动物营养学报    2019, Vol. 31 Issue (10): 4442-4449    PDF    
微量元素锌在反刍动物中的应用研究进展
李万栋1,2,3,4 , 张晓卫1,2,3 , 崔占鸿1,2,3 , 冯宇哲1,2,3     
1. 青海省畜牧兽医科学院, 西宁 810016;
2. 青海省高原牦牛研究开发中心, 西宁 810016;
3. 青海省高原放牧家畜动物营养与饲料科学重点实验室, 西宁 810016;
4. 青海畜牧兽医职业技术学院, 湟源 812100
摘要: 锌在反刍动物体内有着非常重要的作用,锌是维持反刍动物机体正常生理功能和生化代谢以及生长发育所必需的微量元素,被称为"生命元素"。本文综述了锌对反刍动物免疫功能、繁殖性能、瘤胃环境和生产性能的影响,探讨了反刍动物锌需要量,旨在为锌在反刍动物生产及应用中提供借鉴和参考。
关键词:     反刍动物    免疫功能    瘤胃发酵    生产性能    
Application Research Advances of Trace Element Zinc in Ruminants
LI Wandong1,2,3,4 , ZHANG Xiaowei1,2,3 , CUI Zhanhong1,2,3 , FENG Yuzhe1,2,3     
1. Qinghai Academy of Animal Husbandry and Veterinary Sciences of Qinghai University, Xining 810016, China;
2. Qinghai Plateau Yak Research and Development Center, Xining 810016, China;
3. Key Laboratory of Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China;
4. Qinghai Vocational and Technical College of Animal Husbandry and Veterinary Medicine, Huangyuan 812100, China
Abstract: Zinc is an essential trace element for maintaining normal physiological functions, biochemical metabolism, and growth and development of ruminants, therefor, zinc is called "life element". In this paper, the effects of zinc on immune function, reproductive performance, rumen fermentation and performance of ruminants were reviewed, and the zinc requirements of ruminants were discussed, in order to provide references for the production and application of zinc in ruminants.
Key words: zinc    ruminants    immune function    rumen fermentation    performance    

锌存在于器官、组织、骨骼、液体和细胞中,它对反刍动物机体营养生理功能有重要的影响。锌不仅参与和影响体内的三大营养物质和维生素的代谢过程, 还直接或间接参与氨基酸、核酸等物质的代谢过程,而且有超过300种酶的结构和功能依赖锌[1-2]。因此,本文主要通过阐述锌对反刍动物免疫、瘤胃发酵、生产性能、繁殖性能的影响,探讨不同添加形式锌的添加效果和反刍动物锌需要量,以期为锌在反刍动物生产及应用中提供参考。

1 锌对反刍动物免疫功能的影响

锌对反刍动物免疫系统正常发育、维持免疫功能有着重要的作用。锌在细胞免疫中的作用对动物抵抗病原体的感染十分重要[3]。有研究表明,给奶牛饲喂低锌饲粮时,牛乳中的体细胞数比较高[4],说明锌具有提高反刍动物体液免疫和细胞免疫的作用。此外,锌还可以提高血清总蛋白和球蛋白含量[5]。Nagalakshmi等[6]通过羊羔试验研究表明,补充15 mg/kg的锌(基础饲粮中锌含量为29.28 mg/kg),羊羔机体可以获得较高的免疫反应,同时补充锌蛋白与补充硫酸锌(ZnSO4)相比,具有更高的抗氧化酶活性和免疫反应。在水牛上的研究结果发现,补充80或140 mg/kg ZnSO4,血清碱性磷酸酶活性和球蛋白含量均升高[7]。给较小的荷斯坦公牛饲喂150 mg/kg ZnSO4,血浆总蛋白、尿素氮、白蛋白含量均显著高于对照组[8]。急性缺锌会导致反刍动物先天和适应性免疫功能下降,而慢性缺锌则会增加炎症的发生率,缺锌还会影响细胞介导的免疫功能,导致单核细胞-巨噬细胞的活化,同时锌具有重要的抗氧化功能[9-10],而缺锌可以引发反刍动物的免疫缺陷, 增加疫病感染的几率。以上研究结果表明锌可以提高反刍动物机体免疫水平和抗氧化功能。

2 锌对反刍动物瘤胃环境的影响

锌对反刍动物瘤胃环境有重要的影响,对于反刍动物而言, 锌的营养意义不仅针对动物机体, 而且对瘤胃内环境同样有重要的作用。锌参与了瘤胃微生物的代谢, 它通过对微生物的促生长作用影响瘤胃的正常发酵[11]。Arelovich等[12]研究发现,锌通过延缓尿素中氨的释放,增加反刍动物挥发性脂肪酸中丙酸的比例,同时在饲粮锌含量为250 mg/kg时补充锌,具有降低尿素毒性的可能性,提高反刍动物发酵的能量效率。Černík等[13]研究表明,给山羊羔补充氧化锌(ZnO),其瘤胃乳头较对照组发育良好。Arelovich等[14]在研究中发现,饲粮中添加100 mg/kg的锌可以通过影响瘤胃的某些发酵模式,不同程度地影响动物对补充蛋白质以及低质量粗饲料的利用。添加纳米氧化锌,体外发酵(6~12 h)能够有效地促进瘤胃微生物对饲粮有机物的发酵,增加微生物蛋白产量,提高瘤胃发酵的能量利用效率[15]。Eryavuz等[16]研究发现,在含纤维素的培养液中加入锌发酵48 h时,对照组的纤维素溶解菌和总细菌数量较锌补充组低。但是也有不同的研究发现,羊羔饲粮中高含量的锌会降低挥发性脂肪酸的产生,降低乙酸/丙酸[17],其原因还需要进一步研究。

以上研究表明,饲粮补充锌可通过增加瘤胃中高效酸丙酸的含量、促进瘤胃乳头的发育、提高瘤胃发酵的能量效率以及影响瘤胃发酵模式来促进瘤胃发酵,提高反刍动物对营养物质的利用率,其原因还需要深入研究。

3 锌对反刍动物生产性能的影响 3.1 增重

表 1总结了不同形式和不同水平的锌对反刍动物增重的影响。多数研究结论认为饲粮中添加不同锌源和不同锌水平均能提高犊牛、肉牛、羔羊、山羊、绵羊、母羊的平均日增重,从而提高反刍动物的生产性能,但是也有一些研究认为添加锌并不能提高平均日增重,这可能与锌不同添加形式、添加量及添加持续时间、试验动物、动物生理状态、拮抗作用等因素有关。

表 1 锌对反刍动物增重的影响 Table 1 Effects of zinc on weight gain in ruminants
3.2 泌乳性能

锌对反刍动物泌乳性能有着重要的影响。郑梦莉等[25]研究发现,饲粮中添加蛋氨酸锌(Zn-Met)和甘氨酸螯合锌均可提高妊娠母羊的生长性能并提高羊奶品质。Salama等[27]研究发现,山羊补充1 g/d Zn-Met,补充组乳清蛋白和非蛋白氮含量显著高于对照组。Smith等[28]研究发现,对于高产奶牛,特别是有蹄问题的奶牛,饲粮中添加Zn-Met可以提供蹄生长所需的营养,并通过帮助保持蹄健康和干物质采食量来提高牛奶产量。Kellogg等[29]研究发现,添加Zn-Met可以提高奶牛泌乳性能,体细胞数减少33.3%, 改善了乳房健康。Cope等[30]研究认为,给奶牛添加NRC(2001)推荐的锌(螯合形式的锌),增加了乳产量。锌氨基酸络合物与ZnSO4的混合补锌,相对于单纯补锌,可以增加奶牛的产奶量,随着锌氨基酸络合物与ZnSO4的比值的增加,产奶量增加的更加明显[31]

4 锌对反刍动物繁殖性能的影响

锌是对反刍动物生殖影响最大的微量矿物元素之一,对反刍动物繁殖性能有着重要的影响。与其他生殖器官相比,生殖细胞中锌的含量要高出数倍,这表明生殖细胞优先积累锌,这可能对生殖细胞的发育、生长和生存很重要[32]

4.1 对公畜繁殖性能的影响

锌对雄性反刍动物精子的发生及初级、次级雄性器官的发育有重要的影响[33]。有研究表明,荷斯坦公牛饲粮中添加锌可提高精子的抗氧化能力,血清中睾酮含量随着饲粮锌添加量的增加而显著增加[34]。任有蛇等[35]研究发现,晋中公绵羊饲粮添加50~100 mg/kg的纳米锌可提高睾丸和附睾中铜锌超氧化物歧化酶(Cu-Zn SOD)mRNA和蛋白表达量。Rahman等[36]研究结果显示,雄鹿补充锌之后精液体积和精子的运动性明显增加,添加100 mg/(头·d)ZnSO4可以改善雄鹿的精液性状和精液血浆抗氧化能力。Arangasamy等[37]研究发现,锌可提高补饲山羊的精子活力,降低精子氧化应激。还有研究发现,缺锌导致山羊睾丸萎缩,性欲下降[38]。Kumar等[39]研究发现,无论是丙酸锌还是ZnSO4均能提高公牛精液的数量和质量。缺锌首先会损害血管紧张素转换酶的活性,进而导致睾酮含量的减少,同时会抑制精子的生成[40],这可能是锌影响雄性反刍动物繁殖功能的重要因素。

4.2 对母畜繁殖性能的影响

锌除了对雄性反刍动物繁殖性能有重要影响,对雌性家畜生殖过程的每个阶段也起着重要的作用。王长宏[41]研究表明,奶牛添加Zn-Met,其正常分娩率为80%,较对照组提高了6.67%。有研究发现,锌在肉牛卵母细胞成熟过程中显著影响卵丘细胞内谷胱甘肽含量和DNA完整性,促进胚胎的发育[42]。Abdel-Halim等[43]研究发现,纳米氧化锌影响牛胚胎的发育。

5 不同添加形式的锌添加效果比较

不同形式的锌源有着不同的生物效价,因此有必要探讨反刍动物适宜的添加锌源。有研究发现,添加锌源的化学形态对公牛平均干物质采食量、生长速率和饲料转化率均无显著影响,但是与无机锌相比,有机锌化合物可以改善公牛牛蹄健康[44]。Wang等[45]发现,不同锌源对奶牛采食量、乳成分、体细胞数无显著影响,但是螯合能力强的锌比螯合能力适度的锌以及ZnSO4在提高瘤胃发酵、体液免疫反应以及提高泌乳奶牛产奶量方面更有效。Spears[46]对反刍动物锌的来源进行了研究,2种来源的锌有效性无显著差异,Zn-Met喂养的羔羊对锌的表观吸收和ZnO也相似,但Zn-Met中锌的保留率较高,因为该组羔羊尿中锌的排泄倾向较低。Hassan等[47]研究发现,与添加Zn-Met相比,添加ZnSO4显著降低了抗氧化活性相关指标(谷胱甘肽、谷胱甘肽过氧化物酶、超氧化物歧化酶)。有研究发现,纳米氧化锌与传统锌源相比,不仅具有较高的生物学效价,而且具有促进生长、抗菌、免疫调节等多种作用[48]。Kessler等[49]研究发现,红荷斯坦杂交公牛添加不同形式的锌源对平均干物质采食量、生长速率和饲料转化率均无显著影响,Montano等[50]也研究发现,不同锌源对荷斯坦牛生长性能无显著影响。表 2为不同添加形式的锌比较结果,大部分研究认为有机锌生物学效价高于无机形式的锌。

表 2 不同添加形式的锌比较 Table 2 Comparison of different zinc additive forms

有些研究认为,有机锌的生物学效价高于无机锌,有机形式的锌具有更高的吸收率,粪中残留的锌显著减少,稳定性较好,抗干扰性强。但是到目前为止有机锌的作用机理依然是不甚清楚。尽管人们从不同角度研究了有机锌对家畜的促生长作用,但是各研究结果之间依然存在差异[57],还需要进一步研究。

6 反刍动物锌需要量 6.1 绵羊和山羊

Chhabra等[58]研究发现,山羊饲喂锌含量为15 mg/kg的小麦秸秆171~200 d,山羊出现了锌缺乏的临床症状。Jia等[59]研究发现,非哺乳期山羊的锌需要量和牛、羊对锌的需要量一致,为20 mg/kg,绒山羊在产绒期间饲喂锌含量为22 mg/kg的饲粮,提高了绒山羊的生长速率。NRC(1985)营养需要量中,绵羊的锌需要量为20~30 mg/kg, 最大耐受量为750 mg/kg[60]。Masters等[61]研究发现,缺乏锌的母羊在每只出生的羔羊体内沉积了大约63 mg的锌, 这表明发育中的胎儿积累的锌相当于母羊饲粮总摄入量的35%。王洪荣等[62]使用综合法确定绒山羊产绒期常规饲粮锌的需要量为50 mg/kg。金亚倩等[63]研究发现35~50 kg杜泊×晋中绵羊F1代公羔锌净生长需要量为19.57~20.45 mg/kg BW。Ji等[64]通过屠宰试验发现,公羊羔生长所需锌为23.2~23.4 mg/kg。Zhang等[65]通过比较屠宰试验发现,绵羊生长所需的锌为34.21~35.80 mg/kg。从以上研究可以得出羊的锌需要量为20~50 mg/kg。

6.2 奶牛

表 3中可以看出,体重为650 kg、产奶量为40 kg/d的奶牛其锌需要量为40~63 mg/kg DM。

表 3 不同生理状态下牛饲粮锌需要量和饲粮锌含量的比较 Table 3 Comparison of estimated dietary zinc requirements and dietary zinc content for dairy cattle in various physiologic states[66-67]
6.3 肉牛

Volden[68]研究发现,生长肉牛锌需要量为30 mg/kg。Freer等[69]研究发现,小的肉牛锌需要量为30 mg/kg。Ott等[17]发现生长牛饲喂900 mg/kg锌时出现了锌中毒,表现为肝铜及日增重下降,而当饲粮锌含量提高至1 700~2 100 mg/kg时,出现异嗜症状。Graham等[70]研究认为,当小牛饲粮过度添加锌(1.5~2.0 g/d),累积剂量为30~66 g时会导致死亡。Jenkins等[71]研究认为,当小牛添加锌含量超过700 mg/kg时,其生产性能会下降。Miller等[72]研究认为,当饲喂2 000 mg/kg锌时奶牛产奶量和采食量均有所下降,饲喂1 000 mg/kg锌时奶牛无不良影响。李万栋[73]在通过体外试验发现,适合于牦牛瘤胃发酵的锌的添加形式为羟基蛋氨酸锌,添加量为30 mg/kg时最有利于瘤胃发酵,最适宜的添加量为20~40 mg/kg。

7 小结

综上所述,锌对反刍动物有着非常重要的作用,锌广泛参与多种生物学过程,在酶催化、基因调控和大分子稳定性方面发挥着尤为重要的作用[74]。它能够通过促进反刍动物瘤胃发酵以及营养物质在瘤胃内的降解,提高反刍动物对饲粮的利用率,从而促进反刍动物生长、提高繁殖性能、改善机体免疫力、防治疫病等。目前对于锌的应用方面研究较多,但是相关机理研究较少,还需要从以下3个方面着手:1)需要进一步研究锌在不同反刍动物生产中的适宜添加量以及作用效果和作用机制。2)研究锌的添加形式,比如有机锌和螯合形式的锌对反刍动物的作用,以此提高锌的利用率。3)研究添加锌对动物健康的影响。

参考文献
[1]
KAUR K, GUPTA R, SARAF S A, et al. Zinc:the metal of life[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(4): 358-376. DOI:10.1111/1541-4337.12067
[2]
VALLEE B L, FALCHUK K H. The biochemical basis of zinc physiology[J]. Physiological Reviews, 1993, 73(1): 79-118. DOI:10.1152/physrev.1993.73.1.79
[3]
PRASAD A S. Zinc:mechanisms of host defense[J]. The Journal of Nutrition, 2007, 137(5): 1345-1349. DOI:10.1093/jn/137.5.1345
[4]
MCDONALD P, EDWARD R A, GREENHALGH J F D, et al. Animal nutrition[M]. 7th ed. Harlow, England: Prentice Hall/Pearson Education Limited, 2011: 103-108.
[5]
SHAKWEER I M E, EL-MEKASS A A M, EL-NAHAS H M. Effect of two different sources of zinc supplementation on productive performance of Friesian dairy cows[J]. Egyptian Society of Animal Production, 2010, 47(1): 11-22.
[6]
NAGALAKSHMI D, DHANALAKSHMI K, HIMABINDU D, et al. Effect of dose and source of supplemental zinc on immune response and oxidative enzymes in lambs[J]. Veterinary Research Communications, 2009, 33(7): 631-644. DOI:10.1007/s11259-009-9212-9
[7]
RAMULU S P, NAGALAKSHMI D, KUMAR M K, et al. Effect of zinc supplementation on haematology and serum biochemical constituents in Murrah buffalo calves[J]. Indian Journal of Animal Research, 2015, 49(4): 482-486. DOI:10.5958/0976-0555.2015.00095.3
[8]
FAGARI-NOBIJARI H, AMANLOU H, DEHGHAN-BANADAKY M. Effects of zinc supplementation on growth performance, blood metabolites and lameness in young Holstein bulls[J]. Journal of Applied Animal Research, 2012, 40(3): 222-228. DOI:10.1080/09712119.2012.662776
[9]
BONAVENTURA P, BENEDETTI G, ALBARÈDE F, et al. Zinc and its role in immunity and inflammation[J]. Autoimmunity Reviews, 2015, 14(4): 277-285. DOI:10.1016/j.autrev.2014.11.008
[10]
PRASAD A S. Effects of zinc deficiency on immune functions[J]. The Journal of Trace Elements in Experimental Medicine, 2000, 13(1): 1-20. DOI:10.1002/(SICI)1520-670X(2000)13:1<1::AID-JTRA3>3.0.CO;2-2
[11]
李喜艳, 王加启, 魏宏阳. 微量元素在反刍动物生产中的应用[J]. 中国畜牧兽医, 2009, 36(8): 10-13.
[12]
ARELOVICH H M, OWENS F N, HORN G W, et al. Effects of supplemental zinc and manganese on ruminal fermentation, forage intake, and digestion by cattle fed prairie hay and urea[J]. Journal of Animal Science, 2000, 78(11): 2972-2979. DOI:10.2527/2000.78112972x
[13]
ČERNÍK J, PAVLATA L, PECHOVÁ A, et al. Effects of peroral supplementation of different forms of zinc on the ruminal mucosa of goat kids—a morphometric study[J]. Acta Veterinaria Brno, 2013, 82(4): 399-403. DOI:10.2754/avb201382040399
[14]
ARELOVICH H M, AMELA M I, MARTÍNEZ M F, et al. Influence of different sources of zinc and protein supplementation on digestion and rumen fermentation parameters in sheep consuming low-quality hay[J]. Small Ruminant Research, 2014, 121(2/3): 175-182.
[15]
陈俊材, 王威, 王之盛. 利用体外法研究纳米氧化锌的添加对瘤胃发酵的影响[J]. 动物营养学报, 2011, 23(8): 1415-1421. DOI:10.3969/j.issn.1006-267x.2011.08.022
[16]
ERYAVUZ A, DEHORITY B A. Effects of supplemental zinc concentration on cellulose digestion and cellulolytic and total bacterial numbers in vitro[J]. Animal Feed Science and Technology, 2009, 151(3/4): 175-183.
[17]
OTT E A, SMITH W H, HARRINGTON R B, et al. Zinc toxicity in ruminants.Ⅰ.Effect of high levels of dietary zinc on gains, feed consumption and feed efficiency of lambs[J]. Journal of Animal Science, 1966, 25(2): 414-418. DOI:10.2527/jas1966.252414x
[18]
郝丽媛, 马峰涛, 魏婧雅, 等. 不同锌源对新生犊牛生长性能、血清激素及免疫指标的影响[J]. 动物营养学报, 2018, 30(8): 3026-3032. DOI:10.3969/j.issn.1006-267x.2018.08.019
[19]
SPEARS J W, KEGLEY E B. Effect of zinc source (zinc oxide vs zinc proteinate) and level on performance, carcass characteristics, and immune response of growing and finishing steers[J]. Journal of Animal Science, 2002, 80(10): 2747-2752.
[20]
白玉恒, 王荣斌, 刘锦旺, 等. 饲粮锌水平对生绒期陕北白绒山羊生长性能、产绒性能及绒生长相关激素含量的影响[J]. 动物营养学报, 2018, 30(6): 2202-2208. DOI:10.3969/j.issn.1006-267x.2018.06.023
[21]
PUCHALA R, SAHLU T, DAVIS J J, et al. Effects of zinc-methionine on performance of Angora goats[J]. Small Ruminant Research, 1999, 33(1): 1-8. DOI:10.1016/S0921-4488(98)00194-1
[22]
GLOVER A D, PUSCHNER B, ROSSOW H A, et al. A double-blind block randomized clinical trial on the effect of zinc as a treatment for diarrhea in neonatal Holstein calves under natural challenge conditions[J]. Preventive Veterinary Medicine, 2013, 112(3/4): 338-347.
[23]
SETHY K, BEHERA K, MISHRA S K, et al. Effect of organic zinc supplementation on growth, metabolic profile and antioxidant status of Ganjam sheep[J]. Indian Journal of Animal Research, 2018, 52(6): 839-842.
[24]
ADITIA M, SUNARSO S, SEVILLA C C, et al. Growth Performance and mineral status on goats (Capra hircus Linn.) supplemented with zinc proteinate and selenium yeast[J]. International Journal of Science and Engineering, 2014, 7(2): 124-129.
[25]
郑梦莉, 李四元, 张佩华, 等. 不同锌源对湘东黑山羊生长性能及羊奶的成分、氨基酸和脂肪酸含量的影响[J]. 动物营养学报, 2018, 30(10): 3976-3984. DOI:10.3969/j.issn.1006-267x.2018.10.022
[26]
FADAYIFAR A, ALIARABI H, TABATABAEI M M, et al. Improvement in lamb performance on barley based diet supplemented with zinc[J]. Livestock Science, 2012, 144(3): 285-289. DOI:10.1016/j.livsci.2011.12.002
[27]
SALAMA A A, CAJA G, ALBANELL E, et al. Effects of dietary supplements of zinc-methionine on milk production, udder health and zinc metabolism in dairy goats[J]. Journal of Dairy Research, 2003, 70(1): 9-17. DOI:10.1017/S0022029902005708
[28]
SMITH M B, AMOS H E, FROETSCHEL M A, et al. Influence of ruminally undegraded protein and zinc methionine on milk production, hoof growth and composition, and selected plasma metabolites of high producing dairy cows[J]. The Professional Animal Scientist, 1999, 15(4): 268-277. DOI:10.15232/S1080-7446(15)31774-5
[29]
KELLOGG D W, TOMLINSON D J, SOCHA M T, et al. Effects of zinc methionine complex on milk production and somatic cell count of dairy cows:twelve-trial summary[J]. The Professional Animal Scientist, 2004, 20(4): 295-301. DOI:10.15232/S1080-7446(15)31318-8
[30]
COPE C M, MACKENZIE A M, WILDE D, et al. Effects of level and form of dietary zinc on dairy cow performance and health[J]. Journal of Dairy Science, 2009, 92(5): 2128-2135. DOI:10.3168/jds.2008-1232
[31]
NAYERI A, UPAH N, SUCU E, et al. Effect of the ratio of zinc amino acid complex to zinc sulfate on the performance of Holstein cows[J]. Journal of Dairy Science, 2014, 97(7): 4392-4404. DOI:10.3168/jds.2013-7541
[32]
HOSTETLER C E, KINCAID R L, MIRANDO M A. The role of essential trace elements in embryonic and fetal development in livestock[J]. The Veterinary Journal, 2003, 166(2): 125-139. DOI:10.1016/S1090-0233(02)00310-6
[33]
AHOLA J K, BAKER D S, BURNS P D, et al. Effect of copper, zinc, and manganese supplementation and source on reproduction, mineral status, and performance in grazing beef cattle over a two-year period[J]. Journal of Animal Science, 2004, 82(8): 2375-2383. DOI:10.2527/2004.8282375x
[34]
李秋凤, 李建国, 高艳霞, 等. 锌、维生素E和β-胡萝卜素对种公牛睾酮、细胞因子及免疫性能的影响[J]. 畜牧兽医学报, 2014, 45(3): 410-416.
[35]
任有蛇, 秦小伟, 郭丽娜, 等. 日粮纳米锌水平对公羊睾丸和附睾Cu-Zn SOD表达的影响[J]. 畜牧兽医学报, 2014, 45(10): 1622-1630. DOI:10.11843/j.issn.0366-6964.2014.10.007
[36]
RAHMAN H U, QURESHI M S, KHAN R U, et al. Influence of dietary zinc on semen traits and seminal plasma antioxidant enzymes and trace minerals of beetal bucks[J]. Reproduction in Domestic Animals, 2014, 49(6): 1004-1007. DOI:10.1111/rda.12422
[37]
ARANGASAMY A, KRISHNAIAH M V, MANOHAR N, et al. Cryoprotective role of organic Zn and Cu supplementation in goats (Capra hircus) diet[J]. Cryobiology, 2018, 81: 117-124. DOI:10.1016/j.cryobiol.2018.02.001
[38]
AHMED M M M, HAMED T F M, BARRI M E S. Variation of zinc and copper concentrations in the plasma of Nubian goats according to physiological state[J]. Small Ruminant Research, 2001, 39(2): 189-193. DOI:10.1016/S0921-4488(00)00183-8
[39]
KUMAR N, VERMA R P, SINGH L P, et al. Effect of different levels and sources of zinc supplementation on quantitative and qualitative semen attributes and serum testosterone level in crossbred cattle (Bos indicus×Bos taurus) bulls[J]. Reproduction, Nutrition, Development, 2006, 46(6): 663-675. DOI:10.1051/rnd:2006041
[40]
BEDWAL R S, BAHUGUNA A. Zinc, copper and selenium in reproduction[J]. Experientia, 1994, 50(7): 626-640. DOI:10.1007/BF01952862
[41]
王长宏.蛋氨酸锌对奶牛泌乳及繁殖性能影响的研究[D].硕士学位论文.长春: 吉林农业大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10193-2007216902.htm
[42]
PICCO S J, ANCHORDOQUY J M, DE MATOS D G, et al. Effect of increasing zinc sulphate concentration during in vitro maturation of bovine oocytes[J]. Theriogenology, 2010, 74(7): 1141-1148. DOI:10.1016/j.theriogenology.2010.05.015
[43]
ABDEL-HALIM B R, HELMY N A. Effect of nano-selenium and nano-zinc particles during in vitro maturation on the developmental competence of bovine oocytes[J]. Animal Production Science, 2017, 58(11): 2021-2028.
[44]
GREENE L W, LUNT D K, BYERS F M, et al. Performance and carcass quality of steers supplemented with zinc oxide or zinc methionine[J]. Journal of Animal Science, 1988, 66(7): 1818-1823. DOI:10.2527/jas1988.6671818x
[45]
WANG R L, LIANG J G, LU L, et al. Effect of zinc source on performance, zinc status, immune response, and rumen fermentation of lactating cows[J]. Biological Trace Element Research, 2013, 152(1): 16-24. DOI:10.1007/s12011-012-9585-4
[46]
SPEARS J W. Zinc methionine for ruminants:relative bioavailability of zinc in lambs and effects of growth and performance of growing heifers[J]. Journal of Animal Science, 1989, 67(3): 835-843. DOI:10.2527/jas1989.673835x
[47]
HASSAN A A, EL ASHRY G M, SOLIMAN S M, et al. Effect of supplementation of chelated zinc on milk production in ewes[J]. Food and Nutrition Sciences, 2011, 2(7): 706-713. DOI:10.4236/fns.2011.27097
[48]
SWAIN P S, RAO S B N, RAJENDRAN D, et al. Nano zinc, an alternative to conventional zinc as animal feed supplement:a review[J]. Animal Nutrition, 2016, 2(3): 134-141. DOI:10.1016/j.aninu.2016.06.003
[49]
KESSLER J, MOREL I, DUFEY P A, et al. Effect of organic zinc sources on performance, zinc status and carcass, meat and claw quality in fattening bulls[J]. Livestock Production Science, 2003, 81(2/3): 161-171.
[50]
MONTANO M F, PLASCENCIA A, SALINAS-CHAVIRA J, et al. Influence of level and form of supplemental zinc on feedlot growth performance and carcass characteristics of calf-fed Holstein steers[J]. The Professional Animal Scientist, 2017, 33(6): 651-658. DOI:10.15232/pas.2017-01640
[51]
ALIARABI H, FADAYIFAR A, TABATABAEI M M, et al. Effect of zinc source on hematological, metabolic parameters and mineral balance in lambs[J]. Biological Trace Element Research, 2015, 168(1): 82-90. DOI:10.1007/s12011-015-0345-0
[52]
MALLAKI M, NOROUZIAN M A, KHADEM A A. Effect of organic zinc supplementation on growth, nutrient utilization, and plasma zinc status in lambs[J]. Turkish Journal of Veterinary and Animal Sciences, 2015, 39: 75-80. DOI:10.3906/vet-1405-79
[53]
SOBHANIRAD S, CARLSON D, KASHANI R B, et al. Effect of zinc methionine or zinc sulfate supplementation on milk production and composition of milk in lactating dairy cows[J]. Biological Trace Element Research, 2010, 136(1): 48-54. DOI:10.1007/s12011-009-8526-3
[54]
ALIMOHAMADY R, ALIARABI H, BRUCKMAIER R M, et al. Effect of different sources of supplemental zinc on performance, nutrient digestibility, and antioxidant enzyme activities in lambs[J]. Biological Trace Element Research, 2019, 189(1): 75-84. DOI:10.1007/s12011-018-1448-1
[55]
JIA W B, ZHU X P, ZHANG W, et al. Effects of source of supplemental zinc on performance, nutrient digestibility and plasma mineral profile in cashmere goats[J]. Asian-Australasian Journal of Animal Sciences, 2009, 22(12): 1648-1653. DOI:10.5713/ajas.2009.80649
[56]
MANDAL G P, DASS R S, ISORE D P, et al. Effect of zinc supplementation from two sources on growth, nutrient utilization and immune response in male crossbred cattle (Bos indicus×Bos taurus) bulls[J]. Animal Feed Science and Technology, 2007, 138(1): 1-12. DOI:10.1016/j.anifeedsci.2006.09.014
[57]
SPEARS J W. Organic trace minerals in ruminant nutrition[J]. Animal Feed Science and Technology, 1996, 58(1/2): 151-163.
[58]
CHHABRA A, ARORA S P. Effect of vitamin A and zinc supplement on alcohol dehydrogenase and superoxide dismutase activities of goat tissues[J]. Indian Journal of Animal Science, 1993, 63: 334-338.
[59]
JIA W B, JIA Z H, ZHANG W, et al. Effects of dietary zinc on performance, nutrient digestibility and plasma zinc status in Cashmere goats[J]. Small Ruminant Research, 2008, 80(1/2/3): 68-72.
[60]
武立怀. 美国NRC绵羊营养需要量(1985年, 第六版)[J]. 内蒙古畜牧科学, 1987(2): 43-47.
[61]
MASTERS D G, MOIR R J. Effect of zinc deficiency on the pregnant ewe and developing foetus[J]. British Journal of Nutrition, 1983, 49(3): 365-372. DOI:10.1079/BJN19830045
[62]
王洪荣, 索宝, 卢德勋. 内蒙古白绒山羊生绒期羯羊锌需要量的研究[J]. 动物营养学报, 2007, 19(6): 684-690. DOI:10.3969/j.issn.1006-267X.2007.06.007
[63]
金亚倩, 刘文忠, 任有蛇, 等. 35~50 kg杜泊×晋中绵羊公羔体内铜、铁、锰、锌分布规律及净需要量参数研究[J]. 畜牧兽医学报, 2016, 47(12): 2430-2440. DOI:10.11843/j.issn.0366-6964.2016.12.013
[64]
JI S K, XU G S, DIAO Q Y, et al. Net zinc requirements of Dorper×thin-tailed Han crossbred lambs[J]. Livestock Science, 2014, 167: 178-185. DOI:10.1016/j.livsci.2014.06.021
[65]
ZHANG H, NIE H T, WANG Z Y, et al. The net iron, manganese, copper, and zinc requirements for maintenance and growth of Dorper×Hu ewe lambs[J]. Italian Journal of Animal Science, 2018, 17(4): 941-949. DOI:10.1080/1828051X.2018.1431964
[66]
National Research Council. Nutrient requirements of dairy cattle[M]. 7th ed. Washington, D.C.: National Academies Press, 2001.
[67]
National Research Council. Nutrient requirements of beef cattle[M]. Washington, D.C.: National Academy Press, 2000.
[68]
VOLDEN H. The Nordic feed evaluation system[M]. Wageningen: Wageningen Academic Publishers, 2011.
[69]
FREER M, DOVE H, NOLAN J. Nutrient requirements of domesticated ruminants[M]. Canberra: CSIRO Publishing, 2007.
[70]
GRAHAM T W, THURMOND M C, CLEGG M S, et al. An epidemiologic study of mortality in veal calves subsequent to an episode of zinc toxicosis on a California veal calf operation using zinc sulfate-supplemented milk replacer[J]. Journal of the American Veterinary Medical Association, 1987, 190(10): 1296-1301.
[71]
JENKINS K J, HIDIROGLOU M. Tolerance of the preruminant calf for excess manganese or zinc in milk replacer[J]. Journal of Dairy Science, 1991, 74(3): 1047-1053. DOI:10.3168/jds.S0022-0302(91)78254-4
[72]
MILLER W J, AMOS H E, GENTRY R P, et al. Long-term feeding of high zinc sulfate diets to lactating and gestating dairy cows[J]. Journal of Dairy Science, 1989, 72(6): 1499-1508. DOI:10.3168/jds.S0022-0302(89)79260-2
[73]
李万栋.铁、锌、硒对牦牛瘤胃发酵、生长性能及血液生化指标的影响[D].硕士学位论文.西宁: 青海大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10743-1016722713.htm
[74]
ZHANG T, LIU J, FELLNER M, et al. Crystal structures of a ZIP zinc transporter reveal a binuclear metal center in the transport pathway[J]. Science Advances, 2017, 3(8): e1700344. DOI:10.1126/sciadv.1700344