动物营养学报    2018, Vol. 30 Issue (12): 4991-5001    PDF    
饥饿及恢复饲喂对牦牛生长性能、营养物质表观消化率和血清指标的影响
曾少玉1, 王之盛1, 彭全辉1, 薛白1, 王立志1, 邹华围1, 胡瑞1, 祝伊枭1, 周芯宇1, 刘建忠2     
1. 四川农业大学动物营养研究所, 四川省牛低碳养殖与安全生产高校重点实验室, 雅安 625014;
2. 路德生物环保技术(古蔺)有限公司, 泸州 646509
摘要: 本试验旨在研究牦牛在正常饲喂、饥饿和恢复饲喂条件下生长及消化代谢变化情况。选用平均体重为(183.60±15.62)kg的3周岁健康牦牛6头作为试验动物。将试验分为正常饲喂期(7 d)、饥饿期(断食7 d)以及恢复饲喂期(28 d)。结果表明:1)饥饿7 d后牦牛失重约10.06%,恢复饲喂期前3周牦牛的干物质采食量、料重比显著低于正常饲喂期(P < 0.05),恢复饲喂期前2周牦牛的平均日增重较正常饲喂期显著提高(P < 0.05)。恢复饲喂期第1周,牦牛粗蛋白质、粗脂肪表观消化率较正常饲喂期显著提高(P < 0.05);恢复饲喂期第4周,牦牛干物质采食量、料重比、平均日增重及粗脂肪表观消化率与正常饲喂期无显著差异(P>0.05)。2)饥饿期牦牛血清葡萄糖、甘油三酯、尿素氮和肌酸酐含量较正常饲喂期显著降低(P < 0.05),血清非酯化脂肪酸含量较正常饲喂期显著升高(P < 0.05)。在恢复饲喂期,第1周和第3周牦牛血清葡萄糖含量较正常饲喂期显著提高(P < 0.05),第1周和第2周牦牛血清非酯化脂肪酸和总蛋白含量较正常饲喂期显著升高(P < 0.05),第2周和第3周牦牛血清甘油三酯含量较正常饲喂期显著降低(P < 0.05),第4周牦牛血清各代谢物含量与正常饲喂期无显著差异(P>0.05)。3)饥饿期牦牛血清胰岛素、生长激素及胰岛素样生长因子Ⅰ含量较正常饲喂期显著降低(P < 0.05)。在恢复饲喂期,第2周牦牛血清胰岛素含量较正常饲喂期显著提高(P < 0.05),第1周、第2周和第3周牦牛血清胰岛素样生长因子Ⅰ含量较正常饲喂期显著升高(P < 0.05),第4周牦牛血清生长激素与胰岛素样生长因子Ⅰ含量与正常饲喂期差异不显著(P>0.05)。由此可见,饥饿期牦牛通过降低糖和蛋白质代谢水平,提高脂肪分解来适应饥饿。而恢复饲喂期前3周是牦牛补偿生长的重要时期。
关键词: 牦牛     饥饿     恢复饲喂     生长性能     营养物质表观消化率     血清指标    
Effects of Starvation and Refeeding on Growth Performance, Nutrient Apparent Digestibility and Serum Indices of Yaks
ZENG Shaoyu1, WANG Zhisheng1, PENG Quanhui1, XUE Bai1, WANG Lizhi1, ZOU Huawei1, HU Rui1, ZHU Yixiao1, ZHOU Xinyu1, LIU Jianzhong2     
1. Key Laboratory of Bovine Low-Carbon Farming and Safe Production of Higher Education in Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China;
2. Road Biological Environmental Technology(Gulin) Co., Ltd., Luzhou 646509, China
Abstract: The present study was conducted to investigate the changes of growth, digestibility and metabolism of yaks under normal feeding, starvation, and refeeding conditions. Six healthy three-year-old yaks were selected as experimental animals which average body weight was (183.60±15.62) kg. The trial was divided into normal feeding period (7 d), starvation period (7 d) and refeeding period (28 d). The results showed as follows: 1) yaks lost about 10.06% of body weight after 7-day starvation. The dry matter intake and feed/gain were significantly lower in the first three weeks of refeeding period than normal feeding period (P < 0.05). Compared with normal feeding period, the average daily gain of yaks was significantly increased in the first two weeks of refeeding period (P < 0.05); the apparent digestibility of crude protein and ether extract were significantly improved in the first week of refeeding period (P < 0.05); no significant differences were found in the feed/gain and apparent digestibility of ether extract in fourth week of refeeding period (P>0.05). 2) Serum glucose, triglyceride, urea nitrogen and creatinine contents were significantly decreased (P < 0.05) and serum non-esterified fatty acid content was significantly increased in starvation period compared with normal feeding period (P < 0.05). Compared with normal feeding period, serum glucose content was significantly increased in the first and third weeks of refeeding period than normal feeding period (P < 0.05); serum non-esterified fatty acids and total protein contents was significantly increased in the first and second weeks of refeeding period (P < 0.05); serum triglyceride content was significantly reduced in the second and third weeks of refeeding period (P < 0.05); the contents of metabolites in serum had no significant differences in the fourth week of refeeding period (P>0.05). 3) The contents of insulin, growth hormone and insulin-like growth factor Ⅰ in serum were significantly reduced in starvation period contrast to normal feeding period (P < 0.05). In the second week of refeeding period, serum insulin content was significantly increased (P < 0.05) contrast to normal feeding period (P < 0.05). Serum insulin-like growth factor Ⅰ was significantly elevated in first three weeks of refeeding period compared with normal feeding period (P < 0.05). Serum growth hormone and insulin like growth factor Ⅰ contents had no significant differences in the fourth week of refeeding period compared with normal feeding period (P>0.05). It is concluded that the yaks adapt to starvation by increasing the catabolism of lipid and decreasing the metabolism of glucose and protein. The first three weeks of refeeding period are important for compensatory growth of yaks.
Key words: yaks     starvation     refeeding     growth performance     nutrient apparent digestibility     serum indices    

牦牛作为青藏高原地区的当家畜种,是当地人民赖以生存的生产和生活资料,为高原地区的经济发展做出了巨大贡献[1-2]。然而,牦牛的饲养方式还基本为传统的放牧饲养模式,这使得牦牛饲料来源和营养供给完全依赖于牧草的周期性枯荣变化。由于青藏高原独特的地理环境条件,在漫长的冷季容易出现大雪封冻的极端气候,冷季缺料使牦牛易于面临饥饿甚至断食的生存状态,“夏活、秋肥、冬瘦、春死”是青藏高原牦牛放牧饲养受自然条件约束的恶性循环现象。在经历1个冷季枯草期后,牦牛体重损失高达30%[2]。因此,饥饿是牦牛放牧养殖中的关键问题。饥饿是指动物在营养物质消化代谢后,能够并且想要进食,但是由于外界食物资源的限制,导致其无法进行采食的一种生物学状态[3]。饥饿状态下,动物为了满足机体代谢而利用葡萄糖(glucose, GLU),从而导致血糖水平降低[4]。为了维持血糖水平稳定,机体主要利用肝糖原分解及糖异生来生成血糖,从而为机体提供能量[5]。随着饥饿时间的延长,动物将最终耗尽体内存储的糖原[6]。随后,动物体将进行脂肪动员,体内的甘油三酯含量升高,并通过β氧化供能。而蛋白质则是动物最后的能量储备,如果饥饿时间过长,将会对动物造成严重损伤,甚至死亡[7-8]。研究发现,反刍动物经过营养限制后,恢复营养时会表现出一段快速生长时期,被称为补偿生长[9]。冷季能量有限使牦牛饥饿成为常态,而补偿生长在牦牛放牧系统中具有巨大的研究价值[10]。尽管已经有关于牦牛饥饿方面的研究[11-12],但牦牛在饥饿后恢复饲喂的相关资料还未见报道。本试验旨在比较牦牛正常饲喂期、饥饿期和恢复饲喂期3个阶段中,生长性能、营养物质表观消化率、血清代谢产物及相关激素含量的变化,阐明牦牛在饥饿期以及在恢复饲喂期间的适应情况,从而为提高牦牛面对恶劣环境的抗性研究积累数据并提供理论依据,为减少牦牛在冷季饥饿条件下体重损失,提高牦牛的生产性能提供数据参考。

1 材料与方法 1.1 试验动物

选取3周岁健康、体重相近的6头九龙牦牛[平均初始体重(183.60±15.62)kg]作为实验对象。

1.2 试验设计

参照Belanche等[13]的试验设计,将6头牦牛作为1个组。试验共56 d,其中预试期14 d,正试期42 d。正试期又分为正常饲喂期(normal feeding period, NFP, 7 d)、饥饿期(starvation period, SP, 7 d)以及恢复饲喂期(refeeding period, RFP, 28 d), 饥饿期牦牛断绝饲料,参照本课题组Yu等[11]以及任建林等[12]的研究对牦牛进行为期7 d的断食。

1.3 试验饲粮

在预试期、正常饲喂期和恢复饲喂期采用同一试验饲粮。试验饲粮配制借鉴我国《肉牛饲养标准》(NY/T 815—2004)中体重200 kg、日增重0.8 kg/d肉牛的营养需求,并参考本课题组Yu等[11]和任建林等[12]的配方,采用白酒糟+稻草+精料补充料方式,按照精粗比30 : 70(干物质基础)进行混合后饲喂,其中精料补充料主要由玉米、麦麸、豆粕、菜籽粕、磷酸氢钙、碳酸钙、食盐、预混料等组成,粗料为稻草和白酒糟,试验饲粮组成及营养水平见表 1

表 1 试验饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the experimental diet (air-dry basis)
1.4 饲养管理

试验在四川农业大学试验场进行,试验前对牦牛进行免疫、驱虫、消毒及编号等操作。试验期间对圈舍进行定期消毒。采用单栏单槽栓系饲喂。正常饲喂期及恢复饲喂期,每天09:00以及16:00进行饲喂,试验牛自由采食,根据预试期确定的采食量投喂饲粮,保证每次采食后槽内有10%左右的剩料。整个试验期间所有牛只自由饮水。

1.5 样品采集

在正常饲喂期及恢复饲喂期每周的第2~6天采用全收粪法进行消化试验[14]。从试验期第1天开始,每周第1天09:00前进行牦牛颈静脉采血,所采血液在阴凉处静置30 min以上,然后以1 006.2×g的离心力离心15 min,取血清,快速冷冻后-20 ℃保存待测[15]

1.6 测定指标和方法 1.6.1 牦牛生长性能及营养物质表观消化率

记录每天的实际采食量,并换算成干物质采食量(dry matter intake, DMI),每次采血后对牦牛进行空腹称重,计算出每周的平均日增重(average daily gain, ADG),并计算出料重比(feed/gain, F/G)。参照AOAC(2002)[16]标准,测定饲粮及消化试验收集的粪便中水分、有机物(organic matter, OM)、粗蛋白质(crude protein, CP)、粗脂肪(ether extract, EE)、酸性洗涤纤维(acid detergent fiber, ADF)、钙(calcium, Ca)及磷(phosphorus, P)的含量。饲粮及消化试验收集的粪便中粗纤维(crude fiber, CF)含量参照GB/T 6434—2006中方法测定,中性洗涤纤维(neutral detergent fiber, NDF)含量参照Van Soest等[17]方法,采用Foss纤维仪(Fibertec 2010,丹麦)进行测定。

营养物质表观消化率计算公式如下:

1.6.2 血清生化指标

血清中GLU(试剂盒编号DRE-B1045c)、甘油三酯(trigluceride, TG)(试剂盒编号DRE-B6210c)、非酯化脂肪酸(non-esterified fatty acid, NEFA)(试剂盒编号DRE-B0793c)、总蛋白(total protein, TP)(试剂盒编号DRE-B6210c)、尿素氮(urea nitrogen, UN)(试剂盒编号DRE-B0544c)以及肌酸酐(creatinine, CRE)(试剂盒编号DRE-B0781c)的含量应用酶联免疫吸附测定(ELISA)试剂盒[购于卡迈舒(上海)生物科技有限公司]采用双抗体夹心法,使用酶标仪进行检测,具体操作步骤参考试剂盒所附说明。

1.6.3 血清激素指标

血清中胰岛素(insulin, INS)(试剂盒编号DRE-B6410c)、胰高血糖素(glucagon, GC)(试剂盒编号DRE-B6449c)、生长激素(growth hormone, GH)(试剂盒编号DRE-B6427c)、胰岛素样生长因子Ⅰ(insulin-like growth factor-Ⅰ, IGF-Ⅰ)(试剂盒编号DRE-B0732c)的含量应用ELISA试剂盒[购于卡迈舒(上海)生物科技有限公司]采用双抗体夹心法,使用酶标仪进行检测,具体操作步骤参考试剂盒所附说明。

1.7 数据统计与分析

数据用Excel 2010软件进行整理,采用SAS 8.1软件的Proc univariate过程进行数据正态性分布的检验,之后使用Proc GLM过程进行单因素方差分析,并采用Duncan氏法进行多重比较,试验数据以“平均值±标准差”表示,P < 0.05为差异显著。使用Proc CORR过程进行指标相关性检验,P < 0.05表示两者呈显著相关,相关系数的大小表明变量间相关性的强弱。

2 结果与分析 2.1 饥饿及恢复饲喂对牦牛生长性能的影响

表 2可知,牦牛在饥饿7 d后体重低于正常饲喂期,失重比例约达初始体重的10.06%(P>0.05)。恢复饲喂期前3周,DMI、F/G显著低于正常饲喂期(P < 0.05);恢复饲喂期前2周ADG显著高于正常饲喂期(P < 0.05);恢复饲喂期第4周,DMI、F/G以及ADG与正常饲喂期差异不显著(P>0.05)。

表 2 饥饿及恢复饲喂对牦牛生长性能的影响 Table 2 Effects of starvation and refeeding on growth performance of yaks
2.2 饥饿后恢复饲喂对牦牛营养物质表观消化率的影响

表 3可知,饥饿后恢复饲喂的牦牛,在第1周时,CP、EE、CF、ADF以及P的表观消化率显著高于正常饲喂期(P < 0.05),Ca的表观消化率则显著低于正常饲喂期(P < 0.05);在第2周时,CP和P的表观消化率较正常饲喂期显著升高(P < 0.05);在第3周时,Ca的表观消化率较正常饲喂期显著降低(P < 0.05);而在第4周时,除了ADF的表观消化率显著高于正常饲喂期(P < 0.05)和NDF的表观消化率显著低于正常饲喂期(P < 0.05)外,其余营养物质表观消化率与正常饲喂期差异不显著(P>0.05)。DM和OM在整个恢复饲喂期均与正常饲喂期差异不显著(P>0.05)。

表 3 饥饿后恢复饲喂对牦牛营养物质表观消化率的影响 Table 3 Effects of starvation followed refeeding on nutrient apparent digestibility of yaks
2.3 饥饿及恢复饲喂对牦牛血清生化指标的影响 2.3.1 血清代谢产物含量的变化

表 4可知,在饥饿期,血清GLU、TG、UN和CRE含量较正常饲喂期显著降低(P < 0.05),血清NEFA含量较正常饲喂期显著升高(P < 0.05),血清TP含量则与正常饲喂期差异不显著(P>0.05)。而到了恢复饲喂期,在前2周,血清NEFA和TP含量显著高于正常饲喂期(P < 0.05);在第1周和第3周,血清GLU含量显著低于正常饲喂期(P < 0.05);在第2周和第3周,血清TG含量显著低于正常饲喂期(P < 0.05);血清UN和CRE含量分别在第2周和第3周显著低于正常饲喂期(P < 0.05);到了第4周,上述所有指标与正常饲喂期均无显著差异(P>0.05)。

表 4 饥饿及恢复饲喂对牦牛血清代谢产物含量的影响 Table 4 Effects of starvation and refeeding on serum metabolites contents of yaks
2.3.2 血清激素含量的变化

表 5表 6可知,在饥饿期,血清INS、GH和IGF-Ⅰ含量及INS/GC较正常饲喂期显著降低(P < 0.05)。而到了恢复饲喂期,在前3周,血清IGF-Ⅰ含量显著高于正常饲喂期(P < 0.05);在第2周,血清INS含量显著高于正常饲喂期(P < 0.05);在第4周,血清INS、GC含量及INS/GC显著低于正常饲喂期(P < 0.05)。而血清GH和IGF-Ⅰ含量的相关性分析显示,在正常饲喂期为显著高度正相关关系(P < 0.05),在饥饿期及恢复饲喂期第1周和第2周时无显著相关(P>0.05),在恢复饲喂期第3周呈现显著中度正相关关系(P < 0.05),在恢复饲喂期第4周表现为显著中度负相关关系(P < 0.05)。

表 5 饥饿及恢复饲喂对牦牛血清激素含量的影响 Table 5 Effects of starvation and refeeding on serum hormone contents of yaks
表 6 血清GH和IGF-Ⅰ含量的相关性变化 Table 6 Changes of correlation between serum GH and IGF-Ⅰ contents
3 讨论 3.1 饥饿及恢复饲喂对牦牛生长性能的影响

在描述营养吸收后的动物无法摄取食物时,最常用的2个术语是饥饿和绝食[18]。饥饿主要是由于食物获取改变(如由食物资源充足变为资源匮乏)而造成的生理反应,而绝食则是由于内在机制调节下的生理反应,经常发生在动物躲避追捕、调节体温、脱毛及繁殖相关(如寻求配偶和领地防卫)的条件下[3]。饥饿研究中主要考虑2个因素,即饥饿时间和饥饿强度[19]。由于饥饿相关的研究尚未有一个统一的标准,考虑到牦牛冷季生长中饥饿时间和饥饿强度难以确定,在极端气候下甚至出现断水断料的情况,参考本课题组相关研究[11-12]后,对牦牛进行为期7 d的断食处理。

体重下降是动物饥饿后最显著的改变,饥饿期间OM的损失不可避免,而体重损失主要取决于动物的初始体重以及在饥饿期间各种能量资源的分配情况[20]。饥饿时动物体重减少的程度和速度可以用于衡量动物对饥饿的适应能力[21]。Chwalibog等[22]研究发现,猪在经过4 d低于维持饲粮水平25%的限制饲喂后,其体重损失达到初始体重的24%。Hiro-Omi等[23]发现鸡在经历6 d饥饿后,体重损失达到初始体重的35%。Chaiyabutr等[24]发现,山羊在经过2 d饥饿后,其体重损失就达到初始体重的16%。补偿生长是指动物在经历了一个限制饲料摄入的阶段后,恢复饲喂后具有更快生长潜力的一种生理过程[25]。研究表明,肝脏和胃肠道的大小改变与动物采食量的变化呈现等比例相关关系[26]。Ryan等[9]研究发现,在经过营养限制后,动物内脏器官变小并且生长减缓,而内脏器官重量的降低则促使机体降低维持能量需要,恢复饲喂后,动物内脏器官并不会立即恢复。肝脏和胃肠道对机体能量利用效率有着重要影响[27]。Connor等[28]发现,在恢复饲喂期间,饥饿后的肉牛ADG显著高于对照组肉牛,并且其细胞代谢、氧化磷酸化及三羧酸循环相关基因表达量显著升高。研究表明,恢复饲喂阶段,动物体重增长最快的是补偿生长的前期阶段[25, 29]。在本次试验中,牦牛在经历7 d的绝食饥饿代谢后,体重损失为10.06%。与其他饥饿研究相比,牦牛饥饿强度和持续时间更高,但是体重损失更低,这说明牦牛对饥饿环境有较好的适应能力。恢复饲喂期前2周,ADG显著高于正常饲喂期,表现出明显的补偿生长现象。恢复饲喂期前3周DMI、F/G显著低于正常饲喂期,这可能是因为内脏器官变小,较小的肝脏和胃肠道使得机体能量利用效率升高,从而降低F/G。而到了恢复饲喂期第4周,ADG、DMI及F/G与正常饲喂期无显著差异,说明补偿生长主要在恢复饲喂期前3周。

3.2 饥饿后恢复饲喂对牦牛营养物质表观消化率的影响

Jones等[30]发现,在进行营养限制后恢复饲喂,小鼠机体蛋白质合成和分解加快。Turgeon等[31]研究报道,羔羊在经过饥饿后恢复饲喂,出现了补偿生长现象,且在恢复饲喂早期阶段有较高的蛋白质沉积率。Lippens等[32]也发现,在经过营养限制后,恢复饲喂可以加快动物蛋白质周转,提高蛋白质利用效率。Heitz等[33]认为Ca消化率降低与P消化率的升高将会促使机体酸化作用加强,从而减少机体脂肪含量,加快蛋白质合成。Mehrez等[34]研究发现,NDF表观消化率降低与动物瘤胃内纤维降解菌和原虫数量的减少有关。Mahmoud等[35]也在小羊中的研究中得出相似结果。报道指出,NDF可以促进反刍动物咀嚼、唾液分泌以及瘤胃活动,确保瘤胃环境稳定以供瘤胃微生物的生长[36]。本研究中,整个恢复饲喂期DM和OM表观消化率与正常饲喂期差异不显著,与Ma等[37]研究结果相似。恢复饲喂期第1周,牦牛对饲粮中CP及EE的表观消化率升高,同时Ca和P表观消化率在第1周和第2周时也发生了变化,有利于脂肪分解和蛋白质合成,从而促进补偿生长的发生。恢复饲喂期第4周,除ADF和NDF表观消化率外,其他营养物质表观消化率与正常饲喂期差异不显著。NDF的表观消化率在恢复饲喂期第2周、第3周和第4周显著降低,这种变化可能与瘤胃环境及瘤胃微生物改变有关。

3.3 饥饿及恢复饲喂对牦牛血清代谢物含量的影响

动物机体所有组织都利用GLU,GLU是中枢神经系统、肾髓质以及成熟红细胞首选的能量物质,必须保证其持续供应,饥饿条件下,外源能量不足,导致机体不断消耗自身的GLU,最终使得血糖水平降低[38]。动物在饥饿状态下主要通过分解肝糖原来生成GLU供能,同时,利用糖异生作用维持血糖水平稳衡[5]。在肝脏和肾脏中,GLU可以由氨基酸(主要是丙氨酸)、甘油(主要来源于TG的水解)、酮体以及循环的乳酸和丙酮酸进行从头合成[39]。而到了恢复饲喂阶段,随着食物的摄入,血清中GLU含量升高,INS分泌量升高,而INS又促进动物吸收GLU并转运到特定的细胞中利用,最终导致血糖水平降低[40]。本研究中,饥饿期血清GLU含量较正常饲喂期显著降低,这可能是机体为了适应饥饿而降低糖代谢水平[12]。恢复饲喂期,血清GLU含量在第1周和第3周显著降低,这可能是因为动物在补偿生长阶段各细胞组织对能量的需求较高,促使机体对糖的利用较高。

在低血糖的条件下,脂肪酸是机体能量需求的一种可行性来源[41]。Blum等[41]发现,在营养限制时期,受到限制的牛血清中非酯化脂肪酸的含量显著高于非限制的牛只组,这体现出较强的脂肪动员。饥饿期间脂肪动员提高是为了确保机体重要蛋白质含量的同时为机体提供足够的能量[7]。Dimarco等[42]研究发现,在恢复饲喂阶段,受到饥饿限制的牛只,血清NEFA含量在前8天的时间都保持较高的水平,说明在恢复饲喂开始时,动物的脂肪代谢并没有恢复到正常饲喂期水平。本研究中,饥饿期血清TG和NEFA含量的变化体现了较强的脂肪动员。在恢复饲喂期前3周,血清NEFA含量在前2周显著高于正常饲喂期,在第3周则显著低于正常饲喂期,而血清TG含量在第2周和第3周显著降低,说明在前3周牦牛代谢状态还未恢复到正常时期水平,还保持着较高的脂肪分解水平。

血清UN含量是衡量蛋白质周转代谢的重要指标,UN含量升高说明蛋白质周转代谢加快[29]。CRE是磷酸肌酸的分解产物以及肌肉组织肌酸代谢的终产物,血清CRE含量的降低说明肌肉蛋白质分解代谢减慢[43]。本研究中,血清UN含量在饥饿期显著降低,这与Harlow等[44]在草原土拨鼠上的研究结果以及Costa等[45]在象海豹上的研究结果相似,说明在饥饿期间蛋白质周转降低,而血清CRE含量降低说明饥饿期间肌肉组织蛋白质分解减慢。由此可知,机体在饥饿期间通过降低蛋白质的代谢水平来减少蛋白质消耗。恢复饲喂期间,前2周血清TP含量显著升高,这表明在恢复饲喂期前2周蛋白质沉积增加,这有利于牦牛在恢复饲喂后出现补偿生长现象。

3.4 饥饿及恢复饲喂对牦牛血清激素含量的影响

INS促进靶细胞对血液中GLU的摄取和转运,从而降低血糖水平[40]。而GC则促进脂肪组织的分解,提高血糖水平,对INS有拮抗作用,血糖水平的升高会使得INS/GC降低,进而提高血糖水平[46]。在许多饥饿代谢的研究中都观测到动物血液中INS含量显著下降的现象,饥饿期间血液中INS含量的降低和GC含量的升高有利于机体利用脂肪,维持血糖水平[47]。Ahmed等[48]报道,受到营养限制的牛只在之后的恢复饲喂期间体内INS的含量快速升高,这种变化与氨基酸转运加快、氧化减慢以及蛋白质降解减慢有关。Blum等[41]也发现了相同的变化趋势,在恢复饲喂期间,胰岛素分泌量的增加启动了体内合成过程的信号,动物合成代谢增强。Shaw等[49]报道,INS是促进机体肌内脂肪合成最重要的激素。本研究中,饥饿期间,牦牛血清INS含量和INS/GC显著降低,这有利于机体利用脂肪分解提供能量。恢复饲喂后,牦牛血清INS含量在第2周显著升高,这有利于促进机体的合成代谢,从而促使牦牛出现补偿生长现象。

动物在进食后,GH的分泌会促使肝脏合成IGF-Ⅰ,而IGF-Ⅰ通过分配各种营养成分来促进组织及机体生长[50]。研究发现,动物在受到食物限制后,GH和IGF-Ⅰ含量的相关关系变得复杂[51]。Keogh等[52]认为,GH和IGF-Ⅰ含量相关性改变可能是由于营养限制使得肝脏变小的原因。Li等[53]报道,在能量限制期间,动物机体内GH及其高亲和力的受体含量会显著降低,同时两者在肝脏内的特异性结合能力也会下降,而IGF-Ⅰ含量的降低慢于生长激素受体含量的降低。有研究发现,受到营养限制的试验动物机体IGF-Ⅰ含量显著降低,但是GH含量的变化却不显著[54]。IGF-Ⅰ含量的降低可能是由于机体对营养限制的一种适应手段,将细胞的生长调节到最慢,从而将有限的能量运用到重要的细胞功能上面,比如组织的维持以及修复[53]。Bell等[55]推测,这种代谢的改变可能是为了保证动物在营养限制期间体内代谢的稳态。本研究中,饥饿期间,血清GH和IGF-Ⅰ含量显著降低以及两者相关关系的变化,有利于减缓细胞生长,节约能量,保持代谢稳定,从而适应饥饿环境。恢复饲喂后,血清GH含量恢复正常饲喂期水平,血清IGF-Ⅰ含量在前3周显著升高,两者相关性在恢复饲喂期发生变化,可能是因为肝脏尚未恢复导致两者之间代谢关系维持在饥饿期的原因,而这种代谢状态的维持则有利于补偿生长的产生。

4 结论

① 牦牛在经历7 d的饥饿后,表现出对营养限制较好的适应现象。牦牛在饥饿期间通过降低糖代谢和蛋白质周转水平以及提高脂肪分解代谢来适应饥饿。

② 从牦牛ADG、F/G及血清生化指标进行评价,可以得出,牦牛在饥饿后恢复饲喂,补偿生长主要在前3周,到了第4周即与正常饲喂期无显著差异。

参考文献
[1]
LONG R J, DING L M, SHANG Z H, et al. The yak grazing system on the Qinghai-Tibetan plateau and its status[J]. Rangeland Journal, 2008, 30(2): 241-246. DOI:10.1071/RJ08012
[2]
王威, 张建勋, 康坤, 等. 冷季补饲精料对牦牛繁殖性能和生长性能的影响[J]. 中国畜牧杂志, 2013, 49(7): 78-80. DOI:10.3969/j.issn.0258-7033.2013.07.021
[3]
MCCUE M D. Starvation physiology:reviewing the different strategies animals use to survive a common challenge[J]. Comparative Biochemistry and Physiology Part A:Molecular&Integrative Physiology, 2010, 156(1): 1-18.
[4]
RUSSELL R W, GAHR S A.Glucose availability and associated metabolism[M]//D'MELLO J P F.Farm animal metabolism and nutrition.Edinburgh: The Scottish Agricultural College, 2000: 121-147.
[5]
STAEHR P, HOTHER-NIELSEN O, BECK-NIELSEN H. The role of the liver in type 2 diabetes[J]. Reviews in Endocrine and Metabolic Disorders, 2004, 5(2): 105-110. DOI:10.1023/B:REMD.0000021431.90494.0c
[6]
FRICK N T, BYSTRIANSKY J S, IP Y K, et al. Carbohydrate and amino acid metabolism in fasting and aestivating African lungfish (Protopterus dolloi)[J]. Comparative Biochemistry and Physiology Part A:Molecular&Integrative Physiology, 2008, 151(1): 85-92.
[7]
CAHILL G F Jr. Starvation in man[J]. The New England Journal of Medicine, 1970, 282(12): 668-675. DOI:10.1056/NEJM197003192821209
[8]
MORAES G, ALTRAN A E, AVILEZ I M, et al. Metabolic adjustments during semi-aestivation of the marble swamp eel (Synbranchus marmoratus, Bloch 1795)-a facultative air breathing fish[J]. Brazilian Journal of Biology, 2005, 65(2): 305-312. DOI:10.1590/S1519-69842005000200015
[9]
RYAN W J, WILLIAMS I H, MOIR R J. MOIR R J.Compensatory growth in sheep and cattle.Ⅱ:changes in body composition and tissue weights[J]. Australian Journal of Agricultural Research, 1993, 44(7): 1623-1633. DOI:10.1071/AR9931623
[10]
ASHFIELD A, WALLACE M, MCGEE M, et al. Bioeconomic modelling of compensatory growth for grass-based dairy calf-to-beef production systems[J]. Journal of Agricultural Science, 2014, 152(5): 805-816. DOI:10.1017/S0021859613000531
[11]
YU X Q, PENG Q H, LUO X L, et al. Effects of starvation on lipid metabolism and gluconeogenesis in yak[J]. Asian-Australasian Journal of Animal Sciences, 2016, 29(11): 1593-1600. DOI:10.5713/ajas.15.0868
[12]
任建林, 王之盛, 彭全辉, 等. 绝食对九龙牦牛体重、血清激素和生化指标的影响[J]. 动物营养学报, 2017, 29(6): 2162-2169. DOI:10.3969/j.issn.1006-267x.2017.06.039
[13]
BELANCHE A, DE LA FUENTE G, NEWBOLD C J. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions[J]. FEMS Microbiology Ecology, 2015, 91(3): fiu026.
[14]
DE SOUZA J, GARVER J L, PRESEAULT C L, et al. Short communication:effects of prill size of a palmitic acid-enriched fat supplement on the yield of milk and milk components, and nutrient digestibility of dairy cows[J]. Journal of Dairy Science, 2017, 100(1): 379-384. DOI:10.3168/jds.2016-11610
[15]
DING L M, CHEN J Q, LONG R J, et al. Blood hormonal and metabolite levels in grazing yak steers undergoing compensatory growth[J]. Animal Feed Science and Technology, 2015, 209: 30-39. DOI:10.1016/j.anifeedsci.2015.07.024
[16]
AOAC.Official methods of analysis[S].17th ed.Gaithersburg: Association of Official Analytical Chemists, 2002.
[17]
VAN SOEST P J, ROBERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 1991, 74(10): 3583-3597. DOI:10.3168/jds.S0022-0302(91)78551-2
[18]
MCCUE M D. Western diamondback rattlesnakes demonstrate physiological and biochemical strategies for tolerating prolonged starvation[J]. Physiological and Biochemical Zoology, 2007, 80(1): 25-34. DOI:10.1086/509057
[19]
COLEMAN S W, EVANS B C. Effect of nutrition, age and size on compensatory growth in two breeds of steers[J]. Journal of Animal Science, 1986, 63(6): 1968-1982. DOI:10.2527/jas1986.6361968x
[20]
COMOGLIO L I, GAXIOLA G, ROQUE A, et al. The effect of starvation on refeeding, digestive enzyme activity, oxygen consumption, and ammonia excretion in juvenile white shrimp Litopenaeus vannamei[J]. Journal of Shellfish Research, 2004, 23(1): 243-249.
[21]
LAUDER G V, LEROI A M, ROSE M R. Adaptations and history[J]. Trends in Ecology&Evolution, 1993, 8(8): 294-297.
[22]
CHWALIBOG A, TAUSON A H, THORBEK G. Diurnal rhythm in heat production and oxidation of carbohydrate and fat in pigs during feeding, starvation and re-feeding[J]. Journal of Animal Physiology and Animal Nutrition, 2004, 88(7/8): 266-274.
[23]
HIRO-OMI Y, HISAE M, MITSUHIRO F. Changes in body composition of germ-free and conventional chickens during starvation[J]. Comparative Biochemistry and Physiology Part A:Physiology, 1992, 103(3): 565-568. DOI:10.1016/0300-9629(92)90290-7
[24]
CHAIYABUTR N, FAULKNER A, PEAKER M. Effects of starvation on the cardiovascular system, water balance and milk secretion in lactating goats[J]. Research in Veterinary Science, 1980, 28(3): 291-295. DOI:10.1016/S0034-5288(18)32711-5
[25]
HORNICK J L, VAN EENAEME C, GÉRARD O, et al. Mechanisms of reduced and compensatory growth[J]. Domestic Animal Endocrinology, 2000, 19(2): 121-132. DOI:10.1016/S0739-7240(00)00072-2
[26]
JOHNSON D E, JOHNSON K A, BALDWIN R L. Changes in liver and gastrointestinal tract energy demands in response to physiological workload in ruminants[J]. The Journal of Nutrition, 1990, 120(6): 649-655. DOI:10.1093/jn/120.6.649
[27]
ORTIGUES I, DOREAU M. Responses of the splanchnic tissues of ruminants to changes in intake:absorption of digestion end products, tissue mass, metabolic activity and implications to whole animal energy metabolism[J]. Annales de Zootechnie, 1995, 44(4): 321-346. DOI:10.1051/animres:19950401
[28]
CONNOR E E, KAHL S, ELSASSER T H, et al. Enhanced mitochondrial complex gene function and reduced liver size may mediate improved feed efficiency of beef cattle during compensatory growth[J]. Functional&Integrative Genomics, 2010, 10(1): 39-51.
[29]
HAYDEN J M, WILLIAMS J E, COLLIER R J. Plasma growth hormone, insulin-like growth factor, insulin, and thyroid hormone association with body protein and fat accretion in steers undergoing compensatory gain after dietary energy restriction[J]. Journal of Animal Science, 1993, 71(12): 3327-3338. DOI:10.2527/1993.71123327x
[30]
JONES S J, STARKEY D L, CALKINS C R, et al. Myofibrillar protein turnover in feed-restricted and realimented beef cattle[J]. Journal of Animal Science, 1990, 68(9): 2707-2715. DOI:10.2527/1990.6892707x
[31]
TURGEON O A Jr, BRINK D R, BARTLE S J, et al. Effects of growth rate and compensatory growth on body composition in lambs[J]. Journal of Animal Science, 1986, 63(3): 770-780. DOI:10.2527/jas1986.633770x
[32]
LIPPENS M, HUYGHEBAERT G, DE GROOTE G. The efficiency of nitrogen retention during compensatory growth of food-restricted broilers[J]. British Poultry Science, 2002, 43(5): 669-676. DOI:10.1080/0007166022000025055
[33]
HEITZ U E, HORNE M M, SPAHN D L.Pocket guide to fluid, electrolyte, and acid-base balance[M].5th ed.St.Louis, Mo: Elsevier Heath Sciences, 2012.
[34]
MEHREZ A Z, ABO-DONIA F M, MAKLAD E H, et al. Evaluation of sugar beet pulp treated with Trichoderma verdi and Saccharomyces cervicia[J]. Egyptian Journal of Sheep and Goat Sciences, 2008, 3(1): 33-50.
[35]
MAHMOUD A E M, EL-BORDENY N E S. The nutritive value of sugar beet pulp-substituted corn for barki lambs[J]. Pakistan Journal of Zoology, 2016, 48(4): 995-1002.
[36]
YANG W Z, BEAUCHEMIN K A. Physically effective fiber:method of determination and effects on chewing, ruminal acidosis, and digestion by dairy cows[J]. Journal of Dairy Science, 2006, 89(7): 2618-2633. DOI:10.3168/jds.S0022-0302(06)72339-6
[37]
MA T, WANG B, ZHANG N, et al. Effect of protein restriction followed by realimentation on growth, nutrient digestibility, ruminal parameters, and transporter gene expression in lambs[J]. Animal Feed Science and Technology, 2017, 231: 19-28. DOI:10.1016/j.anifeedsci.2017.05.018
[38]
CAHILL G F Jr. Fuel metabolism in starvation[J]. Annual Review of Nutrition, 2006, 26: 1-22. DOI:10.1146/annurev.nutr.26.061505.111258
[39]
CHAMPAGNE C D, HOUSER D S, CROCKER D E. Glucose metabolism during lactation in a fasting animal, the northern elephant seal[J]. American Journal of Physiology, 2006, 291(4): R1129-R1137.
[40]
HOCQUETTE J F, ABE H. Facilitative glucose transporters in livestock species[J]. Reproduction Nutrition Development, 2000, 40(6): 517-533. DOI:10.1051/rnd:2000134
[41]
BLUM J W, SCHNYDER W, KUNZ P L, et al. Reduced and compensatory growth:endocrine and metabolic changes during food restriction and refeeding in steers[J]. Journal of Nutrition, 1985, 115(4): 417-424. DOI:10.1093/jn/115.4.417
[42]
DIMARCO N M, BEITZ D C, WHITEHURST G B. Effect of fasting on free fatty acid, glycerol and cholesterol concentrations in blood plasma and lipoprotein lipase activity in adipose tissue of cattle[J]. Journal of Animal Science, 1981, 52(1): 75-82. DOI:10.2527/jas1981.52175x
[43]
SCHROEDER A L, BERGERN W G, MERKEL R A. Estimation of lean body mass, empty body protein and skeletal muscle protein from urinary creatinine excretion in beef steers[J]. Journal of Animal Science, 1990, 68((Suppl.1): 311.
[44]
HARLOW H J, BUSKIRK S W. Comparative plasma and urine chemistry of fasting white-tailed prairie dogs (Cynomys leucurus) and American martens (Martes americana):representative fat-and lean-bodied animals[J]. Physiological Zoology, 1991, 64(5): 1262-1278. DOI:10.1086/physzool.64.5.30156244
[45]
COSTA D P, ORTIZ C L. Blood chemistry homeostasis during prolonged fasting in the northern elephant seal[J]. American Journal of Physiology, 1982, 242(5): R591-R595.
[46]
TAYLOR S. Metabolic issues of clinical nutrition[J]. Journal of Human Nutrition and Dietetics, 2005, 18(2): 141-142. DOI:10.1111/jhn.2005.18.issue-2
[47]
ROUVINEN-WATT K, MUSTONEN A M, CONWAY R, et al. Rapid development of fasting-induced hepatic lipidosis in the American mink (Neovison vison):effects of food deprivation and re-alimentation on body fat depots, tissue fatty acid profiles, hematology and endocrinology[J]. Lipids, 2010, 45(2): 111-128.
[48]
AHMED B M, BERGEN W G, AMES N K. Effect of nutritional state and insulin on hind-limb amino acid metabolism in steers[J]. Journal of Nutrition, 1983, 113(8): 1529-1543. DOI:10.1093/jn/113.8.1529
[49]
SHAW C S, CLARK J, WAGENMAKERS A J M. The effect of exercise and nutrition on intramuscular fat metabolism and insulin sensitivity[J]. Annual Review of Nutrition, 2010, 30: 13-34. DOI:10.1146/annurev.nutr.012809.104817
[50]
ETHERTON T D, BAUMAN D E. Biology of somatotropin in growth and lactation of domestic animals[J]. Physiological Reviews, 1998, 78(3): 745-761. DOI:10.1152/physrev.1998.78.3.745
[51]
AL-REGAIEY K A, MASTERNAK M M, BONKOWSKI M, et al. Long-lived growth hormone receptor knockout mice:interaction of reduced insulin-like growth factor Ⅰ/insulin signaling and caloric restriction[J]. Endocrinology, 2005, 146(2): 851-860. DOI:10.1210/en.2004-1120
[52]
KEOGH K, WATERS S M, KELLY A K, et al. Effect of feed restriction and subsequent re-alimentation on hormones and genes of the somatotropic axis in cattle[J]. Physiological Genomics, 2015, 47(7): 264-273. DOI:10.1152/physiolgenomics.00134.2014
[53]
LI Z H, KANG S K, JIN Y C, et al. Responses to administration of growth hormone releasing hormone and glucose in steers receiving stair-step and extended restriction on feeding[J]. Livestock Science, 2012, 150(1/2/3): 229-235.
[54]
LUCY M C.Mechanisms linking the somatotropic axis with insulin: lessons from the postpartum dairy cow[C]//Proceedings of the New Zealand Society of Animal Production.Hamilton: New Zealand Society of Animal Production, 2004, 64: 24-29.
[55]
BELL A W. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation[J]. Journal of Animal Science, 1995, 73(9): 2804-2819. DOI:10.2527/1995.7392804x