动物营养学报    2019, Vol. 31 Issue (1): 258-265    PDF    
大麻素受体1拮抗剂利莫那班对肉仔鸡下丘脑食欲调控因子和腺苷酸激活蛋白激酶基因表达的影响
周华金, 孙晓蕾, 钟光, 张辉, 王继光, 郝洋洋, 宋志刚     
山东农业大学动物科技学院/动物医学院, 泰安 271018
摘要: 研究旨在探讨大麻素受体1(CB1)拮抗剂利莫那班(SR141716)对肉仔鸡下丘脑食欲调控因子和腺苷酸激活蛋白激酶(AMPK)基因表达的影响。选取1日龄体重相近的健康爱拔益加(AA)肉仔鸡20只,7日龄时随机分为2个组,进行第3脑室埋管,恢复3 d。10日龄08:00试验组以1 μg剂量脑室注射SR141716,对照组同时注射等量的二甲基亚砜(DMSO)。统计每只鸡在注射后2 h的采食量,然后采集血液和下丘脑样品,测定血清中丙氨酸转氨酶、天冬氨酸转氨酶活性及葡萄糖、尿酸、总胆固醇、高密度脂蛋白胆固醇、低密度脂蛋白胆固醇含量,利用荧光定量PCR技术检测下丘脑中AMPKα1、AMPKα2以及食欲调控相关基因厌食神经肽(POMC)、促食神经肽Y(NPY)、刺鼠色蛋白相关蛋白(AgRP)、可卡因和苯丙胺调节转录物(CART)的基因表达量。结果表明:1)与对照组相比,肉仔鸡脑室注射SR141716后,2 h内的采食量显著降低(P < 0.05)。2)与对照组相比,肉仔鸡脑室注射SR141716显著提高了血清中低密度脂蛋白胆固醇含量(P < 0.05),对其他血清生化指标无显著影响(P>0.05)。3)与对照组相比,肉仔鸡脑室注射SR141716显著降低了下丘脑AMPKα1、AMPKα2、POMCAgRP的基因表达量(P < 0.05),显著提高了下丘脑CART的基因表达量(P < 0.05),对下丘脑NPY的基因表达量无显著影响(P>0.05)。由此可见,脑室注射CB1受体拮抗剂SR141716可降低肉仔鸡食欲,并影响中枢AMPK及其下游食欲调控因子POMC的基因表达;中枢通过抑制促食神经肽AgRP和提高抑食神经肽CART的基因表达,参与肉仔鸡食欲调控。
关键词: 肉仔鸡     SR141716     大麻素受体     腺苷酸激活蛋白激酶     食欲    
Effects of Cannabinoid Receptor 1 Antagonist Rimonabant on Gene Expression of Hypothalamic Appetite Regulation Factor and Adenosine Monophosphate-Activated Protein Kinase of Broilers
ZHOU Huajin, SUN Xiaolei, ZHONG Guang, ZHANG Hui, WANG Jiguang, HAO Yangyang, SONG Zhigang     
College of Animal Science and Technology, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
Abstract: This study aimed to investigate the effects of cannabinoid receptor 1 (CB1) antagonist rimonabant (SR141716) on gene expression of hypothalamic appetite regulation factor and adenosine monophosphate-activated protein kinase (AMPK) of broilers. Twenty healthy one-day-old Arbor Acres (AA) broilers with similar weight were randomly allocated into 2 groups at 7 days of age, and a guide cannula were implanted stereotaxically into the third ventricle, chicks were allowed 3 days of recovery. At 08:00 at 10 days of age, birds in the experimental group were ventricle injected 1 μg SR141716, while other birds in the control group injected the same amount of dimethyl sulfoxide (DMSO) at the same time. The feed intake of each chick in the 2 hours after injection was counted, then the blood and hypothalamic sample was taken, the activities of alanine aminotransferase, aspartate aminotransferase and contents of glucose, uric acid, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol in serum were determined. The gene expression of AMPKα1, AMPKα2, pro-opiomelanocortin-α (POMC), neuropeptide Y (NPY), agouti-related protein (AgRP) and cocaine-and amphetamine-regulated transcript (CART) in hypothalamus were detected by real time PCR method. The results showed as follows:1) compared with the control group, the feed intake of broilers was significantly decreased in the 2 hours after ventricle injected SR141716 (P < 0.05). 2) Compared with the control group, the serum low density lipoprotein cholesterol content of broilers was significantly increased after ventricle injected SR141716 (P < 0.05), but there was no significant effect on other serum biochemical parameters (P>0.05). 3) Compared with the control group, the gene expression of AMPKα1, AMPKα2, POMC and AgRP in hypothalamus of broilers were significantly decreased after ventricle injected SR141716 (P < 0.05), while the gene expression of CART in hypothalamus was significantly increased (P < 0.05), but there was no significant effect on the gene expression of NPY in hypothalamus (P>0.05). In conclusion, ventricle injected CB1 antagonist SR141716 can reduce the feed intake of broilers and affect the gene expression of AMPK and its downstream appetite regulator POMC in central nervous. The central nervous is involved in the appetite regulation of broilers by inhibiting the stimulate neuropeptide AgRP and anorexigenic neuropeptides CART.
Key words: broilers     SR141716     cannabinoid receptor     AMPK     appetite    

大麻素是大麻植物中特有的含有烷基和单萜基团分子结构的一类次生代谢产物[1]。在哺乳动物中,内源性大麻素在神经系统中发挥重要作用,并与动物的食欲和能量平衡有关。Gaoni等[2]提取并纯化了大麻的主要精神调节活性成分Δ9-四氢大麻酚(Δ9-tetrohydrocannabina,Δ9-THC)。之后发现,Δ9-THC主要作用于2种特殊的G蛋白偶联受体,被称为大麻素受体(cannabinoid receptor, CB)1和2[3-4]CB1在动物的脑中广泛表达,在海马、小脑和基底神经节中检测到较高表达水平[5],而CB2在免疫系统中表达更为丰富[6]。大麻素主要是通过CB1来发挥作用[7]。随着CB研究的深入,内源性大麻素(endocannabinoids,ECBs)也逐渐被认识,例如花生四烯乙醇胺(anandamide,AEA)和2-花生四烯酸甘油(2-arachiodonoylglycerol,2-AG)。研究表明,内源性大麻素在动物食欲控制中发挥生理作用,使用CB1拮抗剂利莫那班(SR141716)造成大鼠采食量和饮水量显著降低[8];通过对大鼠脑室注射AEA和CB1拮抗剂SR141716发现,下丘脑AEA通过刺激CB1启动食欲[9];大鼠伏隔核注射2-AG可以剂量依赖性刺激采食,这种作用可被CB1拮抗剂SR141716减弱[10]。腺苷酸激活蛋白激酶(AMP-activated protein kinase,AMPK)是细胞和系统能量稳态的调节器,大麻素能激活下丘脑AMPK,导致食欲增加[11]。由于在家禽上,大麻素系统对食欲和能量平衡影响的研究较少,其影响机理尚不完备。因此,本研究通过脑室注射CB1受体拮抗剂SR141716,探究其对肉仔鸡下丘脑中食欲相关基因厌食神经肽(pro-opiomelanocortin-α,POMC)、促食神经肽Y(neuropeptide Y,NPY)、刺鼠色蛋白相关蛋白(agouti-related protein,AgRP)、可卡因和苯丙胺调节转录物(cocaine- and amphetamine-regulated transcript,CART)以及能量代谢调控因子AMPKα1、AMPKα2基因表达的影响,为大麻素调控家禽食欲和能量平衡的机制研究提供理论依据。

1 材料与方法 1.1 试验动物

选取体重相近的1日龄雄性爱拔益加(AA)肉仔鸡20只(购自山东大宝禽业有限公司),采用笼养方式饲养,根据肉鸡生长情况控制鸡舍环境,1~7日龄鸡舍温度35 ℃,8~10日龄鸡舍温度33 ℃,鸡舍自然通风,相对湿度保持在40%~50%。

1.2 试验设计

7日龄时随机分为2个组,进行第3脑室埋管,恢复3 d,10日龄08:00试验组以1 μg剂量脑室注射CB1拮抗剂SR141716,对照组同时注射等量的二甲基亚砜(DMSO),统计每只鸡在注射2 h内的采食量,注射2 h后采集血清和下丘脑样本。

1.3 试验饲粮

试验期间饲喂参照NRC(1994)肉鸡营养需要量标准配制的饲粮,饲粮组成及营养水平见表 1,自由采食和饮水。

表 1 饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the diet (air-dry basis)
1.4 动物模型

脑室注射技术参考Kim等[12]、Jaillard等[13],7日龄肉仔鸡按照25 mg/kg体重静脉注射戊巴比妥钠(P8410,购自北京索莱宝科技有限公司),麻醉完成后在肉仔鸡头顶部剪开皮肤,露出囟门(十字交叉处),在水平桌面上调整好脑立体定位仪,将肉仔鸡水平并以俯卧的姿势置于固定夹处,保证整个头颅水平固定,将柔性颅骨钻固定在脑立体定位仪上,在囟门附近5 mm半径内用骨钻分别钻3个0.8 mm的小洞,分别拧入1颗螺丝(只拧入1/2),在囟门后1.82 mm处(约为下丘脑正上方)埋入导管,将义齿基托树脂(Ⅱ型)按照说明书配制1 mL环绕中央导管涂在3个螺丝上,凝固后将导管帽盖上,肉仔鸡手术结束后放回笼子,恢复3 d。

10日龄时根据不同处理配制脑室注射液,对照组仅注射含0.1%伊文氏蓝染料(Evans blue)的二甲基亚砜(DMSO),试验组在此基础上添加R141716,使其浓度为0.5 μg/μL。取下肉仔鸡头部的导管帽,消过毒的注射套管的针头插入埋在肉仔鸡头部的导管中,用微量注射器缓慢注入2 μL配制好的注射液,注射完毕后,将消过毒的导管帽拧到肉仔鸡头上,然后放回笼子里,开始统计2 h内的采食量。

SR141716、伊文氏蓝染料购自Sigma公司;焦碳酸二乙酯(DEPC)购自Amresco公司;义齿基托树脂(Ⅱ型)购自上海新世纪齿科材料有限公司;ZH蓝星C脑立体定位仪、ZH-EKS微量注射泵、ZH-RXZ型柔性颅骨钻均购自淮北正华生物仪器设备有限公司;螺丝(外径1.2 mm,长2 mm)、导管(外径0.48 mm)、国产微量注射器(量程10 μL,尖头)等均购自深圳瑞沃德生命科技有限公司。

1.5 样品采集

翅静脉采集血液后4 ℃、400×g离心10 min,取上清放置于-20 ℃保存;取新鲜的下丘脑样品,液氮速冻,放置于-80 ℃保存。

1.6 指标测定及方法 1.6.1 血清生化指标

丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)活性采用试剂盒测定,试剂盒购自南京建成生物工程研究所,葡萄糖(GLU)、尿酸(UA)、总胆固醇(TCHO)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)含量采用全自动生化分析仪(7170A,HITACHI,日本)测定。

1.6.2 基因定量

RNA提取试剂盒购自康为试剂生物有限公司(CW0584),反转录试剂盒(编号4897030001)、Real Time PCR试剂盒(编号4913914001)购自罗氏(Roche)公司。

反转录条件为:55 ℃,30 min(反转录反应);85 ℃,5 min(反转录酶的失活反应)。两步法荧光定量PCR反应条件为:第1步95 ℃变性10 s,1个循环;第2步95 ℃延伸5 s,60 ℃退火34 s,40个循环。基因的引物序列见表 2,由上海生工生物技术有限公司合成。

表 2 基因的引物序列 Table 2 Primer sequences of genes
1.7 统计分析

使用SAS 9.0软件中GLM程序对试验数据进行单因素方差分析(one-way ANOVA),P < 0.05表示差异显著。

2 结果 2.1 脑室注射SR141716对肉仔鸡采食量的影响

图 1可知,与对照组相比,试验组脑室注射SR141716后,2 h内的采食量显著降低(P < 0.05)。

图 1 脑室注射SR141716对肉仔鸡采食量的影响 Fig. 1 Effects of ventricle injected SR141716 on feed intake of broilers
2.2 脑室注射SR141716对肉仔鸡血清生化指标的影响

表 3可知,与对照组相比,试验组脑室注射SR141716显著提高了血清LDL含量(P < 0.05),对血清ALT、AST活性及UA、GLU、TCHO、HDL-C、LDL-C含量无显著影响(P>0.05)。

表 3 脑室注射SR141716对肉仔鸡血清生化指标的影响 Table 3 Effect of ventricle injected SR141716 on serum biochemical parameters of broilers
2.3 脑室注射SR141716对肉仔鸡下丘脑AMPK基因表达量的影响

图 2可知,与对照组相比,试验组脑室注射SR141716显著降低了下丘脑AMPKα1和AMPKα2的基因表达量(P < 0.05)。

图 2 脑室注射SR141716对肉仔鸡下丘脑AMPKα1和AMPKα2基因表达量的影响 Fig. 2 Effects of ventricle injected SR141716 on gene expression of AMPKα1 and AMPKα2 in hypothalamus of broilers

图 3可知,与对照组相比,试验组脑室注射SR141716显著提高了下丘脑CART基因表达量(P < 0.05),显著降低了下丘脑POMCAgRP基因表达量(P < 0.05),对下丘脑NPY基因表达量无显著影响(P>0.05)。

图 3 脑室注射SR141716对肉仔鸡下丘脑POMCNPYAgRPCART基因表达量的影响 Fig. 3 Effects of ventricle injected SR141716 on gene expression of POMC, NPY, AgRP and CART in hypothalamus of broilers
3 讨论 3.1 脑室注射SR141716对肉仔鸡采食量的影响

中枢对采食行为的调节是通过大脑纹状体、下丘脑、杏仁核、孤束核和弓形核中的神经递质实现的[15]。在人体上,内源性大麻素对中脑缘多巴胺能和阿片肽能神经元的调节功能是其发挥促进食欲作用的基础,利用多巴胺能受体拮抗剂、阿片肽能受体拮抗剂或CB1阻断剂均可抑制大麻素诱导的进食作用[16]。因此,降低内源性大麻素的活性或者阻断CB1能够抑制对食物诱惑的敏感性,可作为肥胖症的药物治疗靶点。与哺乳动物相似,大麻素信号受体同样表达于鸟类的脑组织中,其mRNA的表达集中在小脑以及前脑、杏仁核和海马的部分区域[17]。海兰蛋鸡脑室注射12.5或25.0 μg的CB2激动剂JWH015导致采食量显著上升,脑室注射1 μg内源性大麻素2-AG造成相同结果,而脑室注射2.5或5.0 μg CB2选择性受体拮抗剂AM630则导致采食量显著下降[18],说明大麻素对家禽同样具有促进摄食的作用。7日龄肉仔鸡静脉注射0.85和5.00 mg/kg BW的CB1反向激动剂AM251,注射后7 h内的平均采食量分别下降30%和33%[19]。在本研究中,脑室注射1 μg CB1拮抗剂SR141716导致肉仔鸡采食量下降,与前人研究相符,说明下丘脑CB1参与肉仔鸡食欲的调控。

3.2 脑室注射SR141716对肉仔鸡血清生化指标的影响

最近在体外和动物研究中显示CB1参与肝损伤、炎症,并可能通过激活内源性大麻素系统参与肝细胞癌的发生[20-21]。CB1参与内源性大麻素系统,通过调节脂质代谢诱导肝细胞的脂肪合成,与非酒精性脂肪肝的发生相关[22]。考虑到肝脏作为机体重要的消化腺,肝损伤、炎症会导致食欲减退,为探查本研究中脑室注射SR141716造成的食欲减退是否与之有关,对肝功能理化指标进行了检测。肝酶如ALT和AST可反映肝细胞坏死和损伤程度,通常用作肝功能的血清标志物。有研究表明,注射内源性大麻素2-AG导致小鼠血清ALT和AST活性上升[23]。在本研究中,血清中只有LDL-C含量显著升高,血清ALT、ASL活性及TCHO、HDL-C等含量没有受到显著影响。有研究表明,CB1通过影响肉碱棕榈酰基转移酶-1(carnitine palmitoyltransferase-1,CPT-1)的活性影响肌内脂肪沉积[24]。考虑到低密度脂蛋白(LDL)参与了肝脏向各组织中运输胆固醇的过程,提示脑室注射SR141716会影响肝脏脂肪代谢,本研究中肉仔鸡食欲降低并不是由肝损伤、炎症造成的。

3.3 脑室注射SR141716对肉仔鸡下丘脑食欲相关基因表达量的影响

有研究表明,机体内存在胃饥饿素(Ghrelin)-大麻素-CB1-AMPK信号通路[25]。AMPK是细胞和系统能量稳态的调节器,在低血糖等营养缺乏或其他病理状态下被激活,一旦激活,AMPK关闭合成代谢途径,如脂肪酸、甘油三酯和胆固醇合成,激活分解代谢途径,如糖酵解和脂肪酸氧化[26]。脑室注射胃饥饿素可提高外周AMPK的活性,但这种作用在CB1基因敲除小鼠和脑室注射SR141716小鼠中被抑制,说明CB1参与胃饥饿素对AMPK的调控[25]。有报道证明,大麻素能激活下丘脑AMPK,导致食欲增加[11]。在本研究中,脑室注射CB1拮抗剂SR141716显著降低了下丘脑AMPKα1和AMPKα2的基因表达量,证实CB1对肉仔鸡下丘脑AMPK具有调控作用。

下丘脑AMPK可调节NPY和POMC的活性。利用AMPK激活剂AICAR处理小鼠胚胎下丘脑细胞系,发现NPY基因表达上调以及POMC基因表达下降。在无葡萄糖的培养基中培养的下丘脑细胞也发现相同结果,其原因可能是营养胁迫激活了AMPK,而加入AMPK拮抗剂Compound C后,显著降低NPY基因表达量[27]。在本研究中,SR141716抑制了肉仔鸡下丘脑AMPK的基因表达,POMC的基因表达量下降,说明CB1可以影响AMPK及其下游食欲调控因子,从而对采食量造成影响。

CART作为一种厌食肽,同样受到CB1的调控。肉鸡脑室注射CART显著抑制空腹诱导的采食行为,此外,CART对自由采食的蛋鸡有明显的食欲抑制作用,而对禁食的蛋鸡影响较小[28]。SR141716阻断CB1导致食物摄入量的减少,继发于下丘脑中摄食相关肽的变化,体现在抑食基因CART的基因和蛋白水平的上升[29]。有研究表明,CARTCB1的mRNA在室旁核中共同表达[30]CART基因敲除的小鼠注射SR141716不会导致食欲抑制作用,说明CART是CB1的下游厌食调节因子[31]。在本研究中,肉仔鸡脑室注射SR141716显著提高了CART基因表达量,这也是阻断CB1后肉仔鸡采食量降低的一个重要原因。

CB1同样介导下丘脑促食神经肽AgRP的表达。AgRP分布于哺乳动物和家禽中枢下丘脑弓状核中,快速激活AgRP神经元可显著诱导小鼠进食,减少能量消耗,最终增加脂肪储存[32]。有研究表明AgRP与CB存在联系,N-酰基氨基酸(N-acyl amino acids, NAAAs)在结构上与内源性大麻素相似,其主要受体已被鉴定为CB1或CB2[33],其中N-油酰苷氨酸(N-oleoylglycine,OLGly)作为NAAAs的一种,具有促进小鼠过度采食的作用,并被证实是由CB1介导下丘脑过量表达促食神经肽AgRP造成的[34]。在本研究中,肉仔鸡脑室注射SR141716显著降低了AgRP基因表达量,这可能也是造成肉仔鸡采食量下降的原因之一。

4 结论

脑室注射CB1受体拮抗剂SR141716可降低肉仔鸡食欲,并影响中枢AMPK及其下游食欲调控因子POMC的基因表达;中枢通过抑制促食神经肽AgRP和提高抑食神经肽CART的基因表达,参与肉仔鸡食欲调控。

参考文献
[1]
陈璇, 杨明, 郭鸿彦. 大麻植物中大麻素成分研究进展[J]. 植物学报, 2011, 46(2): 197-205.
[2]
GAONI Y, MECHOULAM R. Isolation, structure, and partial synthesis of an active constituent of hashish[J]. Journal of Analytical and Applied Chemistry, 1964, 86(8): 1646-1647.
[3]
PERTWEE R G. Pharmacology of cannabinoid receptor ligands[J]. Current Medicinal Chemistry, 1999, 6(8): 635-664.
[4]
TANDA G, GOLDBERG S R. Cannabinoids:reward, dependence, and underlying neurochemical mechanisms-a review of recent preclinical data[J]. Psychopharmacology, 2003, 169(2): 115-134. DOI:10.1007/s00213-003-1485-z
[5]
MOLDRICH G, WENGER T. Localization of the CB1 cannabinoid receptor in the rat brain.An immunohistochemical study[J]. Peptides, 2000, 21(11): 1735-1742. DOI:10.1016/S0196-9781(00)00324-7
[6]
DEN BOON F S, CHAMEAU P, SCHAAFSMA-ZHAO Q, et al. Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(9): 3534-3539. DOI:10.1073/pnas.1118167109
[7]
KYROU I, VALSAMAKIS G, TSIGOS C. The endocannabinoid system as a target for the treatment of visceral obesity and metabolic syndrome[J]. Annals of the New York Academy of Sciences, 2006, 1083(1): 270-305. DOI:10.1196/annals.1367.024
[8]
ARNONE M, MARUANI J, CHAPERON F, et al. Selective inhibition of sucrose and ethanol intake by SR 141716, an antagonist of central cannabinoid (CB1) receptors[J]. Psychopharmacology, 1997, 132(1): 104-106. DOI:10.1007/s002130050326
[9]
JAMSHIDI N, TAYLOR D A. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats[J]. British Journal of Pharmacology, 2001, 134(6): 1151-1154. DOI:10.1038/sj.bjp.0704379
[10]
KIRKHAM T C, WILLIAMS C M, FEZZA F, et al. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation:stimulation of eating by 2-arachidonoyl glycerol[J]. British Journal of Pharmacology, 2002, 136(4): 550-557. DOI:10.1038/sj.bjp.0704767
[11]
KOLA B, HUBINA E, TUCCI S A, et al. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase[J]. Journal of Biological Chemistry, 2005, 280(26): 25196-25201. DOI:10.1074/jbc.C500175200
[12]
KIM M S, PAK Y K, JIANG P G, et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis[J]. Nature Neuroscience, 2006, 9(7): 901-906. DOI:10.1038/nn1731
[13]
JAILLARD T, ROGER M, GALINIER A, et al. Hypothalamic reactive oxygen species are required for insulin-induced food intake inhibition:an NADPH oxidase-dependent mechanism[J]. Diabetes, 2009, 58(7): 1544-1549. DOI:10.2337/db08-1039
[14]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method[J]. Methods, 2001, 25(4): 402-408. DOI:10.1006/meth.2001.1262
[15]
PARKER K E, JOHNS H W, FLOROS T G, et al. Central amygdala opioid transmission is necessary for increased high-fat intake following 24-h food deprivation, but not following intra-accumbens opioid administration[J]. Behavioural Brain Research, 2014, 260: 131-138. DOI:10.1016/j.bbr.2013.11.014
[16]
KIRKHAM T C. Endocannabinoid and non-homeostatic controls of appetite[J]. Official Journal of the International Chair on Cardiometabolic Risk, 2008, 1(3): 22-26.
[17]
STINCIC T L, HYSON R L. Localization of CB1 cannabinoid receptor mRNA in the brain of the chick (Gallus domesticus)[J]. Brain Research, 2008, 1245: 61-73. DOI:10.1016/j.brainres.2008.09.037
[18]
ALIZADEH A, ZENDEHDEL M, BABAPOUR V, et al. Role of cannabinoidergic system on food intake in neonatal layer-type chicken[J]. Veterinary Research Communications, 2015, 39(2): 151-157. DOI:10.1007/s11259-015-9636-3
[19]
NOVOSELETSKY N, NUSSINOVITCH A, FRIEDMAN-EINAT M. Attenuation of food intake in chicks by an inverse agonist of cannabinoid receptor 1 administered by either injection or ingestion in hydrocolloid carriers[J]. General and Comparative Endocrinology, 2011, 170(3): 522-527. DOI:10.1016/j.ygcen.2010.11.011
[20]
MAI P, YANG L, TIAN L, et al. Endocannabinoid system contributes to liver injury and inflammation by activation of bone marrow-derived monocytes/macrophages in a CB1-dependent manner[J]. Journal of Immunology, 2015, 195(7): 3390-3401. DOI:10.4049/jimmunol.1403205
[21]
MUKHOPADHYAY B, SCHUEBEL K, MUKHOPADHYAY P, et al. Cannabinoid receptor 1 promotes hepatocellular carcinoma initiation and progression through multiple mechanisms[J]. Hepatology, 2015, 61(5): 1615-1626. DOI:10.1002/hep.27686
[22]
SHI D M, XI Z, YU X F, et al. Inhibiting CB1 receptors improves lipogenesis in an in vitro non-alcoholic fatty liver disease model[J]. Lipids in Health and Disease, 2014, 13: 173. DOI:10.1186/1476-511X-13-173
[23]
CHANDA D, KIM Y H, LI T G, et al. Hepatic cannabinoid receptor type 1 mediates alcohol-induced regulation of bile acid enzyme genes expression via CREBH[J]. PLoS One, 2013, 8(7): e68845. DOI:10.1371/journal.pone.0068845
[24]
ZHANG Y F, YUAN Z Q, SONG D G, et al. Effects of cannabinoid receptor 1(brain) on lipid accumulation by transcriptional control of CPT1A and CPT1B[J]. Animal Genetics, 2014, 45(1): 38-47. DOI:10.1111/age.2013.45.issue-1
[25]
KOLA B, WITTMAN G, BODNÁR I, et al. The CB1 receptor mediates the peripheral effects of ghrelin on AMPK activity but not on growth hormone release[J]. The FASEB Journal, 2013, 27(12): 5112-5221. DOI:10.1096/fj.13-232918
[26]
KIM J, YANG G, KIM Y, et al. AMPK activators:mechanisms of action and physiological activities[J]. Experimental & Molecular Medicine, 2016, 48(4): e224.
[27]
OH T S, CHO H, CHO J H, et al. Hypothalamic AMPK-induced autophagy increases food intake by regulating NPY and POMC expression[J]. Autophagy, 2016, 12(11): 2009-2025. DOI:10.1080/15548627.2016.1215382
[28]
TACHIBANA T, TAKAGI T, TOMONAGA S, et al. Central administration of cocaine-and amphetamine-regulated transcript inhibits food intake in chicks[J]. Neuroscience Letters, 2003, 337(3): 131-134. DOI:10.1016/S0304-3940(02)01321-6
[29]
VERTY A N, BOON W M, MALLET P E, et al. Involvement of hypothalamic peptides in the anorectic action of the CB1 receptor antagonist rimonabant (SR 141716)[J]. European Journal of Neuroscience, 2009, 29(11): 2207-2216. DOI:10.1111/ejn.2009.29.issue-11
[30]
COTA D, MARSICANO G, TSCHÖP M, et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis[J]. Journal of Clinical Investigation, 2003, 112(3): 423-431. DOI:10.1172/JCI17725
[31]
OSEI-HYIAMAN D, DEPETRILLO M, HARVEY-WHITE J, et al. Cocaine-and amphetamine-related transcript is involved in the orexigenic effect of endogenous anandamide[J]. Neuroendocrinology, 2005, 81(4): 273-282. DOI:10.1159/000087925
[32]
KRASHES M J, KODA S, YE C P, et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice[J]. Journal of Clinical Investigation, 2011, 121(4): 1424-1428. DOI:10.1172/JCI46229
[33]
STAROWICZ K, NIGAM S, DI MARZO V. Biochemistry and pharmacology of endovanilloids[J]. Pharmacology & Therapeutics, 2007, 114(1): 13-33.
[34]
WU J G, ZHU C J, YANG L S, et al. N-oleoylglycine-induced hyperphagia is associated with the activation of agouti-related protein (AgRP) neuron by cannabinoid receptor type 1(CB1R)[J]. Journal of Agricultural and Food Chemistry, 2017, 65(5): 1051-1057. DOI:10.1021/acs.jafc.6b05281