动物营养学报    2019, Vol. 31 Issue (11): 5192-5201    PDF    
白术多糖通过Toll样受体4/核因子-κB信号通路调控雏鸡脾脏淋巴细胞免疫功能
李婉雁1,2 , 曹楠1,2 , 田允波1,2 , 相雪莲1,2 , 李冰心1,2 , 黄运茂1,2 , 许丹宁1,2     
1. 仲恺农业工程学院动物科技学院, 广州 510225;
2. 广东省水禽健康养殖重点实验室, 广州 510225
摘要: 本试验旨在研究白术多糖(PAMK)对雏鸡脾脏淋巴细胞免疫功能的影响及可能的调控机制。体外分离培养21日龄雏鸡脾脏淋巴细胞,以siRNA引物转染淋巴细胞干扰Toll样受体4(TLR4)基因的表达,在此基础上用浓度为12.5 mg/L的PAMK处理转染和非转染细胞,36 h后检测TLR4及其信号通路下游基因[髓样分化因子88(MyD88)、核因子-κB(NF-κB)抑制物的激酶(IKK)、NF-κB抑制蛋白(IκB)]和细胞因子[白细胞介素-2(IL-2)、白细胞介素-4(IL-4)、γ-干扰素(IFN-γ)、脂多糖诱导的肿瘤坏死因子-α(LITAF)]的mRNA表达量,并以凝胶迁移试验(EMSA)方法检测淋巴细胞核蛋白中NF-κB的含量。结果显示:PAMK可显著提高淋巴细胞中TLR4及其信号通路下游基因IKKIκB与细胞因子IL-2、LITAF的mRNA表达量(P < 0.05),同时可显著提高转染淋巴细胞中TLR4的mRNA表达量(P < 0.05);此外,PAMK还可不同程度地促进转染淋巴细胞中1型辅助性T细胞(Th1)分泌的细胞因子[IL-2(P>0.05)、IFN-γ(P < 0.05)、LITAFP>0.05)]的表达,对2型辅助性T细胞(Th2)分泌的细胞因子(IL-4)的表达无显著促进作用(P>0.05);EMSA结果显示PAMK能促进转染和非转染淋巴细胞内NF-κB入核,使核蛋白中NF-κB的含量显著升高(P < 0.05)。综上所述,PAMK可活化TLR4/NF-κB信号通路,促进相关基因表达,最终使NF-κB进入细胞核调控细胞因子的转录水平,进而调控雏鸡脾脏淋巴细胞免疫功能。
关键词: 白术多糖    脾脏淋巴细胞    RNA干扰    Toll样受体4    核因子-κB    
Polysaccharide of Atractylodes macrocephala Koidz Regulates Lymphocyte Immune Function in Chick Spleen by Toll-Like Receptor 4/ Nuclear Factor-Kappa B Signal Pathway
LI Wanyan1,2 , CAO Nan1,2 , TIAN Yunbo1,2 , XIANG Xuelian1,2 , LI Bingxin1,2 , HUANG Yunmao1,2 , XU Danning1,2     
1. College of Animal Science&Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
2. Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
Abstract: The aim of this study was to investigate the effects of polysaccharide of Atractylodes macrocephala Koidz (PAMK) on lymphocyte immune function in chick spleen and possible regulatory mechanisms. The spleen lymphocytes of 21-day-old chicks were isolated and cultured in vitro, the lymphocytes were transfected by siRNA primers and the expression of Toll-like receptor 4 (TLR4) was interfered. On that basis, PAMK with the concentration of 12.5 mg/L was used to treat transfected and non-transfected lymphocytes. After 36 h, the mRNA expression levels of TLR4 and its signaling pathway downstream genes[such as myeloid differentiation factor 88 (MyD88), nuclear factor-kappa B (NF-κB) inhibitor kinase (IKK), NF-κB inhibitory protein (IκB)] and cytokines[such as interleukin-2 (IL-2), interleukin-4 (IL-4), interferon-γ (IFN-γ), lipopolysaccharide induced tumor necrosis factor-α (LITAF)] were detected. In addition, the content of NF-κB in lymphocyte nuclear protein was detected by electrophoretic mobility shift assay (EMSA) method. The results showed that PAMK could significantly increase the mRNA expression levels of TLR4 and its signaling pathway downstream genes IKK, IκB, cytokines IL-2 and LITAF in non-transfected lymphocytes (P < 0.05), and significantly increase the mRNA expression levels of TLR4 in transfected lymphocytes (P < 0.05). In addition, PAMK could also promote the expression of cytokines[IL-2 (P>0.05), IFN-γ (P < 0.05), LITAF (P>0.05)] secreted by type 1 helper T cells (Th1) in transfected lymphocytes to different degrees, there was no significant promoting effect on the expression of cytokine (IL-4) secreted by type 2 helper T cells (Th2) (P>0.05). EMSA results showed that PAMK could promote NF-κB into the nuclear in transfected and non-transfected lymphocytes, and significantly increase the content of NF-κB in nuclear protein (P < 0.05). In summary, PAMK activates TLR4/NF-κB signaling pathway to promote the expression of related genes, and finally promotes NF-κB into the nuclear to regulate the transcription level of cytokines, and then regulates lymphocyte immune function in chick spleen.
Key words: polysaccharide of Atractylodes macrocephala Koidz    spleen lymphocyte    RNA interference    TLR4    NF-κB    

白术多糖(polysaccharide of Atractylodes macrocephala Koidz, PAMK)作为白术发挥其生物活性的主要成分,药理研究证实其具有促进动物生长、增强免疫力、抗菌、抗氧化、抗肿瘤、抗应激等作用[1-4]。研究发现,PAMK可显著提高鸡[5]及大鼠[6]的胸腺、脾脏指数;可提高免疫抑制雏鹅的体重、降低料重比,缓解免疫抑制雏鹅胸腺组织的损伤,维持其体液免疫和细胞免疫功能的稳定[7];增强外周血(人、小鼠、鸡)和脾脏(小鼠、鸡)的淋巴细胞增殖能力,促进T淋巴细胞进入S期和G2/M期,并提高CD4+和CD8+ T细胞的百分比[8-9];还可促进小鼠脾脏淋巴细胞体外分泌更多的肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)和白细胞介素-6(interleukin-6, IL-6),提高鸡血清中白细胞介素-2(interleukin-2, IL-2)、γ-干扰素(interferon-γ, IFN-γ)和IL-6 mRNA的表达[8-10]。上述研究结果证实,PAMK对动物的细胞免疫功能具有显著的促进作用,对调控T细胞分泌细胞因子的作用十分复杂,因此,进一步探索PAMK对细胞免疫的调控机制,有助于全面了解PAMK对免疫功能的影响。

许多植物多糖可作为Toll样受体4(Toll-like receptor 4, TLR4)配体进而激活TLR4/核因子-κB(nuclear factor-kappa B, NF-κB)信号通路,活化转录因子NF-κB,调控细胞因子的转录,提升机体的免疫防御能力[11-15],Toll样受体(Toll-like receptors, TLRs)在先天免疫应答中起着重要的作用[16],主要通过识别配体脂多糖(lipopolysacchride, LPS),结合髓样分化因子88(mycloid differentiation factor 88, MyD88),招募相关激酶并激活NF-κB抑制物的激酶(inhibitor of NF-κB kinases, IKK),使结合NF-κB的NF-κB抑制蛋白(inhibitor of NF-κB, IκB)发生磷酸化并解离,活化NF-κB进入细胞核,启动或抑制靶基因的转录,进而调控先天性免疫应答反应[17-19]。有研究发现,PAMK可通过TLR4激活巨噬细胞转录因子NF-κB并诱导巨噬细胞合成细胞因子[20-21],PAMK是否也可通过TLR4/NF-κB信号通路调控细胞免疫功能还需要进一步的研究证实。

据此,本试验以RNA干扰雏鸡脾脏淋巴细胞中TLR4基因表达,同时添加12.5 mg/L PAMK培养转染和未转染淋巴细胞,通过检测TLR4及其信号通路下游基因(TLR4、MyD88、IKKIκB)及细胞因子[IL-2、白细胞介素-4(interleukin-4, IL-4)、IFN-γ、脂多糖诱导的肿瘤坏死因子-α(lipopolysaccharide induced tumor necrosis factor-α,LITAF)]的mRNA表达量,并以电泳迁移率试验(electrophoretic mobility shift assay,EMSA)方法检测细胞核蛋白中NF-κB的含量,从细胞免疫角度探讨PAMK提高机体免疫功能的分子机制,为今后开发绿色、无毒的免疫增强剂提供理论依据。

1 材料与方法 1.1 雏鸡脾脏淋巴细胞的分离培养

宰杀21日龄雏鸡,取出脾脏置于200目筛网,用注射器内芯轻轻压碎脾脏,收集细胞并转移至含有淋巴细胞分离液的离心管中,2 000 r/min离心20 min,吸取中间白色云雾状淋巴细胞,磷酸盐缓冲溶液(PBS)清洗2次,台盼蓝染色计数,要求细胞活率>95%。

1.2 TLR4 siRNA引物设计及筛选

根据岭南黄鸡TLR4基因序列(登录号:KF476603.1),设计3对siRNA引物(P1、P2、P3)以及1对阴性对照引物(NC),见表 1。引物由上海生工生物工程有限公司合成。

表 1 siRNA引物序列 Table 1 siRNA primer sequences

使用Opti-MEM培养基,按5×104个/mL的密度接种淋巴细胞至6孔板培养24 h后,每孔添加2 μL Lipofectamine 2000转染试剂(购自Thermo Fisher Scientific Inc,美国),分别添加4对引物(P1、P2、P3、NC)使终浓度分别为400、200、100 nmol/L,每个处理设3个重复。孵育4 h后换液为RPMI 1640完全培养基。转染36 h后,收集细胞。用Trizol法提取细胞总RNA,检测RNA的纯度及完整性,反转录为cDNA,以甘油醛-3-磷酸脱氢酶(GAPDH)为内参基因,用实时荧光定量PCR方法检测各样品中TLR4的mRNA表达量,筛选出TLR4 mRNA表达量最低的1对siRNA引物用于后续试验。

1.3 PAMK对雏鸡脾淋巴细胞TLR4/NF-κB信号通路的影响 1.3.1 试验设计

试验共分为4组,分别为cell(对照)、cell+(PAMK处理)、si(转染对照)、si+(转染与PAMK共处理),具体的试验设计见表 2。PAMK购于西安天园生物制剂厂,含量为70%,剩余成分包括灰分(约3%)、单宁、类黄酮、萜类化合物、糖苷、植物蛋白等。根据预试验结果,确定PAMK的作用浓度为12.5 mg/L。每个处理设3个重复。使用Opti-MEM培养基,按5×104个/mL的密度接种淋巴细胞至6孔板中,预培养24 h后按试验设计分组处理。转染时,每孔添加2 μL Lipofectamine 2000转染试剂,孵育4 h后换液为RPMI 1640完全培养基。转染36 h后,收集细胞,提取细胞总RNA。

表 2 试验设计 Table 2 Experimental design
1.3.2 目的基因mRNA表达量检测

按照反转录试剂盒(购自Thermo Fisher Scientific Inc,美国)操作程序进行反转录:合成cDNA不超过5 μg,Random primer 1 μL,RNase-free ddH2O补足至12 μL,65 ℃反应5 min。每管加入5×Reation Buffer及Transcriptase、dNTP等混合物共8 μL,25 ℃反应5 min,42 ℃反应60 min。

以反转录的cDNA为模板,以GAPDH为内参基因,对目的基因(TLR4、MyD88、IKKIκBIL-2、IL-4、IFN-γLITAF)的mRNA表达量进行检测分析。各基因的引物序列见表 3,由上海生工生物工程有限公司合成。使用实时荧光定量PCR试剂盒(Invitrogen,美国),反应体系为:cDNA(1 : 20)5 μL,上、下游引物(10 μmol/L)各0.5 μL,2×SYBR Green qPCR SuperMix 10 μL,补充ddH2O至20 μL。ABI 7500系统进行实时荧光定量PCR检测。PCR扩增程序:50 ℃ 2 min,95 ℃ 2 min,95 ℃ 15 s,60 ℃ 32 s,40个循环。目的基因相对定量的结果按照相对比较Ct法(2-△△Ct法)进行计算:

表 3 实时荧光定量PCR引物序列 Table 3 Primer sequences for real-time qPCR
1.3.3 总核蛋白的提取及浓度检测

根据核蛋白提取试剂盒(购自Thermo Fisher Scientific Inc,美国)操作说明提取细胞核蛋白:向细胞中加入适量的CER Ⅱ Buffer,涡旋振荡5 s,冰上孵育1 min;涡旋振荡5 s,16 000×g离心5 min;加入Buffer C,涡旋振荡15 s,冰上孵育40 min,16 000×g离心10 min收集上清获得核蛋白。参考蛋白质浓度检测试剂盒(购自Thermo Fisher Scientific Inc,美国)操作说明,使用双辛丁酸(bicinchoninic acid,BCA)法测定总核蛋白浓度。

1.3.4 核蛋白中NF-κB含量的检测

生物素标记NF-κB探针(购自上海碧云天生物技术研究所)序列如下:5′-AGT TGA GGG GAC TTT CCC AGG C-3′;3′-TCA ACT CCC CTG AAA GGG TCC G-5′。配制6.5%聚丙烯酰胺凝胶,低温100 V预电泳60 min。每个上样体系包括:6 μL Mix,生物素标记NF-κB探针1 μL,20 μg核蛋白并添加ddH2O使终体积为20 μL,室温孵育10 min。加入5 μL Loading buffer上样,100 V恒压电泳45 min,装配电转移槽,100 V恒压转膜45 min。将膜正面朝上放置在紫外灯下交联20 min,使用辣根过氧化物酶(horseradish peroxidase, HRP)化学发光法曝光。各组NF-κB的含量以结合探针条带的灰度值表示,设定cell组的灰度值为1,其余各组的灰度值为该组的相对值。

1.4 数据处理及统计分析

应用SPSS 13.0统计软件对试验数据进行分析,选用单因素方差分析对试验数据进行处理,组间多重比较采用Bonferroni法进行,P < 0.05为差异显著。试验数据均采用平均值±标准差(mean±SD)的方式表示。

2 结果与分析 2.1 siRNA引物筛选结果

图 1显示,样品P1-400的TLR4 mRNA表达量最低,转染效率(发绿色荧光细胞的百分比)达86.19%。由此可知,使用浓度为400 nmol/L的P1 siRNA引物转染雏鸡脾脏淋巴细胞的效果最好,该引物可用于后续试验。

样品编号:siRNA引物名称-引物浓度(nmol/L)。 Samples number: siRNA primer name-primer concentration (nmol/L). 图 1 不同siRNA引物对TLR4 mRNA表达量的影响 Fig. 1 Effects of different siRNA primers on TLR4 mRNA expression
2.2 PAMK对TLR4及其信号通路中下游基因和细胞因子mRNA表达量的影响

图 2所示,添加12.5 mg/L PAMK处理淋巴细胞后,cell+组中除IL-4的mRNA表达量较cell组显著下降(P < 0.05)外,其余各基因的mRNA表达量均有不同程度的升高,其中TLR4、IκBIL-2、LITAF的mRNA表达量分别为cell组的1.48、1.57、1.28、1.39倍,均与cell组差异显著(P < 0.05)。干扰TLR4基因的表达后,si组中TLR4的mRNA表达量为cell组的23.9%,与cell组相比差异显著(P < 0.05);si组中MyD88、IKKIκBIL-2、IFN-γLITAF的mRNA表达量与cell组相比均显著降低(P < 0.05);此外,si组中IL-4的mRNA表达量与cell组相比有所上升但差异不显著(P>0.05)。干扰TLR4基因表达并同时添加12.5 mg/L PAMK处理淋巴细胞后,si+组中TLR4、IKKIFN-γ的mRNA表达量显著高于si组(P < 0.05);此外,si+组中TLR4、IKKIL-2及IL-4的mRNA表达量与cell组接近,组间差异不显著(P>0.05)。由上述结果可知,干扰TLR4基因表达后,TLR4信号通路下游基因(MyD88、IKKIκB)及细胞因子(IL-2、IFN-γLITAF)的mRNA表达量被显著抑制,说明本试验成功干扰了TLR4/NF-κB信号通路的表达;然而,在培养液中添加12.5 mg/L PAMK虽可显著促进TLR4基因的表达,但对TLR4信号通路下游基因及细胞因子的作用却呈现不同的作用效果。

数据柱标注不同小写字母表示差异显著(P < 0.05)。下图同。 Data columns with different small letters indicated significant difference (P < 0.05). The same as below. 图 2 PAMK对TLR4及其信号通路中下游基因和细胞因子mRNA表达量的影响 Fig. 2 Effects of PAMK on mRNA expression levels of TLR4 and downstream genes and cytokines in TLR4 signal pathway
2.3 PAMK对核蛋白中NF-κB含量的影响

图 3所示,si组核蛋白中NF-κB的含量较cell组显著减少(P < 0.05),可知干扰TLR4基因的表达后细胞核内NF-κB含量显著减少;然而,cell+、si+组核蛋白中NF-κB的含量分别显著高于cell、si组(P < 0.05),可知PAMK能显著促进细胞质内游离NF-κB的表达及NF-κB入核。

图A从左往右1~4号泳道分别为si、si+、cell、cell+组样品。 Lanes 1 to 4 were the samples in si, si+, cell and cell+ groups in figure A. 图 3 PAMK对核蛋白中NF-κB含量的影响 Fig. 3 Effects of PAMK on NF-κB content in nucleoprotein
3 讨论

PAMK经提纯可得到PAMK-1和PAMK-2 2种多糖,PAMK-1包括半乳糖、鼠李糖、阿拉伯糖、甘露糖,PAMK-2由木糖、阿拉伯糖、半乳糖组成[22-23],具有显著的促生长、增强免疫功能等多种作用[5, 21, 24-25],大量的研究证明了天然的植物多糖主要是通过TLR4受体激活细胞通路,活化转录因子,进而调控细胞因子的释放。TLR4是细胞上的跨膜蛋白,广泛存在于T淋巴细胞和B淋巴细胞表面,其参与的信号转导对免疫系统的调节发挥着至关重要的作用[26]。TLR4参与的信号转导通路复杂,其中根据是否需要MyD88,可分为MyD88依赖途径和MyD88非依赖途径2种作用途径[27]。LPS是TLR4的激活剂,可结合膜上的TLR4并激活下游信号通路,调节炎症因子的转录和表达[28]。Karnati等[29]研究发现,用LPS处理鸡外周血淋巴细胞,可促进TLR4诱导MyD88依赖途径和MyD88非依赖途径信号通路上调,且这2种途径更有利于单核细胞介导先天性免疫。在本研究结果中,TLR4 mRNA表达量下降与MyD88 mRNA表达量的下调程度并不一致。

研究表明,黄芪多糖、五味子多糖、当归多糖、大黄多糖等植物多糖同样可以作为TLR4的配体。这些植物多糖作为配体结合TLR4并激活下游信号通路,活化NF-κB,调控细胞因子的表达,进而发挥免疫调控作用[13-15, 30]。桔梗根多糖等被证实可通过TLR4作用激活巨噬细胞和B淋巴细胞,进而增强机体免疫[5, 24-25];红花多糖则被证实可通过TLR4等受体激活转录因子NF-κB,从而诱导巨噬细胞合成相关的细胞因子[31];Lin等[32]研究发现,从灵芝中分离的多糖可以促进树突状细胞(dendritic cells,DC)的成熟,增强DC活化T淋巴细胞的能力,并且证实灵芝多糖的功能与TLR4介导的NF-κB通路活化有密切关系。研究报道指出,PAMK可通过TLR4激活转录因子NF-κB,进而激活巨噬细胞并诱导巨噬细胞合成细胞因子[20-21]。从本试验结果可知,PAMK可以促进淋巴细胞中TLR4基因的表达,同时可上调因RNA干扰导致的TLR4基因表达下降,进一步证明PAMK可作为TLR4配体之一,参与机体的免疫调控。

TLR4通路活化后,可促进NF-κB进入细胞核并与DNA启动子上特定识别序列结合,介导细胞因子白细胞介素-1(interleukin-1, IL-1)、IL-6、白细胞介素-12(interleukin-12,IL-12)等的表达,进而发挥免疫调节功能[19, 33]。因此,在本试验中,由于TLR4 mRNA表达量的降低导致细胞核内NF-κB含量的显著减少;而PAMK能显著促进正常状态及TLR4表达被干扰状态下细胞质内游离NF-κB的表达及入核,参与细胞因子的调控。辅助性T细胞(helper T lymphocyte, Th)可分泌多种细胞因子,调节免疫应答。Th按产生的细胞因子不同分为Th1和Th2两大功能亚群。Th1分泌IL-2、IFN-γ、TNF-α等促炎症细胞因子。IL-4是Th2的标志性因子,其含量显著升高提示机体免疫处于体液免疫主导,Th1与Th2维持动态平衡有利于保护机体的免疫功能[34]。本试验结果发现,TLR4的mRNA表达量下降后,细胞因子(IL-2、IFN-γ)的mRNA表达量也发生不同程度下降,这与Trentin-Sonoda等[35]的结论一致。此外,Hou等[36]报道,黄芪多糖可以有效维持Th1与Th2的动态平衡,NF-κB活化入核后,可刺激白细胞介素-1β(interleukin-1β, IL-1β)和TNF-α等细胞因子的表达,同时这些细胞因子又是NF-κB的刺激剂,可进一步活化NF-κB造成持续的炎症反应。

本研究发现,PAMK不仅可提高淋巴细胞中TLR4基因的表达,而且还可引起TLR4信号下游基因表达量的变化,可活化TLR4/NF-κB信号通路,使TLR4/NF-κB信号通路表达增强,最终产生游离的NF-κB,NF-κB进入细胞核能与多种基因启动子或增强子序列的特定位点发生特异性结合,进而促进细胞因子的转录和表达,这与上述研究中多糖的作用通路几乎一致。然而,Liu等[37]研究发现沙棘多糖可通过抑制TLR4/NF-κB信号通路保护LPS/D-氨基半乳糖胺(D-galactosamine,d-GalN)诱导的肝损伤。Han等[38]报道刺五加多糖可引起TLR4、MyD88和NF-κB表达的下调,从而保护肠道的完整性。这是由于在LPS刺激或免疫损伤情况下,导致TLR4发生不利于机体的表达量上升,而沙棘多糖和刺五加多糖通过抑制TLR4/NF-κB信号通路的活化,从而发挥免疫保护作用。可见,不同植物多糖对TLR4/NF-κB信号通路的作用是不一致的,但都能对机体产生不同的保护作用。因此,不同植物多糖对TLR4/NF-κB信号通路的调控还有待更深入的研究。

4 结论

PAMK可促进雏鸡脾脏淋巴细胞中TLR4基因的表达,并进一步活化TLR4/NF-κB信号通路,使NF-κB入核并调控细胞因子的表达,从而发挥免疫调控作用。

参考文献
[1]
XU D N, LI B X, CAO N, et al. The protective effects of polysaccharide of Atractylodes macrocephala Koidz (PAMK) on the chicken spleen under heat stress via antagonizing apoptosis and restoring the immune function[J]. Oncotarget, 2017, 8(41): 70394-70405.
[2]
LI X J, LIU F, LI Z, et al. Atractylodes macrocephala polysaccharides induces mitochondrial-mediated apoptosis in glioma C6 cells[J]. International Journal of Biological Macromolecules, 2014, 66: 108-112. DOI:10.1016/j.ijbiomac.2014.02.019
[3]
SHU Y T, KAO K T, WENG C S. In vitro antibacterial and cytotoxic activities of plasma-modified polyethylene terephthalate nonwoven dressing with aqueous extract of rhizome Atractylodes macrocephala[J]. Materials Science and Engineering:C, 2017, 77: 606-612. DOI:10.1016/j.msec.2017.03.291
[4]
WANG J C, CHEN J, PAN K W. Effect of exogenous abscisic acid on the level of antioxidants in Atractylodes macrocephala Koidz under lead stress[J]. Environmental Science and Pollution Research, 2013, 20(3): 1441-1449. DOI:10.1007/s11356-012-1048-0
[5]
XU D N, TIAN Y B. Selenium and polysaccharides of Atractylodes macrocephala Koidz play different roles in improving the immune response induced by heat stress in chickens[J]. Biological Trace Element Research, 2015, 168(1): 235-241. DOI:10.1007/s12011-015-0351-2
[6]
GUO L, SUN Y L, WANG A H, et al. Effect of polysaccharides extract of Rhizoma Atractylodis Macrocephalae on thymus, spleen and cardiac indexes, caspase-3 activity ratio, Smac/DIABLO and HtrA2/Omi protein and mRNA expression levels in aged rats[J]. Molecular Biology Reports, 2012, 39(10): 9285-9290. DOI:10.1007/s11033-012-1677-x
[7]
LI W Y, GUO S X, XU D N, et al. Polysaccharide of Atractylodes macrocephala Koidz (PAMK) relieves immunosuppression in cyclophosphamide-treated geese by maintaining a humoral and cellular immune balance[J]. Molecules, 2018, 23(4): 932-947. DOI:10.3390/molecules23040932
[8]
LIU J, CHEN X, YUE C J, et al. Effect of selenylation modification on immune-enhancing activity of Atractylodes macrocephala polysaccharide[J]. International Journal of Biological Macromolecules, 2015, 72: 1435-1440. DOI:10.1016/j.ijbiomac.2014.10.022
[9]
SUN W J, MENG K, QI C H, et al. Immune-enhancing activity of polysaccharides isolated from Atractylodis macrocephalae Koidz[J]. Carbohydrate Polymers, 2015, 126: 91-96. DOI:10.1016/j.carbpol.2015.03.034
[10]
SON Y O, KOOK S H, LEE J C. Glycoproteins and polysaccharides are the main class of active constituents required for lymphocyte stimulation and antigen-specific immune response induction by traditional medicinal herbal plants[J]. Journal of Medicinal Food, 2017, 20(10): 1011-1021. DOI:10.1089/jmf.2017.3943
[11]
ZHOU L J, LIU Z J, WANG Z X, et al. Astragalus polysaccharides exerts immunomodulatory effects via TLR4-mediated MyD88-dependent signaling pathway in vitro and in vivo[J]. Science Report, 2017, 7: 44822. DOI:10.1038/srep44822
[12]
刘瑞.黄芪多糖影响雏鸡免疫器官TLR4信号转导通路的研究[D].硕士学位论文.哈尔滨: 东北农业大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10224-1015396252.htm
[13]
ZHAO T, FENG Y, LI J, et al. Schisandra polysaccharide evokes immunomodulatory activity through TLR 4-mediated activation of macrophages[J]. International Journal of Biological Macromolecules, 2014, 65: 33-40. DOI:10.1016/j.ijbiomac.2014.01.018
[14]
LIU L, YUAN S S, LONG Y, et al. Immunomodulation of Rheum tanguticum polysaccharide (RTP) on the immunosuppressive effects of dexamethasone (DEX) on the treatment of colitis in rats induced by 2, 4, 6-trinitrobenzene sulfonic acid[J]. International Immunopharmacology, 2009, 9(13/14): 1568-1577.
[15]
GONG A G, ZHANG L M, LAM C T, et al. Polysaccharide of Danggui Buxue Tang, an ancient Chinese herbal decoction, induces expression of pro-inflammatory cytokines possibly via activation of NFκB signaling in cultured RAW 264.7 cells[J]. Phytotherapy Research, 2017, 31(2): 274-283. DOI:10.1002/ptr.5745
[16]
JIN B, SUN T, YU X H, et al. The effects of TLR activation on T-cell development and differentiation[J]. Clinical and Developmental Immunology, 2012, 2012: 836485.
[17]
PŁÓCIENNIKOWSKA A, HROMADA-JUDYCKA A, BORZECKA K, et al. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling[J]. Cellular and Molecular Life Science, 2015, 72(3): 557-581. DOI:10.1007/s00018-014-1762-5
[18]
FAN G W, JIANG X R, WU X Y, et al. Anti-inflammatory activity of tanshinone ⅡA in LPS-stimulated RAW264.7 macrophages via miRNAs and TLR4-NF-κB pathway[J]. Inflammation, 2016, 39(1): 375-384. DOI:10.1007/s10753-015-0259-1
[19]
HUANG X Q, XIE Z J, LIU F F, et al. Dihydroartemisinin inhibits activation of the Toll-like receptor 4 signaling pathway and production of type Ⅰ interferon in spleen cells from lupus-prone MRL/lpr mice[J]. International Immunopharmacology, 2014, 22(1): 266-272. DOI:10.1016/j.intimp.2014.07.001
[20]
JI G Q, CHEN R Q, ZHENG J X. Macrophage activation by polysaccharides from Atractylodes macrocephala Koidz through the nuclear factor-κB pathway[J]. Pharmaceutical Biology, 2015, 53(4): 512-517. DOI:10.3109/13880209.2014.929152
[21]
PI J, WANG Y Y, ZHU H Y, et al. Immunomodulatory effects of polysaccharide compounds in macrophages revealed by high resolution AFM[J]. Scanning, 2016, 38(6): 792-801. DOI:10.1002/sca.21329
[22]
TANAKA K, INA A. Structure elucidation of acylsucrose derivatives from Atractylodes lanceae rhizome and Atractylodes rhizome[J]. Natural Product Communication, 2009, 4(8): 1095-1098.
[23]
WANG X T, LI L H, RAN X K, et al. What caused the changes in the usage of Atractylodis Macrocephalae Rhizoma from ancient to current times?[J]. Journal of Natural Medicines, 2016, 70(1): 36-44. DOI:10.1007/s11418-015-0934-4
[24]
XU D N, LI W Y, HUANG Y M, et al. The effect of selenium and polysaccharide of Atractylodes macrocephala Koidz. (PAMK) on immune response in chicken spleen under heat stress[J]. Biological Trace Element Research, 2014, 160(2): 232-237. DOI:10.1007/s12011-014-0056-y
[25]
LI W Y, GUO S X, XU D N, et al. Polysaccharide of Atractylodes macrocephala Koidz (PAMK) relieves immunosuppression in cyclophosphamide-treated geese by maintaining a humoral and cellular immune balance[J]. Molecules, 2018, 23(4): 932. DOI:10.3390/molecules23040932
[26]
CEN X H, LIU S W, CHENG K. The role of Toll-like receptor in inflammation and tumor immunity[J]. Frontiers in Pharmacology, 2018, 9: 878. DOI:10.3389/fphar.2018.00878
[27]
AHMED-HASSAN H, ABDUL-CADER M, SABRY M, et al. Toll-like receptor (TLR) 4 signalling induces myeloid differentiation primary response gene (MYD) 88 independent pathway in avian species leading to type Ⅰ interferon production and antiviral response[J]. Virus Research, 2018, 256: 107-116. DOI:10.1016/j.virusres.2018.08.008
[28]
HACKAM D J, SODHI C P. Toll-like receptor-mediated intestinal inflammatory imbalance in the pathogenesis of necrotizing enterocolitis[J]. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6(2): 229-238. DOI:10.1016/j.jcmgh.2018.04.001
[29]
KARNATI H K, PASUPULETI S R, KANDI R, et al. TLR-4 signalling pathway:MyD88 independent pathway up-regulation in chicken breeds upon LPS treatment[J]. Veterinary Research Communications, 2015, 39(1): 73-78. DOI:10.1007/s11259-014-9621-2
[30]
ZHOU L J, LIU Z J, WANG Z X, et al. Astragalus polysaccharides exerts immunomodulatory effects via TLR4-mediated MyD88-dependent signaling pathway in vitro and in vivo[J]. Science Report, 2017, 7: 44822. DOI:10.1038/srep44822
[31]
HAN S B, YOON Y D, AHN H J, et al. Toll-like receptor-mediated activation of B cells and macrophages by polysaccharide isolated from cell culture of Acanthopanax senticosus[J]. International Immunopharmacology, 2003, 3(9): 1301-1312. DOI:10.1016/S1567-5769(03)00118-8
[32]
MENG J J, HU X F, SHAN F P, et al. Analysis of maturation of murine dendritic cells (DCs) induced by purified Ganoderma lucidum polysaccharides (GLPs)[J]. International Journal of Biological Macromolecules, 2011, 49(4): 693-699. DOI:10.1016/j.ijbiomac.2011.06.029
[33]
WEINLICH R, BORTOLUCI K R, CHEHAB C F, et al. TLR4/MYD88-dependent, LPS-induced synthesis of PGE2 by macrophages or dendritic cells prevents anti-CD3-mediated CD95L upregulation in T cells[J]. Cell Death and Differentiation, 2008, 15(12): 1901-1909. DOI:10.1038/cdd.2008.128
[34]
MA L, ZHANG L W, ZHUANG Y, et al. Serum levels of IL-33 and correlation with IL-4, IL-17A, and hypergammaglobulinemia in patients with autoimmune hepatitis[J]. Mediators of Inflammation, 2018, 2018: 7964654.
[35]
TRENTIN-SONODA M, DA SILVA R, KMIT F, et al. Knockout of Toll-like receptors 2 and 4 prevents renal ischemia-reperfusion-induced cardiac hypertrophy in mice[J]. PLoS One, 2015, 10(10): e139350.
[36]
HOU Y C, WU J M, WANG M Y, et al. Modulatory effects of Astragalus polysaccharides on T-cell polarization in mice with polymicrobial sepsis[J]. Mediators of Inflammation, 2015, 2015: 826319.
[37]
LIU H, ZHANG W, DONG S C, et al. Protective effects of sea buckthorn polysaccharide extracts against LPS/d-GalN-induced acute liver failure in mice via suppressing TLR4-NF-κB signaling[J]. Journal of Ethnopharmacology, 2015, 176: 69-78. DOI:10.1016/j.jep.2015.10.029
[38]
HAN J, LIU L X, YU N, et al. Polysaccharides from Acanthopanax senticosus enhances intestinal integrity through inhibiting TLR4/NF-κB signaling pathways in lipopolysaccharide-challenged mice[J]. Animal Science Journal, 2016, 87(8): 1011-1018. DOI:10.1111/asj.12528