多种细胞因子,从而在免疫监视和细胞介导的黏膜免疫中发挥重要作用。Li等[30]研究发现,与其他淋巴细胞相比较,IELs可以表达高水平的AhR,随后将小鼠AhR基因敲除,发现小鼠小肠95%的IELs损失,而对淋巴结、脾脏的细胞比例和数量无影响。与野生型小鼠相比,肠上皮细胞周转受到影响,从而影响黏膜屏障完整性。伴随着IELs数量的减少,发现AhR-/-小鼠的颗粒酶A和B、基质金属蛋白酶-7(matrix metalloproteinase-7,MMP-7)和C型凝集素均显著低于对照组和吲哚-3甲醇(indole-3-carbinol,I3C)添加组。而Girardi等[31]认为敲除AhR会导致强烈的宿主免疫,造成IELs的免疫耐受。

Li等[30]移植来自小肠的富含AhR的肠道T细胞受体(T cell receptor,TCR)αβ(一种IELs细胞亚群),可重建AhR-/-小鼠肠道上皮细胞。来自于对照组的骨髓细胞在缺失重组激活基因-1(recombination activating gene 1,RAG1),甚至RAG1和AhR都缺失情况下可重建肠道IELs。AhR-/-小鼠骨髓细胞不能重建肠道IELs细胞,这说明活化的AhR是ILEs的一种细胞固有(cell-intrinsic)需求。AhR活性可直接影响IELs细胞池的维持。作者并没找到AhR直接调控IELs的靶基因的证据,但以前有报道,具有受体酪氨酸激酶c-kit基因突变的小鼠,表现为IELs细胞池容量显著下降,这种现象与AhR-/-小鼠表现非常相似。这表明AhR可能是通过c-kit基因的表达来调控IELs细胞池容量[32]

Li等[30]给小鼠饲喂标准饲粮和纯合饲粮3周后,饲喂纯合饲粮组回肠CYP1A1(AhR靶基因)、TCRγδ+ CD88αα+IELs数量显著下降,而给纯合饲粮加入200 mg/kg I3C后,IELs数量得到恢复,结肠炎得到缓解。且颗粒酶A和B,MMP-7和C型凝集素含量明显高于对照组和基因敲除组。研究发现ILEs可直接参与免疫监视作用,通过高表达量的颗粒酶诱导感染细胞凋亡[33],MMP-7主要参与肠道损伤修复和α-防御素(α-defensin)的杀菌作用[34]。C型凝集素可直接分泌到肠腔清除革兰氏阳性菌[35]

总结,配体激活AhR后可能通过调控c-kit基因表达,从而维持ILEs细胞池,保持肠上皮完整性,提高颗粒酶A和B及MMP-7、C型凝集素的表达,这几种因素共同作用,提高肠道修复和杀菌能力,从而缓解肠道炎症。

5.2 AhR调控肠道ILCs,维持肠道黏膜稳态平衡

ILCs既是固有免疫的效应细胞,又是获得性免疫的前体细胞[36-37]。ILCs位于肠黏膜固有层、肠黏膜的微小肠道隐窝斑(cryptopatches,CP)、孤立淋巴滤泡和派尔集合淋巴结,主要表达为孤儿核受体γt+(retinoid-related orphan nuclear receptors, RORγt+)ILC胞亚群。Spits等[38]发现ILCs是一个重要的肠黏膜稳态信号。

Qiu等[20]研究发现,成年AhR基因敲除小鼠,表现为RORγt+ILC程序性死亡增加,数量减少,添加FICZ后,可增加野生型小鼠和杂合子小鼠的RORγt+ILC数量,而对照组小鼠无影响。Lee等[39]发现当AhR缺失时,ILC(CD4+RORrt+ILC)数量显著下降。Kiss等[40]发现AhR-/-小鼠的ILCs数量扩增受到抑制,肠道第二淋巴器官微小肠道隐窝斑和孤立淋巴小结(isolated lymphoid follicles,ILF)发育受到抑制。以上研究都表明AhR信号参与调节ILCs细胞的增殖和存活。

Kiss等[40]发现AhR-/-小鼠表达低水平的kit(平均荧光强度3 500:1 000),给添加小鼠饲喂纯合饲粮、纯合饲粮加2 g/kg I3C和对照组饲粮(谷物基础饲粮,含有多酚芥子苷等)后,添加配体组和对照组均能激活AhR上调kit基因表达(平均荧光强度500:2 000:2 000)。这表明AhR直接调控kit转录。研究发现kit启动子具有典型的XRE[41-43],染色体免疫沉淀反应分析发现,活化的AhR与kit启动子相结合,给RORγt+ILC添加AhR配体,可提高kit启动子中XRE的占有率[40]kit是干细胞因子(stem cell factor,SCF)受体,SCF对维持肠道黏膜位点的ILCs细胞池非常重要[44]。采用含有SCF的RORγt+ILC进行体外培养证实了c-kit对出生后的ILCs增殖具有重要作用[40]。这表明AhR通路直接调控kit转录,从而调控ILCs细胞的增殖与分化。

Lee等[39]研究发现,给小鼠饲喂AhR配体二噁英(TCDD)后,可增加结肠肠腔Notch1和Notch2表达,而Notch被认为是AhR的目标基因[45-46],且RORγt+ILC可表达Notch1和Notch2[46],Possot等[47]通过体外培养来自于成人骨髓前体细胞的RORγt+ILC后发现,Notch2信号通路控制RORγt+ILC的产生,缺乏Notch信号通路的小鼠减少了RORγt+ILC的产生。Notch1和Notch2启动子含有XRE,使用AhR配体后,可诱导其启动子与AhR结合,从而进行后续调控[45]。这表明AhR通路同时调控Notch信号通路,从而调控ILCs的增殖与分化。

ILCs主要分泌细胞因子如白细胞介素-22(interleukin-22,IL-22),其可诱导肠上皮细胞产生黏蛋白和抗菌肽,IL-22在肠道抵抗病原方面有着关键作用[48-51]。Lee等[39]研究发现,野生型小鼠肠黏膜固有层的ILCs和派尔集合淋巴结的细胞在白细胞介素-23(interleukin-23,IL-23)刺激下,产生大量IL-22,而AhR基因敲除小鼠几乎无IL-22分泌。AhR基因敲除小鼠很快就被感染,2周内全部死亡。Monteleone等[22]通过TNBS、DSS和T细胞转移诱导小鼠产生结肠炎,而添加AhR配体FICZ后,增加了IL-22分泌,缓解了小鼠结肠炎。Zelante等[52]研究发现,AhR基因敲除小鼠IL-22分泌受到严重的抑制,进一步试验发现,小鼠肠道抗真菌能力与IL-22含量和ILCs数量有关。Schiering等[53]发现,小鼠中CYP1A1基因的异常表达,会耗尽原生AhR配体,形成一个类似于AhR缺乏的状态。CYP1A1的全身或限制在肠道上皮细胞的组成型表达,导致肠道AhR依赖型3类ILCs亚型(RORγt+NKP46+、RORγt+NKP46-、RORγt+CD4+)数量减少,IL-22分泌减少,提高了鼠柠檬酸杆菌对肠道的感染,在食物中增加AhR配体的摄入,可平衡因过多AhR配体降解对肠道免疫功能损伤。

Islam等[29]试验发现,野生型小鼠添加色氨酸增加了AhR mRNA表达,活化AhR的促进了ILCs增殖,同时增加了IL-22含量,IL-22诱导再生蛋白3(regenerating protein 3,Reg3)和黏蛋白的分泌,提高肠道抗菌能力。

AhR可通过上调kit和Notch通路,这2条通路控制ILCs的增殖、分化和周转,维持ILCs细胞池稳定。当肠道受到细菌威胁时,ILCs先于T细胞发挥免疫作用,ILCs分泌IL-22,从而诱导抗菌蛋白Reg3和黏蛋白的分泌进行杀菌活动,维护肠道健康。当AhR缺失或缺少配体激活时,AhR激活通路受到抑制,ILCs增殖分化减少,导致IL-22分泌减少,增加了肠道感染。因此,AhR是维护肠道黏膜稳态的必需因子。

5.3 AhR参与调控Treg/Th17分化平衡,从而调节肠道炎症

Treg和Th17都来自于初始CD4+T细胞,两者分化途径和在肠道炎症发生过程中的作用相反。Treg具有抗炎和维持免疫耐受功能,Th17功能与之相反。鼠类模型研究发现这2种细胞之间存在某种平衡,抑制Th17可促进Treg生成。

Treg转录因子为叉头状/翅膀状螺旋转录因子(forkhead box protein3,Foxp3)[20]。Treg主要分泌白细胞介素-4(interleukin-4,IL-4)、IL-10和转化生长因子β(transforming growth factor-β,TGF-β)等,Treg受IL-10正调节,受IL-6、白细胞介素-21(interleukin-21,IL-21)和肿瘤坏死因子-α(tumor necrosis factor-alpha,TNF-α)负调节[54-55]。研究发现,CD25+、CD4+辅助性T细胞可抑制、甚至治愈结肠炎[56-57]。Th17转录因子为RORγt。Th17可产生特异性的致炎细胞因子白细胞介素-17(interleukin-17,IL-17)。Th17生成过程受IL-1β、TNF-α和IL-23的正调节[58],γ干扰素(interferon-γ,IFN-γ)、受白细胞介素-27(interleukin-27,IL-27)和白细胞介素-2(interleukin-2,IL-2)的负调节。Th17还可分泌IL-21、IL-6、TNF-α等[59]。这些细胞因子可以集体动员、募集及活化中性粒细胞。IL-17能有效地介导中性粒细胞动员的兴奋过程,从而有效地介导了组织的炎症反应。Zhang等[60]试验发现,在UC模型小鼠体内Th17的分化及与其相关的RORγtIL-17、IL-6的表达水平均增加,而Treg的分化及与其相关的Foxp3、IL-10的表达水平下降。在DSS诱导的结肠炎模型中,促进了辅助性T细胞1(T helper cells 1,Th1)和Th17的细胞因子(IL-17、IL-6)分泌[43]

Qiu等[20]研究发现,AhR-/-小鼠促进了小肠初始CD4+T细胞转化为Th17,还发现AhR-/-小鼠Th17的转录因子RORγt表达量增加,促进了IL-17的产生,而Foxp3表达量下降。Singh等[24]采用DSS(3%)诱导小鼠产生结肠炎,结果发现,与DSS+载体组相比,DSS+TCDD组Treg的百分比和数量显著增加,而单独添加TCDD组和单独添加载体组的Treg百分比和数量只有轻微的增加。RT-PCR检测发现,与单独添加载体组比较,DSS+载体组显著下调FoxP3 mRNA表达,显著上调IL-17 mRNA表达。而添加TCDD后(DSS+TCDD),这种情况得到改善;同时发现未使用DSS的小鼠组,与单独添加载体组相比,添加TCDD能上调Foxp3的表达,而不改变IL-17的表达。

为验证TCDD通过AhR诱导调控Treg的分化,研究者采用野生型小鼠C57BL/6(AhR+/+)和AhR-/-小鼠进行体内和体外试验,结果发现,TCDD促进了野生型小鼠的Foxp3表达,而对AhR-/-小鼠的Foxp3表达无影响。同时使用TCDD处理DSS诱导的UC小鼠,发现肠道淋巴组织中的Foxp3表达显著上调,而IL-17的表达没有显著变化,表明TCDD活化AhR后可诱导Treg的分化,而不诱导Th17的分化[24]。Islam等[29]研究发现,野生型小鼠添加色氨酸显著上调Foxp3表达,下调IL-17的表达。还有研究发现,犬尿氨酸与AhR结合后,可促进T细胞向Treg分化,并增强Treg的活性,同时Treg可再作用于树突状细胞(dendritic cell,DC),通过DC促进其他调节性T细胞向Treg分化,形成一个正反馈的过程[61]

研究发现,Foxp3和RORγt的启动子都具有XRE元件,因此活化的AhR可直接调控这2个转录因子。AhR可通过诱导RORγt/C2表达进而启动RORγt/C2信号转导通路,从而促进Treg的分化。RORγt缺陷型小鼠能够减少Treg的组织浸润并缓解自身免疫性疾病[62]。Foxp3是Treg的调节功能密切相关的特异转录因子,高表达的Foxp3转基因小鼠其Treg数量增加。Foxp3不是传统意义上与IL-2、IL-4和INF-γ基因启动子直接相互作用的转录抑制因子,而是通过阻断多种细胞因子表达所必需的活化T细胞核因子(nuclear factor of active T cells,NFAT)、核转录因子-κB(nuclear factor-kappa B,NF-κB)的活化,达到抑制相应细胞因子表达的作用[63-64]。犬尿氨酸可通过AhR依赖的方式使Foxp3和Treg增殖[65]

一些新的研究表明,酪氨酸蛋白激酶-信号传导和转录激活因子(janus kinase-signal transducers and activatorsof transcription,JAK-STAT)信号通路在Treg的各种功能中都发挥着重要作用。如Chaudhry等[66]认为,Treg内的信号传导与转录激活因子(signal transduction and activator of transcription,STATs)活化可使Treg通过增加抑制性细胞分子和趋化因子受体的表达来抑制Th17炎性反应,而Treg内STAT3的缺失可导致结肠炎的发生。Quintana等[67]发现,活化的AhR可以通过调节STAT1来促进Treg的分化。在体外Treg/Th17生长分化环境中,STAT3的缺失严重削弱了Th17的分化,使Treg/Th17平衡向Treg方向移动。而AhR与其配体结合后,激活包括STAT3、NF-κB等在内的信号途径促使细胞向Th17分化[68-69]

以上研究表明,AhR缺失促进了Th17的分化,增加了促炎细胞因子(IL-17、IL-21和TNF-α)分泌,减少了Treg细胞分化,加重了肠道炎症。而添加AhR配体后可促进Treg细胞分化,增加抗炎细胞因子(IL-10)分泌,抑制了Th17的分化,减少该细胞促炎症因子(IL-4、IL-10、TGF-β)的分泌。活化的AhR通过调控转录因子Foxp3和RORγt,以及通过JAK-STAT通路调节Treg和Th17之间的平衡。而有研究者认为,TCDD活化AhR后对Foxp3和RORγt的调控是通过抑制Foxp3的CpG岛甲基化,促进IL-17启动子区域甲基化,从而促进Treg的分化,抑制Th17的分化,维持Treg/Th17的平衡,从而减缓肠道炎症[24]

6 小结

近年来,关于AhR参与免疫调节尤其是肠道炎症调节的研究很多,本文简单综述了AhR参与肠道免疫的稳态平衡,缓解肠道炎症。AhR失活会加重IBD病人肠炎,而各类配体可激活AhR有助于激发下游调控基因表达。通过维护和发挥IELs和ILCs相关功能、保护肠黏膜上皮完整、增加抗炎因子、抑制促炎症因子从而缓解肠道炎症。

食物是AhR配体的最大来源,食物相关营养素如色氨酸、大豆异黄酮、花生四烯酸、槲皮素、黄芩素等均是AhR配体。这些配体进入肠道后与AhR结合,启动相关基因表达,从而调节肠道免疫。IBD病人多摄入蔬菜有助于缓解结肠炎,利于肠道健康。菌群代谢物如短链脂肪酸可调节AhR及其在肝脏及肠道中的靶点,而AhR信号通路可影响小肠菌群组成,从而调控肠道菌群平衡,维护肠道健康。因此,研究相关配体调控动物肠道炎症,受体、配体与肠道微生物之间的关系,可作为未来动物营养调控研究的方向之一。

参考文献
[1]
POLAND A P, GLOVER E, KENDE A S. Stereospecific, high affinity binding of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin by hepatic cytosol:evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase[J]. Journal of Biological Chemistry, 1976, 25(16): 4936-4946.
[2]
POLAND A P, GLOVER E. Genetic expression of aryl hydrocarbon hydroxylase by 2, 3, 7, 8 tetrachlorodibenzo-p-dioxin:evidence for a receptor mutation in genetically non-responsive mice[J]. Molecular Pharmacology, 1975, 11(4): 389-398.
[3]
STOCKINGER B, DI MEGLIO P, GIALITAKIS M, et al. The aryl hydrocarbon receptor:multitasking in the immune system[J]. Annual Review of Immunology, 2014, 32(1): 403-432. DOI:10.1146/annurev-immunol-032713-120245
[4]
HAHN M E. Aryl hydrocarbon receptors:diversity and evolution[J]. Chemico-Biological Interactions, 2002, 141(1/2): 131-160.
[5]
WALLER C L, MCKINNEY J D. Three-dimensional quantitative structure-activity relationships of dioxins and dioxin-like compounds:model validation and ah receptor characterization[J]. Chemical Research in Toxicology, 1995, 8(6): 847-858. DOI:10.1021/tx00048a005
[6]
ANTONSSON C, WHITELAW M L, MCGUIRE J, et al. Distinct roles of the molecular chaperone hsp90 in modulating dioxin receptor function via the basic helix-loop-helix and PAS domains[J]. Molecular and Cellular Biology, 1995, 15(2): 756-765. DOI:10.1128/MCB.15.2.756
[7]
ELFERINK C J, GE N L, LEVINE A. Maximal aryl hydrocarbon receptor activity depends on an interaction with the retinoblastoma protein[J]. Molecular Pharmacology, 2001, 59(4): 664-673. DOI:10.1124/mol.59.4.664
[8]
蔺远, 张爱茜, 王连生.芳烃受体与配体结合特定结构域的结构预测与分析[C]//第四届全国环境化学学术大会论文汇编.南京: 中国化学会, 2008.
[9]
段毅涛, 赵辉, 黄鹤. 芳香烃受体内外源性配体研究进展[J]. 环境与健康杂志, 2013, 30(5): 456-459.
[10]
KIMURA A, NAKA T, NOHARA K, et al. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(28): 9721-9726. DOI:10.1073/pnas.0804231105
[11]
WANG H K, YEH C H, IWAMOTO T, et al. Dietary flavonoid naringenin induces regulatory T cells via an aryl hydrocarbon receptor mediated pathway[J]. Journal of Agricultural and Food Chemistry, 2012, 60(9): 2171-2178. DOI:10.1021/jf204625y
[12]
DINATALE B C, MURRAY I A, SCHROEDER J C, et al. kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling[J]. Toxicological Sciences, 2010, 115(1): 89-97. DOI:10.1093/toxsci/kfq024
[13]
HENRY E C, WELLE S L, GASIEWICZ T A. TCDD and a putative endogenous AhR ligand, ITE, elicit the same immediate changes in gene expression in mouse lung fibroblasts[J]. Toxicological Sciences, 2010, 114(1): 90-100. DOI:10.1093/toxsci/kfp285
[14]
LEHMANN G M, XI X, KULKARNI A A, et al. The aryl hydrocarbon receptor ligand ITE inhibits TGFβ1-induced human myofibroblast differentiation[J]. American Journal of Pathology, 2011, 178(4): 1556-1557.
[15]
WALL R J, HE G C, DENISON M S, et al. Novel 2-amino-isoflavones exhibit aryl hydrocarbon receptor agonist or antagonist activity in a species/cell-specific context[J]. Toxicology, 2012, 297(1/2/3): 26-33.
[16]
GAD S C. Toxicology of the gastrointestinal tract[M]. New York: CRC Press, 2007: 10.
[17]
ESSER C, RANNUG A, STOCKINGER B. The aryl hydrocarbon receptor in immunity[J]. Trends in Immunology, 2009, 30(9): 447-454. DOI:10.1016/j.it.2009.06.005
[18]
PASTORKOVÁ B, VRZALOVÁ A, BACHLEDA P, et al. Hydroxystilbenes and methoxystilbenes activate human aryl hydrocarbon receptor and induce CYP1A genes in human hepatoma cells and human hepatocytes[J]. Food and Chemical Toxicology, 2017, 103: 122-132. DOI:10.1016/j.fct.2017.03.008
[19]
SCHMIDT J V, BRADFIELD C A. Ah receptor signaling pathways[J]. Annual Review of Cell and Developmental Biology, 1996, 12(1): 55-89. DOI:10.1146/annurev.cellbio.12.1.55
[20]
QIU J, GUO X H, CHEN Z M E, et al. Group 3 Innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora[J]. Immunity, 2013, 39(2): 386-399. DOI:10.1016/j.immuni.2013.08.002
[21]
ARSENESCU R, ARSENESCU V, ZHONG J, et al. Role of the xenobiotic receptor in inflammatory bowel disease[J]. Inflammatory Bowel Diseases, 2011, 17(5): 1149-1162. DOI:10.1002/ibd.21463
[22]
MONTELEONE I, RIZZO A, SARRA M, et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract[J]. Gastroenterology, 2011, 141(1): 237-248. DOI:10.1053/j.gastro.2011.04.007
[23]
XUE J, NGUYEN D T, HABTEZION A. Aryl hydrocarbon receptor regulates pancreatic IL-22 production and protects mice from acute pancreatitis[J]. Gastroenterology, 2012, 143(6): 1670-1680. DOI:10.1053/j.gastro.2012.08.051
[24]
SINGH N P, SINGH U P, SINGH B, et al. Activation of aryl hydrocarbon receptor (AhR) leads to reciprocal epigenetic regulation of FoxP3 and IL-17 expression and amelioration of experimental colitis[J]. PLoS One, 2011, 6(8): e23522. DOI:10.1371/journal.pone.0023522
[25]
TAKAMURA T, HARAMA D, MATSUOKA S, et al. Activation of the aryl hydrocarbon receptor pathway may ameliorate dextran sodium sulfate-induced colitis in mice[J]. Immunology & Cell Biology, 2010, 88(6): 685-689.
[26]
TAKAMURA T, HARAMA D, FUKUMOTO S, et al. Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis[J]. Immunology & Cell Biology, 2011, 89(7): 817-822.
[27]
李良子, 刘中泽, 陈维刚, 等. 芳香烃受体对小鼠结肠炎的缓解作用及机制研究[J]. 免疫学杂志, 2017, 33(1): 13-17.
[28]
SHIZUMA T, MORI H, FUKUYAMA N. Protective effect of tryptophan against dextran sulfate sodium-induced experimental colitis[J]. Turkish Journal of Gastroenterology, 2013, 24(1): 30-35.
[29]
ISLAM J, SATO S, WATANABE K, et al. Dietary tryptophan alleviates dextran sodium sulfate-induced colitis through aryl hydrocarbon receptor in mice[J]. The Journal of Nutritional Biochemistry, 2017, 42: 43-50. DOI:10.1016/j.jnutbio.2016.12.019
[30]
LI Y, INNOCENTIN S, WITHERS D R, et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation[J]. Cell, 2011, 147(3): 629-640. DOI:10.1016/j.cell.2011.09.025
[31]
GIRARDI M, GLUSAC E, FILLER R B, et al. The distinct contributions of murine T cell receptor (TCR) γδ+ and TCRαβ+ T cells to different stages of chemically induced skin cancer[J]. The Journal of Experimental Medicine, 2003, 198(5): 747-755. DOI:10.1084/jem.20021282
[32]
PUDDINGTON L, OLSON S, LEFRANÇOIS L. Interactions between stem cell factor and c-Kit are required for intestinal immune system homeostasis[J]. Immunity, 1994, 1(9): 733-739. DOI:10.1016/S1074-7613(94)80015-4
[33]
FAHRER A M, KONIGSHOFER Y, KERR E M, et al. Attributes of γδ intraepithelial lymphocytes as suggested by their transcriptional profile[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(18): 10261-10266. DOI:10.1073/pnas.171320798
[34]
WILSON C L, OUELLETTE A J, SATCHELL D P, et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense[J]. Science, 1999, 286(5437): 113-117. DOI:10.1126/science.286.5437.113
[35]
ABREU M T. Toll-like receptor signalling in the intestinal epithelium:how bacterial recognition shapes intestinal function[J]. Nature Reviews Immunology, 2010, 10(2): 131-144. DOI:10.1038/nri2707
[36]
SPITS H, ARTIS D, COLONNA M, et al. Innate lymphoid cells-a proposal for uniform nomenclature[J]. Nature Reviews Immunology, 2013, 13(2): 145-149. DOI:10.1038/nri3365
[37]
HWANG Y Y, MCKENZIE A N.Innate lymphoid cells in immunity and disease[C]//KATSIKIS P, SCHOENBERGER S, PULENDRAN B.Crossroads Between Innate and Adaptive Immunity.New York: Springer, 2013, 785: 9-26.
[38]
SPITS H, DI SANTO J P. The expanding family of innate lymphoid cells:regulators and effectors of immunity and tissue remodeling[J]. Nature Immunology, 2011, 12(1): 21-27. DOI:10.1038/ni.1962
[39]
LEE J, CELLA M, MCDONALD K G, et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch[J]. Nature Immunology, 2011, 13(2): 144-151.
[40]
KISS E A, VONARBOURG C, KOPFMANN S, et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles[J]. Science, 2011, 334(6062): 1561-1565. DOI:10.1126/science.1214914
[41]
SUN Y V, BOVERHOF D R, BURGOON L D, et al. Comparative analysis of dioxin response elements in human, mouse and rat genomic sequences[J]. Nucleic Acids Research, 2004, 32(15): 4512-4523. DOI:10.1093/nar/gkh782
[42]
JUX B, KADOW S, LUECKE S, et al. The aryl hydrocarbon receptor mediates UVB radiation-induced skin tanning[J]. Journal of Investigative Dermatology, 2011, 131(1): 203-210. DOI:10.1038/jid.2010.269
[43]
KADOW S, JUX B, ZAHNER S P, et al. Aryl hydrocarbon receptor is critical for homeostasis of invariant γδT cells in the murine epidermis[J]. Journal of Immunology, 2011, 187(6): 3104-3110. DOI:10.4049/jimmunol.1100912
[44]
CHAPPAZ S, GÄRTNER C, RODEWALD H R, et al. Kit ligand and Il7 differentially regulate Peyer's patch and lymph node development[J]. The Journal of Immunology, 2010, 185(6): 3514-3519. DOI:10.4049/jimmunol.1000665
[45]
STEVENS E A, MEZRICH J D, BRADFIELD C A. The aryl hydrocarbon receptor:a perspective on potential roles in the immune system[J]. Immunology, 2009, 127(3): 299-311. DOI:10.1111/imm.2009.127.issue-3
[46]
LÜGERING A, ROSS M, SIEKER M, et al. CCR6 identifies lymphoid tissue inducer cells within cryptopatches[J]. Clinical & Experimental Immunology, 2010, 160(3): 440-449.
[47]
POSSOT C, SCHMUTZ S, CHEA S, et al. Notch signaling is necessary for adult, but not fetal, development of RORγt+ innate lymphoid cells[J]. Nature Immunology, 2011, 12(10): 949-958. DOI:10.1038/ni.2105
[48]
TRIFARI S, KAPLAN C D, TRAN E H, et al. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from Th-17, Th1 and Th2 cells[J]. Nature Immunology, 2009, 10(8): 864-871. DOI:10.1038/ni.1770
[49]
ALAM M S, MAEKAWA Y, KITAMURA A, et al. Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 5943-5948. DOI:10.1073/pnas.0911755107
[50]
ZENEWICZ L A, FLAVELL R A. IL-22 and inflammation:leukin' through a glass onion[J]. European Journal of Immunology, 2008, 38(12): 3265-3268. DOI:10.1002/eji.200838655
[51]
ZHENG Y, VALDEZ P A, DANILENKO D M, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens[J]. Nature Medicine, 2008, 14(3): 282-289. DOI:10.1038/nm1720
[52]
ZELANTE T, IANNITTI R G, CUNHA C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22[J]. Immunity, 2013, 39(2): 372-385. DOI:10.1016/j.immuni.2013.08.003
[53]
SCHIERING C, WINCENT E, METIDJI A, et al. Feedback control of AHR signalling regulates intestinal immunity[J]. Nature, 2017, 542(7640): 242-245. DOI:10.1038/nature21080
[54]
BI Y J, LIU G W, YANG R F. Reciprocal modulation between Th17 and other helper T cell lineages[J]. Journal of Cellular Physiology, 2011, 226(1): 8-13. DOI:10.1002/jcp.22331
[55]
COOMBES J L, ROBINSON N J, MALOY K J, et al. Regulatory T cells and intestinal homeostasis[J]. Immunological Reviews, 2005, 204(1): 184-194.
[56]
READ S, MALMSTRÖM V, POWRIE F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of Cd25+Cd4+ regulatory cells that control intestinal inflammation[J]. Journal of Experimental Medicine, 2000, 192(2): 295-302. DOI:10.1084/jem.192.2.295
[57]
MOTTET C, UHLIG H H, POWRIE F. Cutting edge:cure of colitis by CD4+CD25+ regulatory T cells[J]. The Journal of Immunology, 2003, 170(8): 3939-3943. DOI:10.4049/jimmunol.170.8.3939
[58]
VELDHOEN M, HOCKING R J, ATKINS C J, et al. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells[J]. Immunity, 2006, 24(2): 179-189. DOI:10.1016/j.immuni.2006.01.001
[59]
KIMURA A, KISHIMOTO T. Th17 cells in inflammation[J]. International Immunopharmacology, 2011, 11(3): 319-322. DOI:10.1016/j.intimp.2010.10.004
[60]
ZHANG L Y, ZHANG Y J, ZHONG W W, et al. Heme Oxygenase-1 ameliorates dextran sulfate sodium-induced acute murine colitis by regulating Th17/Treg cell balance[J]. Journal of Biological Chemistry, 2014, 289(39): 26847-26858. DOI:10.1074/jbc.M114.590554
[61]
MEZRICH J D, FECHNER J H, ZHANG X J, et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells[J]. The Journal of Immunology, 2010, 185(6): 3190-3198. DOI:10.4049/jimmunol.0903670
[62]
CHEN Z J, LIN F, GAO Y Y, et al. FOXP3 and RORγt:transcriptional regulation of Treg and Th17[J]. International Immunopharmacology, 2011, 11(5): 536-542. DOI:10.1016/j.intimp.2010.11.008
[63]
PUNJ S, KOPPARAPU P, JANG H S, et al. Benzimidazoisoquinolines:a new class of rapidly metabolized aryl hydrocarbon receptor (AhR) ligands that induce AhR-Dependent Tregs and prevent murine graft-versus-host disease[J]. PLoS One, 2014, 9(2): e88726. DOI:10.1371/journal.pone.0088726
[64]
CHRISTIAANSEN A F, BOGGIATTO P M, VARGA S M. Limitations of Foxp3+ Treg depletion following viral infection in DEREG mice[J]. Journal of Immunological Methods, 2014, 406: 58-65. DOI:10.1016/j.jim.2014.03.005
[65]
MIZUNO T, SUZUKI R, UMEKI S, et al. Crossreactivity of antibodies to canine CD25 and Foxp3 and identification of canine CD4+CD25+Foxp3+ cells in canine peripheral blood[J]. Journal of Veterinary Medical Science, 2009, 71(12): 1561-1568. DOI:10.1292/jvms.001561
[66]
CHAUDHRY A, RUDRA D, TREUTING P, et al. CD4+ regulatory t cells control TH17 responses in a Stat3-dependent manner[J]. Science, 2009, 326(5955): 986-991. DOI:10.1126/science.1172702
[67]
QUINTANA F J, WEINER H L. Environmental control of Th17 differentiation[J]. European Journal of Immunology, 2009, 39(3): 655-657. DOI:10.1002/eji.200839198
[68]
YANG E J, LEE J, LEE S Y, et al. EGCG attenuates autoimmune arthritis by inhibition of STAT3 and HIF-1α with Th17/Treg control[J]. PLoS One, 2014, 9(2): e86062. DOI:10.1371/journal.pone.0086062
[69]
ROSILLO M A, SÁNCHEZ-HIDALGO M, SÁNCHEZ-FIDALGO S, et al. Dietary extra-virgin olive oil prevents inflammatory response and cartilage matrix degradation in murine collagen-induced arthritis[J]. European Journal of Nutrition, 2016, 55(1): 315-325. DOI:10.1007/s00394-015-0850-0