动物营养学报    2019, Vol. 31 Issue (9): 4080-4091    PDF    
不同剩余采食量的湖羊生长性能和消化道微生物多样性差异的研究
马万浩1 , 梁玉生1 , 张智安1 , 董春晓1 , 李飞1 , 李发弟1,2 , 翁秀秀1     
1. 兰州大学草地农业生态系统国家重点实验室, 兰州大学农业农村部草牧业创新重点实验室, 兰州大学草地农业科技学院, 兰州 730020;
2. 甘肃省肉羊繁育生物技术工程实验室, 民勤 733300
摘要: 本试验旨在研究不同剩余采食量(RFI)的湖羊生长性能和瘤胃、盲肠微生物多样性的差异。选用60只健康湖羊公羔[体重(25.2±2.5)kg],单栏饲养,饲喂相同颗粒料,预试期14 d,正试期63 d。通过干物质采食量、平均日增重和中期代谢体重多元回归模型计算出60只羊的RFI后,选择RFI最高和最低的个体各6只,屠宰采样。结果表明:1)高RFI组干物质采食量显著高于低RFI组(P < 0.05),但RFI对初始体重、终末体重、平均日增重、饲料转化率、GR值和尾脂重无显著影响(P>0.05);RFI和干物质采食量呈显著正相关(P < 0.05),和饲料转化率及GR值呈显著正相关(P < 0.05),和尾脂重有正相关趋势(0.05 ≤ P < 0.10),和初始体重、终末体重、平均日增重无显著相关性(P>0.05)。2)RFI对瘤胃微生物丰富度和多样性指数无显著影响(P>0.05),对盲肠微生物丰富度指数没有显著影响(P>0.05),但低RFI组盲肠Shannon指数显著高于高RFI组(P < 0.05),Simpson指数有高于高RFI组趋势(0.05 ≤ P < 0.10);高RFI组盲肠理研菌科_RC9_gut_group属相对丰度显著高于低RFI组(P < 0.05),低RFI组盲肠拟杆菌属和瘤胃球菌科_UCG-013属相对丰度显著高于高RFI组(P < 0.05)。综上,高RFI个体更倾向于沉积体脂肪,不同RFI对湖羊瘤胃、盲肠微生物的影响只体现在个别可能具有重要作用的菌属上。
关键词: 剩余采食量    湖羊    生长性能    微生物    
Difference of Growth Performance and Digestive Tract Microbial Diversity of Hu Sheep with Different Residual Feed Intake
MA Wanhao1 , LIANG Yusheng1 , ZHANG Zhi'an1 , DONG Chunxiao1 , LI Fei1 , LI Fadi1,2 , WENG Xiuxiu1     
1. State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
2. Engineering Laboratory of Mutton Sheep Breeding And Reproduction Biotechnology in Gansu Province, Minqin 733300, China
Abstract: This study was designed to explore the differences of growth performance, rumen and cecum microbial diversity of the Hu sheep with different residual feed intake (RFI). Sixty healthy Hu lambs with body weight of (25.2±2.5) kg were fed the same pellets feed individually, and the pre-trial period was 14 days, while the trial period was 63 days. The RFI of 60 sheep were calculated using dry matter intake (DMI), average daily gain and metabolic midweight multiple regression model, and 12 sheep with the highest RFI (n=6) and lowest RFI (n=6) were chosen to be slaughtered and sampled. Results showed as follows:1) DMI in high RFI group was significantly higher than that in low RFI group (P < 0.05), but there were no significant differences in initial body weight, final body weight, average daily gain, feed conversion ratio, GR value and tail fat weight between high and low RFI groups (P>0.05). There was a significant positive correlation between RFI and DMI as well as feed conversion ratio, GR value (P < 0.05), and a positive correlation trend between RFI and tail fat weight (0.05 ≤ P < 0.10), and no significant correlation between RFI and both initial body weight, final body weight and average daily gain (P>0.05). 2) No effects of RFI on ruminal bacteria richness and diversity indexes were detected (P>0.05), as well as the richness indexes in cecum bacteria (P>0.05). The Shannon index of cecal bacteria in low RFI group was significantly higher than that in high RFI group (P < 0.05), while the Simpson index was tended be higher in this group (0.05 ≤ P < 0.10). The relative abundance of Rikenellaceae_RC9_gut_group of rumen in high RFI group was significantly lower than that in low RFI group (P < 0.05)and the relative abundance of Bacteroides and Ruminococcaceae_UCG-013 group of cecum in low RFI group were significantly higher than those in high RFI group (P < 0.05). The above-mentioned results indicate that individuals with high RFI are more likely to deposit body fat, and the effects of different RFI on rumen and cecum microflora of Hu sheep are only reflected in several special genus which may plays an important role in digestion.
Key words: residual feed intake    Hu sheep    growth performance    bacteria    

饲料成本是动物生产中最主要的花销,占总成本的50%~70%,而近年来的环境污染和能源危机等问题使得畜牧业中对高饲料效率生产的要求越来越高。剩余采食量(residual feed intake, RFI)是由Koch等[1]提出的用于评定饲料转化效率的指标,是公认最有效的饲料效率指标之一,研究反刍动物消化道微生物在不同RFI个体之间的区别,将为调控饲料效率提供重要的生物学基础。反刍动物可以利用瘤胃复杂的微生物体系消化、吸收本不能利用的纤维物质,所以瘤胃微生物对瘤胃消化的作用是至关重要的,但消化道的微生物菌群会受到宿主遗传因素和环境因素的影响[2],反之,瘤胃微生物群落也会影响瘤胃消化功能,研究表明消化道菌群的细微变化都会对动物的营养状况和生产性能造成巨大的影响[3-4]。在Liang等[5]的研究中,低RFI湖羊瘤胃内纤维降解菌的相对丰度较低;Carberry等[6]用不同饲草比例的饲粮饲喂肉牛的研究发现,不同RFI的牛瘤胃内产甲烷菌的相对丰度存在差异;Lam[7]用以52.5%高湿玉米青贮为基础的饲粮饲喂肉牛的试验显示,低RFI个体瘤胃中的细菌总数更高;Hernandez-Sanabria等[8]对饲喂不同能量水平的生长期和育肥期肉牛的研究发现,琥珀酸弧菌属跟低RFI个体的干物质采食量(DMI)和平均日增重(ADG)呈显著负相关,真杆菌属在不同RFI的个体中也有显著差异,上述研究表明反刍动物瘤胃微生物菌群的变化会对饲料效率产生很大影响。Paz等[9]的研究发现,肉牛的饲料效率性状大约有20%的变异可以用瘤胃微生物区系的变化来解释。除瘤胃以外,后肠道内也有大量的微生物定植,而且同样具有消化功能,研究表明后肠道微生物消化产生的挥发性脂肪酸(VFA)占总消化道的10%~13%[10];Perea等[11]的研究表明,不同RFI的阉羊在瘤胃、结肠和整个小肠内与纤维降解、肠道健康和微生态失调相关的几种菌群存在显著差异。盲肠则是后肠道最主要的微生物发酵部位,内含大量与瘤胃相似的细菌,消化能力仅次于瘤胃[12]。本研究从不同RFI表型入手,揭示高、低RFI个体在生长性能和瘤胃、盲肠微生物多样性上的差异,为不同饲料效率在肠道微生态学层面的研究提供参考依据。

1 材料与方法 1.1 试验设计

本试验在甘肃民勤勤锋滩进行,所用羔羊购于甘肃三洋金源农牧股份有限公司。选用60只已按免疫程序免疫的湖羊公羔,体重为(25.2±2.5) kg,单栏饲养,预试期14 d,正试期63 d,所有试验羊饲喂相同颗粒饲粮,其组成及营养水平见表 1。饲粮精粗比为75:25。

表 1 饲粮组成及营养水平 Table 1 Composition and nutrient levels of the diet
1.2 饲养管理

试验开始前对所有羊只进行体内外驱虫,并保证羊舍已全面消毒。饲喂时间为每天08:00和14:00,根据羊的采食情况调整饲喂量以确保自由采食。在预试期第14天晨饲前对60只湖羊羔羊进行称重,连续称2 d,取平均值记为初始体重,正试期的第62天和第63天于晨饲前对试验羊只进行称重,连续称2 d,取平均值记为终末体重,并记录每只试验羊每天的DMI,计算63 d内的ADG及饲料转化率,通过DMI、ADG和中期代谢体重(Mid-BW0.75)多元回归模型计算出60只羊的RFI后,选择RFI最高和最低的个体各6只,屠宰采样。

1.3 样品采集

试验结束后,将选出的不同RFI的羊各6只禁食24 h,禁水2 h后,颈动脉放血屠宰,分离出消化道,取出瘤胃内容物固、液相混匀采集2份,分装于50 mL冻存管,另取2份盲肠内容物于5 mL冻存管,内容物样品均于-20 ℃冷冻保存,用于提取微生物DNA。

1.4 剩余采食量的计算

试验羊只的预测采食量通过实际DMI与ADG和Mid-BW0.75多元回归模型来计算,其中Mid-BW0.75和ADG被认作固定因素,所用模型如下所示:

式中:Yi代表第i只动物的平均DMI;β0是回归截距;β1是Mid-BW0.75对应的回归系数;β2是ADG对应的回归系数;ei表示第i只动物的随机误差。

本试验所用回归模型为:

式中:常数项为合并回归截距与随机误差后的结果。

RFI计算公式如下:

当个体RFI≥平均RFI+0.5标准差时,规定该试验动物为高RFI;当个体RFI≤平均RFI-0.5标准差时,规定该试验动物为低RFI[13]

1.5 微生物DNA的提取及分析

使用EZNA Stool DNA试剂盒(Omega Bio-Tek,美国)提取微生物基因组DNA,参考Li等[14]的方法。提取开始前,将-20 ℃保存的样品置于4 ℃解冻,称取一定量样品后添加少量直径为0.5 mm的玻璃珠,用全自动快速样品研磨仪(JXFSTPRP-15, 上海净信实业发展有限公司)65 Hz研磨以破坏微生物细胞壁。提取完成后,所有DNA样品通过Illumina Hiseq 2500平台进行测序分析(百迈克生物科技有限公司),测定可变区为细菌16S rDNA的V3+V4区,且本文所用丰富度指数ACE、Chao1和多样性指数Simpson、Shannon以及操作分类单元(OTU)的分类均由北京百迈客生物科技有限公司完成。

1.6 统计方法

试验数据使用Excel 2010进行整理,应用SPSS 23.0软件进行独立样本t检验分析,当P < 0.05时认为差异显著,所有结果均以平均值±标准误(means±SEM)形式列出;对RFI与生长性能进行皮尔逊相关性分析;用百迈客云分析平台(百迈克生物科技有限公司)分别对不同RFI湖羊瘤胃、盲肠微生物进行主坐标分析(PCoA),距离算法为weighted_unifrac。

2 结果 2.1 剩余采食量和生长性能

表 2可知,高RFI组的DMI显著高于低RFI组(P<0.05),而不同RFI组的终末体重、ADG和饲料转化率无显著差异(P>0.05);GR值和尾脂重也无显著差异(P>0.05)。

表 2 不同剩余采食量湖羊的生长性能 Table 2 Growth performance for Hu sheep with different RFI (n=12)

表 3可知,DMI与RFI、终末体重与ADG呈显著正相关(P<0.05),FCR与终末体重、ADG呈显著负相关(P<0.05),终末体重、ADG和尾脂重与DMI呈显著正相关(P<0.05),FCR、GR值与RFI呈显著正相关(P<0.05),尾脂重与终末体重也呈显著正相关(P<0.05),此外,GR值与DMI、尾脂重与RFI之间有正相关趋势(0.05≤P<0.10)。

表 3 剩余采食量和生长性能的相关性分析 Table 3 Correlation analysis between RFI and growth performance (n=12)
2.2 剩余采食量和微生物多样性

本试验的高通量测序结果显示,样品平均序列长度均大于412 bp,Q20均高于96.4%,Q30均高于93.3%,说明测序准确率和可信度较高。

表 4可知,对97%相似度水平的OTU进行分析,不同RFI的湖羊瘤胃和盲肠内微生物DNA序列的OTU、丰富度指数和多样性指数均没有显著差异(P>0.05),但盲肠微生物的Shannon指数存在显著差异((P<0.05),低RFI组盲肠微生物Simpson指数较高。

表 4 不同剩余采食量对湖羊瘤胃和盲肠微生物多样性的影响 Table 4 Effects of different RFI on diversity of ruminal and cecal microbes of Hu sheep (n=12)

在β多样性上,由PCoA分析图谱(图 1)可以看出,在weighted_unifrac距离算法下,瘤胃和盲肠内微生物OTU不能由不同RFI区分开。

图 1 不同RFI湖羊瘤胃和盲肠内微生物组成的PCoA分析 Fig. 1 PCoA analysis of bacterial composition in ruminal and cecal microbes of Hu sheep with different RFI

在研究在门和属水平下,对相对丰度大于0.50%的细菌进行独立样本t检验,结果如表 5表 6表 7所示,不同RFI瘤胃和盲肠内的菌门相对丰度均没有显著差异(P>0.05),但是盲肠内低RFI组疣微菌门相对丰度有高于RFI组的趋势(0.05≤P<0.10)。不同RFI对瘤胃内几乎所有菌属相对丰度均无显著影响(P>0.05),但瘤胃中高RFI组理研菌科_RC9_gut_group属相对丰度显著高于低RFI组(P<0.05);RFI对盲肠内大部分菌属相对丰度也没有显著影响(P>0.05),但低RFI组盲肠内的拟杆菌属和瘤胃球菌_UCG-013属相对丰度显著高于高RFI组(P<0.05)。

表 5 不同剩余采食量对瘤胃和盲肠菌门相对丰度的影响 Table 5 Effects of different RFI on relative abundance of ruminal and cecal bacterial phylum (n=12)
表 6 不同剩余采食量对瘤胃菌属相对丰度的影响 Table 6 Effects of different RFI on relative abundance of ruminal bacterial genus (n=12)
表 7 不同剩余采食量对盲肠菌属相对丰度的影响 Table 7 Effects of different RFI on relative abundance of cecal bacterial genus (n=12)
3 讨论 3.1 剩余采食量对生长性能的影响

Redden等[15]用含43.6%风干苜蓿的颗粒料饲喂美国塔基羊以及Kelly等[16]用精粗比为30:70的全混合日粮饲喂杂交肉牛的试验结果与本试验一致。本试验中,与低RFI组相比,高RFI组的DMI显著提高,但是2组的体重和ADG基本一致,这与在受孕肉牛、育肥羊和水牛上的研究结果[17-19]相似。RFI和DMI之间呈显著正相关,在Redden等[20]和Muro-Reyes等[21]的研究中,RFI与DMI之间也呈显著正相关。FCR在不同RFI组中没有显著差异,这与前人的研究结果[18-19, 22-23]一致,但是Rajaei Sharifabadi等[13]用高精料饲喂育肥羊,Lima等[24]用精粗比为65:35的全混合日粮饲喂育肥羊的试验发现,不同RFI的羊FCR存在显著差异,这是因为FCR易受到不同生长速率的影响[25-26],即日增重或者采食量的变化都有可能造成FCR的不同,但这两者都不能准确反映出体型和生长速率都不同的动物之间的饲料效率的差异。虽然不同RFI组动物胴体GR值没有差异,但是RFI与GR值之间存在显著正相关,与尾脂重存在正相关趋势,数据显示高RFI组GR值比低RFI组高14.7%, 尾脂重比低RFI组高24.6%,在Basarab等[27]和Schenkel等[28]的研究中,RFI与胴体脂肪含量之间存在较弱的表型和遗传相关性,在Arthur等[29]和Richardson等[30]对安格斯牛的研究中,RFI与背膘厚度呈显著正相关,上述研究与本研究的结果是一致的。高RFI组个体具有更高的采食量,增重速度却和低RFI组相同,其原因一方面可能是高RFI的动物对食入饲粮的代谢效率比较低,用于沉积蛋白和脂肪的饲粮能量比低RFI组更少,通过粪、尿、甲烷排放和热量散失的饲粮能量比较多[31],另一方面,湖羊在育肥期的增重主要体现在肌肉和脂肪组织的增加上,是蛋白质和脂肪沉积的宏观体现,高RFI组摄入的饲粮能量更多,却没有表现出更高的增重,说明高RFI湖羊对食入总能的分配方式与低RFI的不同,据Rattray等[32]的报导,饲喂全混合日粮的育肥阉羊每沉积1 g脂肪需要消耗36.2~41.0 kJ消化能,每沉积1 g蛋白质则需要消耗11.4~45.0 kJ消化能,两者相差并不大,但因为脂肪组织中仅含有20%的水分,而肌肉中则含有70%的水分,因此,在消耗相同消化能的情况下,蛋白质沉积生成肌肉对动物增重的影响远大于脂肪沉积的影响。Brethour[33]对育肥牛蛋白质和脂肪沉积速率建立回归关系,指出这两者之间呈反比例回归。因此,在增重相同的情况下,高RFI动物的体脂肪沉积更多。

3.2 剩余采食量对微生物多样性的影响

本试验中,不同RFI动物的瘤胃微生物在丰富度和多样性上都没有显著差异,Mccann等[34]和Myer等[35]对肉牛瘤胃微生物的研究表明,不同饲料效率的牛瘤胃内微生物的丰度和多样性,包括OTU都没有差异,这与本研究的结果一致,另外,对于盲肠微生物,在Myer等[36]的研究中,不同饲料效率肉牛的盲肠微生物在Chao1指数、Shannon指数以及OTU上都没有显著差异,而在本试验中,盲肠微生物OTU和丰富度指数在不同RFI组间没有显著差异,而多样性指数Shannon指数在低RFI组中显著升高,Simpson指数在低RFI组有更高的趋势。盲肠微生物的丰富度和多样性都大于瘤胃微生物,这个结果与前人研究结果[35-38]一致,反刍动物盲肠是瘤胃后主要的消化部位之一,但与瘤胃的消化功能有很大的区别,因此两者在微生物群落上也存在差别。

相对丰度大于0.50%的几个细菌门相对丰度在不同RFI湖羊瘤胃和盲肠中不存在显著差异,但是低RFI个体盲肠中的疣微菌门相对丰度更高。在前人的研究中,疣微菌门的一些种系可以降解多糖,含有多种糖苷水解酶[39],而在瘤胃中疣微菌门的相对丰度小于0.5%,说明它的糖苷水解酶活性可能更体现于对盲肠内纤维素的降解上。瘤胃中的理研菌科_RC9_gut_group属在不同RFI组间存在显著差异,据张科[40]的研究,理研菌科_RC9_gut_group属可能在粗纤维的消化中起着重要的作用,而在Zened等[41]的试验中,饲粮中中性洗涤纤维含量由39.7%减少至30.9%时,瘤胃内理研菌科_RC9_gut_group属的相对丰度下降了69.8%,在本试验中,高RFI组羊的DMI显著高于低RFI组,因此,所采食的粗饲料也高于低RFI组,这可能就是造成理研菌科_RC9_gut_group属的相对丰度在高RFI组中更高的原因。普雷沃氏菌属在所有瘤胃菌属中的相对丰度最高[35, 42-43],本研究也得到了相同的结果,但是Carberry等[44]的研究中,普雷沃氏菌属相对丰度在高RFI的肉牛瘤胃中显著升高,Mccann等[34]对婆罗门牛的研究也得出了类似的结果,而本文中普雷沃氏菌属相对丰度并没有因RFI的不同出现差异,可能因为该菌属中包括很多不同的菌种,发酵功能多样,可利用底物种类较多,包括非纤维性碳水化合物,而本试验饲粮淀粉水平相对较高,对普雷沃氏菌属相对丰度的影响比RFI的影响更大。

不同RFI组动物盲肠中的拟杆菌属相对丰度存在显著差异,低RFI个体中拟杆菌属相对丰度比高RFI个体高2.4倍。拟杆菌属大多具有很高的水解活性,能降解植物源性的碳水化合物,包括纤维素和抗性淀粉[45],但是在不同RFI反刍动物盲肠内拟杆菌属差异的研究暂无报导,本研究的结果说明从消化道前端流入盲肠的食糜中作为拟杆菌属发酵底物的碳水化合物可能是导致其在盲肠内出现差异的原因之一,不同RFI个体消化道前端可能存在某种未知消化机制的差异,这有待于更深入的研究。在盲肠中,相对丰度最高的是瘤胃球菌科的几个属(约44.4%,科水平结果文中未给出),这与前人在肉牛(>18%)[36]和秦岭羚牛(47.17%~52.67%)[46]中的研究结果一致,瘤胃球菌科是重要的纤维降解菌[47-48],其种群的降低会导致纤维消化的减少[49],另外,在瘤胃中作为主导菌群的普雷沃氏菌属在盲肠中的相对丰度就很少了,如普雷沃氏菌属_1在瘤胃中的相对丰度为16.45%~19.33%,但在盲肠中的相对丰度仅为0.46%~0.65%,这是因为饲粮中的大部分淀粉和易消化的植物细胞壁多糖已在瘤胃中被降解了[50-51],普雷沃氏菌属在瘤胃中的降解主要利用淀粉、蛋白质以及木聚糖和果胶[52],而进入盲肠的食糜主要是难降解的结构性碳水化合物[53],因而底物的选择使得盲肠内消化纤维素的主要菌群瘤胃球菌科几个菌属的相对丰度较高,也从侧面说明低RFI个体盲肠内的瘤胃球菌科_UCG-013属和拟杆菌属可能在难降解纤维物质的消化上发挥着重要的作用,而这也可能是低RFI个体盲肠微生物的多样性指数更高的原因之一。综上,本试验中不论是瘤胃还是盲肠内,存在差异或者有差异趋势的都是与纤维降解有关的菌门和菌属。瘤胃和盲肠的功能和内环境的差异很大,所以两者在菌种组成和丰度上完全不同,但是反刍动物盲肠的消化功能在后肠道是很重要的一部分[53],更好地了解其微生物组成的特点将有助于对饲料效率的进一步调控。

4 结论

湖羊RFI与GR值、尾脂重呈正相关,高RFI个体更倾向于沉积体脂肪;不同RFI对湖羊瘤胃、盲肠微生物的影响只体现在个别可能具有重要作用的菌属上;研究造成动物RFI变异的原因可能更应该从代谢机理上入手而不是从消化层面。

参考文献
[1]
KOCH R M, SWIGER L A, CHAMBERS D, et al. Efficiency of feed use in beef cattle[J]. Journal of Animal Science, 1963, 22(2): 486-494. DOI:10.2527/jas1963.222486x
[2]
BENSON A K, KELLY S A, LEGGE R, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(44): 18933-18938. DOI:10.1073/pnas.1007028107
[3]
KIM M, KIM J, KUEHN L A, et al. Investigation of bacterial diversity in the feces of cattle fed different diets[J]. Journal of Animal Science, 2014, 92(2): 683-694. DOI:10.2527/jas.2013-6841
[4]
HALES K E, BROWN-BRANDL T M, FREETLY H C. Effects of decreased dietary roughage concentration on energy metabolism and nutrient balance in finishing beef cattle[J]. Journal of Animal Science, 2014, 92(1): 264-271. DOI:10.2527/jas.2013-6994
[5]
LIANG Y S, LI G Z, LI X Y, et al. Growth performance, rumen fermentation, bacteria composition, and gene expressions involved in intracellular pH regulation of rumen epithelium in finishing Hu lambs differing in residual feed intake phenotype[J]. Journal of Animal Science, 2017, 95(4): 1727-1738.
[6]
CARBERRY C A, WATERS S M, KENNY D A, et al. Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type[J]. Applied and Environmental Microbiology, 2014, 80(2): 586-594. DOI:10.1128/AEM.03131-13
[7]
LAM S.Associations between rumen function and feed efficiency in beef cattle[D].Master's thesis.Guelph: The University of Guelph, 2016.
[8]
HERNANDEZ-SANABRIA E, GOONEWARDENE L A, WANG Z Q, et al. Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle[J]. Applied and Environmental Microbiology, 2012, 78(4): 1203-1214. DOI:10.1128/AEM.05114-11
[9]
PAZ H A, HALES K E, WELLS J E, et al. Rumen bacterial community structure impacts feed efficiency in beef cattle[J]. Journal of Animal Science, 2018, 96(3): 1045-1058. DOI:10.1093/jas/skx081
[10]
OH J H, HUME I D, TORELL D T. Development of microbial activity in the alimentary tract of lambs[J]. Journal of Animal Science, 1972, 35(2): 450-459. DOI:10.2527/jas1972.352450x
[11]
PEREA K, PERZ K, OLIVO S K, et al. Feed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiota[J]. Journal of Animal Science, 2017, 95(6): 2585-2592.
[12]
许婷婷.高谷物日粮对山羊盲肠发酵、微生物区系和黏膜形态结构的影响[D].硕士学位论文.南京: 南京农业大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10307-1016037500.htm
[13]
RAJAEI SHARIFABADI H, NASERIAN A A, VALIZADEH R, et al. Growth performance, feed digestibility, body composition, and feeding behavior of high-and low-residual feed intake fat-tailed lambs under moderate feed restriction[J]. Journal of Animal Science, 2016, 94(8): 3382-3388. DOI:10.2527/jas.2015-0196
[14]
LI F, WANG Z L, DONG C X, et al. Rumen bacteria communities and performances of fattening lambs with a lower or greater subacute ruminal acidosis risk[J]. Frontiers in Microbiology, 2017, 8: 2506. DOI:10.3389/fmicb.2017.02506
[15]
REDDEN R R, SURBER L M M, GROVE A V, et al. Growth efficiency of ewe lambs classified into residual feed intake groups and pen fed a restricted amount of feed[J]. Small Ruminant Research, 2013, 114(2/3): 214-219.
[16]
KELLY A K, MCGEE M, CREWS D H, J r, et al. Effect of divergence in residual feed intake on feeding behavior, blood metabolic variables, and body composition traits in growing beef heifers[J]. Journal of Animal Science, 2010, 88(1): 109-123. DOI:10.2527/jas.2009-2196
[17]
FITZSIMONS C, KENNY D A, FAHEY A G, et al. Feeding behavior, ruminal fermentation, and performance of pregnant beef cows differing in phenotypic residual feed intake offered grass silage[J]. Journal of Animal Science, 2014, 92(5): 2170-2181. DOI:10.2527/jas.2013-7438
[18]
REDDEN R R, SURBER L M M, GROVE A V, et al. Effects of residual feed intake classification and method of alfalfa processing on ewe intake and growth[J]. Journal of Animal Science, 2014, 92(2): 830-835. DOI:10.2527/jas.2013-6768
[19]
BOSE B K S, KUNDU S S, THO N T B, et al. Residual feed intake as a feed efficiency selection tool and its relationship with feed intake, performance and nutrient utilization in Murrah buffalo calves[J]. Tropical Animal Health and Production, 2014, 46(4): 615-621. DOI:10.1007/s11250-014-0536-2
[20]
REDDEN R R, SURBER L M M, ROEDER B L, et al. Residual feed efficiency established in a post-weaning growth test may not result in more efficient ewes on the range[J]. Small Ruminant Research, 2011, 96(2/3): 155-159.
[21]
MURO-REYES A, GUTIERREZ-BANUELOS H, DIAZ-GARCIA L H, et al. Potential environmental benefits of residual feed intake as strategy to mitigate methane emissions in sheep[J]. Journal of Animal and Veterinary Advances, 2011, 10(12): 1551-1556. DOI:10.3923/javaa.2011.1551.1556
[22]
莫负涛.不同RFI育肥羔羊生产性能和体组成及消化代谢研究[D].硕士学位论文.兰州: 甘肃农业大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10733-1016902635.htm
[23]
梁玉生.不同剩余采食量育肥湖羊的生长性能与瘤胃功能差异研究[D].硕士学位论文.兰州: 兰州大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10730-1017716031.htm
[24]
LIMA N L L, DE FREITAS RIBEIRO C R, DE SÁ H C M, et al. Economic analysis, performance, and feed efficiency in feedlot lambs[J]. Revista Brasileira de Zootecnia, 2017, 46(10): 821-829. DOI:10.1590/s1806-92902017001000005
[25]
ARCHER J A, RICHARDSON E C, HERD R M, et al. Potential for selection to improve efficiency of feed use in beef cattle:a review[J]. Australian Journal of Agricultural Research, 1999, 50(2): 147-162. DOI:10.1071/A98075
[26]
NKRUMAH J D, BASARAB J A, PRICE M A, et al. Different measures of energetic efficiency and their phenotypic relationships with growth, feed intake, and ultrasound and carcass merit in hybrid cattle[J]. Journal of Animal Science, 2004, 82(8): 2451-2459. DOI:10.2527/2004.8282451x
[27]
BASARAB J A, PRICE M A, AALHUS J L, et al. Residual feed intake and body composition in young growing cattle[J]. Canadian Journal of Animal Science, 2003, 83(2): 189-204. DOI:10.4141/A02-065
[28]
SCHENKEL F S, MILLER S P, WILTON J W. Genetic parameters and breed differences for feed efficiency, growth, and body composition traits of young beef bulls[J]. Canadian Journal of Animal Science, 2004, 84(2): 177-185. DOI:10.4141/A03-085
[29]
ARTHUR P F, ARCHER J A, JOHNSTON D J, et al. Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle[J]. Journal of Animal Science, 2001, 79(11): 2805-2811. DOI:10.2527/2001.79112805x
[30]
RICHARDSON E C, HERD R M, ODDY V H, et al. Body composition and implications for heat production of Angus steer progeny of parents selected for and against residual feed intake[J]. Australian Journal of Experimental Agriculture, 2001, 41(7): 1065-1072. DOI:10.1071/EA00095
[31]
NKRUMAH J D, OKINE E K, MATHISON G W, et al. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle[J]. Journal of Animal Science, 2006, 84(1): 145-153. DOI:10.2527/2006.841145x
[32]
RATTRAY P V, JOYCE J P. Utilisation of metabolisahle energy for fat and protein deposition in sheep[J]. New Zealand Journal of Agricultural Research, 1976, 19(3): 299-305. DOI:10.1080/00288233.1976.10429069
[33]
BRETHOUR J R. The relationship of average backfat thickness of feedlot steers to performance and relative efficiency of fat and protein retention[J]. Journal of Animal Science, 2004, 82(11): 3366-3372. DOI:10.2527/2004.82113366x
[34]
MCCANN J C, WILEY L M, FORBES T D, et al. Relationship between the rumen microbiome and residual feed intake-efficiency of brahman bulls stocked on bermudagrass pastures[J]. PLoS One, 2014, 9(3): e91864. DOI:10.1371/journal.pone.0091864
[35]
MYER P R, SMITH T P L, WELLS J E, et al. Rumen microbiome from steers differing in feed efficiency[J]. PLoS One, 2015, 10(6): e0129174. DOI:10.1371/journal.pone.0129174
[36]
MYER P R, WELLS J E, SMITH T P L, et al. Cecum microbial communities from steers differing in feed efficiency[J]. Journal of Animal Science, 2015, 93(11): 5327-5340. DOI:10.2527/jas.2015-9415
[37]
RETI K L, THOMAS M C, YANKE L J, et al. Effect of antimicrobial growth promoter administration on the intestinal microbiota of beef cattle[J]. Gut Pathogens, 2013, 5: 8. DOI:10.1186/1757-4749-5-8
[38]
DE OLIVEIRA M N V, JEWELL K A, FREITAS F S, et al. Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer[J]. Veterinary Microbiology, 2013, 164(3/4): 307-314.
[39]
MARTINEZ-GARCIA M, BRAZEL D M, SWAN B K, et al. Capturing single cell genomes of active polysaccharide degraders:an unexpected contribution of Verrucomicrobia[J]. PLoS One, 2012, 7(4): e35314. DOI:10.1371/journal.pone.0035314
[40]
张科.陕北白绒山羊0~56日龄羔羊胃肠道发育及瘤胃微生物区系研究[D].硕士学位论文.杨凌: 西北农林科技大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10712-1017091381.htm
[41]
ZENED A, COMBES S, CAUQUIL L, et al. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets[J]. FEMS Microbiology Ecology, 2013, 83(2): 504-514. DOI:10.1111/1574-6941.12011
[42]
JAMI E, MIZRAHI I. Composition and similarity of bovine rumen microbiota across individual animals[J]. PLoS One, 2012, 7(3): e33306. DOI:10.1371/journal.pone.0033306
[43]
PITTA D W, PINCHAK W E, DOWD S E, et al. Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets[J]. Microbial Ecology, 2010, 59(3): 511-522. DOI:10.1007/s00248-009-9609-6
[44]
CARBERRY C A, KENNY D A, HAN S, et al. Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle[J]. Applied and Environmental Microbiology, 2012, 78(14): 4949-4958. DOI:10.1128/AEM.07759-11
[45]
AL-SHEIKHLY F, AL-SAIEG A. Role of coccidia in the occurrence of necrotic enteritis of chickens[J]. Avian Diseases, 1980, 24(2): 324-333. DOI:10.2307/1589700
[46]
CHEN J, ZHANG H X, WU X Y, et al. Characterization of the gut microbiota in the golden takin (Budorcas taxicolor bedfordi)[J]. AMB Express, 2017, 7: 81. DOI:10.1186/s13568-017-0374-5
[47]
BIDDLE A, STEWART L, BLANCHARD J, et al. Untangling the genetic basis of fibrolytic specialization by lachnospiraceae and ruminococcaceae in diverse gut communities[J]. Diversity, 2013, 5(3): 627-640. DOI:10.3390/d5030627
[48]
DALY K, PROUDMAN C J, DUNCAN S H, et al. Alterations in microbiota and fermentation products in equine large intestine in response to dietary variation and intestinal disease[J]. British Journal of Nutrition, 2012, 107(7): 989-995. DOI:10.1017/S0007114511003825
[49]
PATRA A K, YU Z T. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (Rumen Bact Array) analysis[J]. Frontiers in Microbiology, 2015, 6: 297.
[50]
HUHTANEN P, AHVENJÄRVI S, BRODERICK G A, et al. Quantifying ruminal digestion of organic matter and neutral detergent fiber using the omasal sampling technique in cattle-a meta-analysis[J]. Journal of Dairy Science, 2010, 93(7): 3203-3215. DOI:10.3168/jds.2009-2988
[51]
MOHARRERY A, LARSEN M, WEISBJERG M R. Starch digestion in the rumen, small intestine, and hind gut of dairy cows-A meta-analysis[J]. Animal Feed Science and Technology, 2014, 192: 1-14. DOI:10.1016/j.anifeedsci.2014.03.001
[52]
COTTA M A. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch[J]. Applied and Environmental Microbiology, 1992, 58(1): 48-54.
[53]
POPOVA M, MCGOVERN E, MCCABE M S, et al. The structural and functional capacity of ruminal and cecal microbiota in growing cattle was unaffected by dietary supplementation of linseed oil and nitrate[J]. Frontiers in Microbiology, 2017, 8: 937. DOI:10.3389/fmicb.2017.00937