动物营养学报    2020, Vol. 32 Issue (1): 71-78    PDF    
脂联素及其受体在动物下丘脑-垂体-性腺轴中的表达与作用
李冲 , 刘丹丹 , 马雪杰 , 田亚东     
河南农业大学牧医工程学院, 河南省家禽种质资源创新工程研究中心, 郑州 450002
摘要: 下丘脑-垂体-性腺(HPG)轴在动物生殖调控中扮演重要角色,研究HPG轴功能的调控因子及机制已成为生殖内分泌学领域的热点。近年来的研究发现,脂肪组织能合成和分泌多种细胞因子,其中脂联素及其受体在调控动物生殖及胚胎生长发育方面起到重要作用,本文就脂联素及其受体在动物HPG轴的表达与作用进行综述。
关键词: 脂联素及其受体    下丘脑-垂体-性腺轴    表达与作用    
Expression and Function of Adiponectin and Its Receptors in Hypothalamic-Pituitary-Gonadal Axis in Animals
LI Chong , LIU Dandan , MA Xuejie , TIAN Yadong     
College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China
Abstract: The hypothalamic-pituitary-gonadal (HPG) axis plays an important role in animal reproductive regulation. Researches regarding to factors and mechanisms regulating HPG axis function have become a hot topic in area of reproductive endocrinology. Adipose tissue can synthesize and secrete a variety of cytokines. Recently, it has been evidenced that adiponectin and its receptors play an important part in regulating animal reproduction and embryo growth. This article reviews the expression and function of adiponectin and its receptor in animal HPG axis.
Key words: adiponectin and its receptor    hypothalamic-pituitary-gonadal axis    expression and function    

脂肪组织不仅具有脂质储存的作用,而且还是一种高度特异性内分泌和旁分泌的器官,产生一系列的细胞因子。其中,脂联素(adiponectin,AdipoQ)作为脂肪组织分泌的细胞因子之一,由其受体(adiponectin receptors,AdipoRs)介导促进骨骼肌对葡萄糖的摄取并增加肝脏和肌肉的脂肪酸氧化,且通过抑制胆固醇和脂肪酸合成中的限速酶来降低胆固醇和脂肪酸的生物合成;脂联素还通过增强胰岛素敏感性在胰岛β细胞中阻止葡萄糖中碳向脂质的转化来抑制脂肪的生成;而脂联素对蛋白质代谢的调控及机制目前尚不明确[1-2]。近年来研究发现,脂联素及其受体在下丘脑、垂体、卵巢、子宫或胎盘等组织中表达,说明脂联素及其受体在调控动物生殖及胚胎生长发育方面发挥着重要作用。而动物的生殖过程受到许多因素的调控,有众多神经内分泌网络参与其中,特别是下丘脑-垂体-性腺(HPG)轴在动物生殖发育过程中具有重要作用。因此,研究脂联素及其受体在动物HPG轴的表达与作用具有重要意义。

1 脂联素及其受体的结构及功能

脂联素是成熟脂肪细胞分泌的一种分子质量为30 ku的单分子糖蛋白,在小鼠上,脂联素含有247个氨基酸,在人上,脂联素含有244个氨基酸,两者间的同源性为83%。在哺乳动物中脂联素是一个16 kb的基因并由3个外显子和2个内含子组成[3],其编码的全长蛋白质(full-length adiponectin,full AdipoQ)包含有4个结构域:C-端球状域、胶原域、可变域和N-端信号肽。在血浆中脂联素分别以三聚体低分子质量(LMW,90 ku)、六聚体中分子质量(MMW,180 ku)、多聚体高分子质量(HMW,360~540 ku)3种聚合体的形式存在,在循环中脂联素主要以高分子质量形式发挥生理作用[4]。在机体中,脂联素主要有全长和球形2种活性形式,并且脂联素主要通过受体1和受体2介导发挥生物学作用。全长脂联素与受体2结合,而球状区域的脂联素被认为优先与受体1亚型结合。受体1和受体2氨基酸同源性为67%[2]。脂联素受体属于聚省醌自由基高聚物(PAQR)家族,有7个跨膜结构域,在结构和功能上与G蛋白偶联受体(GPCR)不同,主要表现在脂联素受体的N端位于膜内,C端位于膜外,可与脂联素结合[5]

脂联素受体信号受2种磷酸酪氨酸衔接蛋白(APPL1和APPL2)的互作调节。一旦脂联素和受体1结合,APPL1就激活与脂联素功能关联的各种下游信号元件。当受体1失活时,APPL2就与之结合,抑制APPL1功能并替代受体1激活作用。目前已知的脂联素受体信号通路主要有:腺苷酸活化蛋白激酶(AMPK)、p38丝裂原活化蛋白激酶(p38MAPK)、细胞外信号调节激酶1/2(ERK1/2)、蛋白激酶B(Akt)、过氧化物酶体增殖物激活受体-α(PPAR-α)等。通过这些通路脂联素才能发挥其调节能量平衡、增强胰岛素敏感性、脂质代谢、血管舒张、抗动脉粥样硬化以及生殖功能等作用(图 1)[2, 6]。受体1与脂联素的三聚体和球蛋白结构域有较大的亲和力,主要在骨骼肌中表达;受体2与中分子质量和高分子质量的脂联素具有较高的亲和力,在肝脏中有较高的表达。受体1通过AMPK和丝裂原活化蛋白激酶(MAPK)通路发挥作用;受体2主要通过PPAR-α通路发挥作用[7]

Adipose Tissue:脂肪在组织;Gobular Adiponectin:球状脂联素;Multimer:多聚体;AdipoR1:脂联素受体1;AdipoR2:脂联素受体2;Ovary:卵巢;Hypothalamus:下丘脑;Pituitary:垂体;Testis:睾丸;Embryo:胚胎;Occyte:卵母细胞;Granulosa survival:颗粒细胞存活;Steroidogenesis:类固醇激素;Inflamation by cytokines:细胞因子引起的炎症;Testosterone:睾酮;Embryo lipid metabolism:胚胎脂类代谢;Oocytc maturation:卵母细胞成熟;PPAR-α:过氧化物酶体增殖物激活受体-α peroxisome proliferators-activated receptor-α;AMPK:腺苷酸活化蛋白激酶AMP-activated protein kinase;ERK1/2:细胞外信号调节激酶1/2 extracellular signal-regulated kinase 1/2;p38MAPK:p38丝裂原活化蛋白激酶p38 mitogen activated protein kinase;GnRH:促性腺激素释放激素gonadotropin-releasing hormone;LH:黄体生成素luteinizing hormone;APPL1:磷酸酪氨酸衔接蛋白1 phosphotyrosine binding protein 1。 图 1 脂联素及其受体在HPG轴作用机制 Fig. 1 Mechanism of AdipoQ and AdipoRs in HPG axis
2 脂联素及其受体在HPG轴的表达与作用 2.1 脂联素及其受体在下丘脑组织中的表达与作用

近年来研究表明,在人类、啮齿动物和猪的下丘脑中均有脂联素及其受体的表达。在下丘脑促性腺激素释放激素(GnRH)神经元细胞(GT1-7)以及人和啮齿动物下丘脑的室旁核和室周核中,脂联素受体已鉴定出来。脂联素在小鼠和鸡脑中的表达已被证实;然而,在人类下丘脑或漏斗柄中未发现脂联素表达,但在人类、小鼠和大鼠脑脊液(CSF)中检测到脂联素的表达[8]。在CSF中,低分子质量形式的脂联素占主导地位,主要以低分子质量和中分子质量形式出现,这表明高分子复合物无法跨越血脑屏障[9]。在小鼠下丘脑中脂联素具有双重作用。首先,脂联素可以增强下丘脑弓状核AMPK的活性从而刺激了食物的摄入,降低能量消耗,此过程通过受体1介导完成。在脂联素缺乏的小鼠中,AMPK磷酸化水平降低,导致能量消耗增加,摄入食物的量减少[10]。其次,脂联素调节并参与GnRH的分泌过程。脂联素通过活化AMPK途径抑制GnRH释放的上游信号Kisspeptin1(KISS1)基因的转录,从而抑制GnRH分泌,进而引起GT1-7小鼠下丘脑GnRH产生神经元的细胞膜电位超极化和钙离子(Ca2+)内流减少[11-12]。Klenke等[13]报道小鼠GnRH神经元表达受体2,脂联素可通过AMPK途径迅速降低GnRH神经元活性。由此表明,脂联素调控GnRH的释放,可能作为生殖功能代谢调节剂来发挥作用。

2.2 脂联素及其受体在垂体组织中的表达与作用

脂联素mRNA在许多物种垂体中的表达都已被报道。Wilkinson等[14]研究表明,脂联素受体在人类垂体远侧部有表达,但在结节部没有表达。而脂联素及受体1和受体2在鼠、猪、啮齿动物和鸡等多种动物的脑和垂体中均有表达[15],这表明脂联素可能是一个调节生殖功能的因子。通过对小鼠下丘脑和猪脑垂体进行体外重组脂联素处理发现,脂联素对GnRH和促性腺激素抑制激素(GnIH)的抑制调节受到一定的剂量效应和时间效应的影响,这可能由于脂联素通过调控受体1作用于垂体并且激活AMPK信号通路,抑制GnRH受体基因的表达,从而抑制促黄体素(LH)与卵泡刺激素(FSH)的合成与分泌[16]。在猪垂体中脂联素水平依赖于发情周期阶段,体外用脂联素处理猪垂体细胞增加FSH释放[17]。相反,暴露在脂联素下培养的啮齿动物垂体细胞降低了LH分泌[18]。并且,经GnRH处理后大鼠垂体细胞脂联素表达受到抑制[19]。在母猪发育过程中发现脂联素可能是通过受体1介导来抑制GnRH的分泌。推测脂联素可能经受体1和受体2介导,通过GnRH受体,或直接对垂体LH和FSH的分泌起抑制调节作用[20]。但Sarmento-Cabral等[21]对2种正常的非人灵长类动物的初级垂体细胞进行培养发现脂联素对垂体LH和FSH的释放无影响。

2.3 脂联素及其受体在性腺组织中的表达与作用 2.3.1 脂联素及其受体在卵巢组织中的表达与作用

脂联素在母猪的卵泡液中,大鼠的卵母细胞、黄体、卵泡膜细胞以及鸡的卵泡膜细胞和羊的卵巢中均有表达。受体1和受体2已在多个物种(人、大鼠、奶牛、羊、猪、鱼和鸡)卵泡的不同细胞(积云卵母细胞、颗粒细胞和卵泡膜细胞)类型中被鉴定出来,但它们的表达水平不同;卵母细胞中的受体1 mRNA表达水平低于受体2 mRNA表达水平,而在大卵泡的颗粒细胞和卵泡膜中则相反[22]。在鸟类颗粒细胞中,脂联素的表达与排卵前卵泡的重量呈正相关,并且在产蛋期的卵巢组织中脂联素mRNA的表达量高于预产期[23-24]。在人、啮齿动物和鸡的卵巢颗粒细胞中,脂联素表达量低,几乎检测不到,这表明脂联素基因在卵巢内表达具有种属的特异性差异[25]。在牛科动物中,卵巢的生理状态影响卵泡和黄体细胞内脂联素及其受体的表达。在鸡卵巢中,脂联素、受体1和受体2均表达,其中F4卵泡脂联素mRNA的表达量是F1卵泡的2倍,而颗粒细胞则相反;卵泡内脂联素的表达是颗粒细胞的10~30倍[26]。这些结果表明,脂联素及其受体的表达随细胞类型和细胞成熟度的不同而表达有差异。

在哺乳动物(大鼠、奶牛、母猪等)优势卵泡中的脂联素转录与卵泡液中雌激素(E2)水平呈正相关关系,这说明了脂联素与优势卵泡和卵母细胞能力之间的关联性[27]。在牛科动物膜内细胞,LH提升受体2 mRNA的表达量,而胰岛素样生长因子-1(IGF-1)抑制受体2的表达[28]。甾体激素同样影响脂联素表达。在猪黄体期脂联素基因和蛋白表达均增强,黄体期血清脂联素浓度显著高于卵泡期,表明卵巢甾体影响血清脂联素水平[29]。但是,甾体激素是否在卵巢脂联素生成上产生局部效应还需要进一步论证。同样,脂联素可根据卵巢细胞类型对其受体表达产生不同的影响。比如,在积云卵母细胞复合物中脂联素受体表达增加,但在颗粒细胞中没有出现[25]。卵泡合成的甾体激素控制和维持雌性动物的性发育、行为和妊娠以及在卵巢内产生重要的局部效应。在人颗粒细胞中,脂联素通过FSH或IGF-1增强孕酮(P4)和E2的分泌[30-31]。此外,Cheng等[32]研究发现,小鼠缺失脂联素基因会干扰激素的生成、卵泡发育和降低生育能力,在发情期前,血清中E2和FSH水平显著降低,而LH和睾酮(T)水平升高,P4水平明显降低,黄体生成素受体表达量和GnRH免疫反应神经元的数量显著减少。在牛中,脂联素可以抑制胰岛素诱导的颗粒细胞和膜细胞的类固醇生成[28, 33]。在母鸡中,脂联素可以在卵泡颗粒细胞中通过影响IGF-1使T水平增加,也可以降低卵泡颗粒细胞LH或FSH使P4水平降低[34]

Chabrolle等[30, 34]报道,生理剂量的重组脂联素(5或10 μg/mL)提高了IGF-1水平,进而刺激细胞中甾体的分泌。这一效应在大鼠上是增强了IGF-1受体信号的结果,在人上是增强了雌激素生物合成关键酶细胞色素P450芳香化酶(CYP19A1)表达所致。以生理剂量(5或10 μg/mL)给处于延迟发育期的蝙蝠体内注射脂联素引起循环中的P4和E2水平显著升高,并伴随着卵巢中受体1表达升高。脂联素对卵巢甾体生成的效应是通过提升LH受体、甾体激素合成急性调节蛋白和3β-羟类固醇脱氢酶(3β-HSD)的表达而实现的[35]。在KGN细胞系中,脂联素受体特异性失活表明受体1调控细胞存活,而受体2优先介入甾体生成[31]。在牛上,体外3 μg/mL的脂联素降低了膜细胞中雄烯二酮(A4)生成量,其途径是减少了LH受体以及由受体1和受体2介导的CYP11A1(细胞色素P450,11家族,A亚族,多肽1)和CYP17A1(细胞色素P450,17家族,A亚族,多肽1)的表达[28]。Comim等[36]再次确证了敲减脂联素受体或者下游的效应蛋白APPL1可导致A4分泌增加。在猪卵巢中受体1 mRNA与受体2 mRNA的表达呈正相关,受体1 mRNA与CYP19 mRNA的表达呈负相关,与血清中E2水平呈负相关,表明脂联素对E2的合成分泌起负调节作用[20]

Kim等[37]在小鼠中发现脂联素mRNA在2细胞和8细胞胚胎期表达。在胚胎着床前的各个阶段均检测到受体1和受体2,但在囊胚期的脂联素受体表达水平最低。在8~16个细胞的胚胎期,受体1 mRNA水平升高。在桑椹胚和囊胚中,受体1 mRNA表达水平明显高于卵母细胞。4细胞胚胎和8~16细胞胚胎的受体2 mRNA表达水平低于卵母细胞,桑椹胚和囊胚的受体2 mRNA表达水平明显升高[38]。通过原位杂交,分别于第7天和第8天在小鼠胚胎中检测到脂联素mRNA表达。在牛胚胎中,受体1表达明显,而受体2和脂联素表达较弱,几乎检测不到[33]。Chappaz等[39]和Richards等[25]在人、鼠和猪上的研究表明,生理剂量的脂联素可促进卵母细胞成熟和早期胚胎发育。与体重相似的对照组相比,脂联素缺乏的鼠体内卵母细胞的排出数量急剧下降。在山羊卵母细胞中,重组脂联素能促进山羊卵母细胞体外核成熟并且脂联素可以通过经典的MAPK途径对减数分裂成熟具有积极作用[40-41]。在人上,与对照组相比,卵子体外培养(IVM)暴露于10 mmol/L葡萄糖中,脂联素启动子DNA甲基化水平被降低[42]。而脂联素对牛卵子体外培养发现对其卵裂和囊胚形成率无显著影响[33]。这些结果表明,卵母细胞对脂联素的特异性反应可能存在种间差异。

2.3.2 脂联素及其受体在睾丸组织中的表达与作用

近年来研究发现,脂联素及其受体在人睾丸间质细胞和精子中表达,精浆中脂联素浓度比血清低大约66倍,并且与精子浓度、精子数量以及正常形态的精子数呈正相关[43]。在公牛上,脂联素主要在精子鞭毛区域表达,受体1存在于精子顶体区域,受体2在精子头部区域表达[44]。在牛上,Heinz等[45]研究得出精浆中脂联素浓度很可能是血源性的,来自于脂肪组织,可能是睾丸的局部分泌物。在大鼠上,脂联素主要出现于睾丸间质细胞中,而受体1则在输精管中表达,而切除成年雄性小鼠的性腺会导致循环中的脂联素增加[46-47]。在猪睾丸中均有脂联素受体,受体1 mRNA的表达水平高于受体2 mRNA[48],且猪睾丸提取物通过PPAR-α通路增强脂肪细胞中的脂联素分泌[49]。在鸡上,成年鸡与青年鸡相比,受体1和受体2 mRNA的表达发生了改变,在成年期的表达水平增加[50]。这表明性成熟诱导睾丸脂联素受体基因表达上调。大鼠在青春期间质细胞中的受体2蛋白表达也增加,小鼠对循环脂联素更敏感。此外,在小鼠中有研究表明,血清脂联素浓度在青春期也有所升高[46, 51]。Caminos等[52]报道,有无人绒毛膜促性腺激素(hCG)的情况下,用脂联素处理大鼠睾丸组织,降低了T的生成量,而对编码抗缪勒氏管激素(AMH)以及对支持细胞特异性的干细胞因子(SCF)基因表达无影响。在MA-10小鼠间质细胞内,脂联素处理提高了P4生成量,其途径是增加了胆固醇载体StAR和CYP11A1类固醇生成酶,这表明高剂量脂联素(50、500或5 000 ng/mL)能促进间质细胞T的生成量[53]。在猪睾丸中受体1 mRNA和CYP11A1 mRNA发育性变化呈正相关,这表明脂联素对T的生成具有促进作用[54]。在鼠上,不改变T浓度的情况下,受体2缺乏导致输精管萎缩和无精症,脂联素破坏会引起母鼠生育力低下[32]。公羊上,脂联素和受体1 mRNA表达量与精子运动性呈正相关[55]。公牛上,脂联素及其受体通过调控精子获能对精子特定结构功能发挥至关重要的作用[44]

3 小结

脂联素在多种动物下丘脑、垂体、性腺组织表达,其生物学作用由其受体介导,不仅可以调节性腺激素及配子生成,还能影响GnRH合成和垂体分泌功能,进而间接影响性腺功能。因此,研究脂联素及其受体在动物HPG轴的表达和作用对完善动物繁殖调控理论具有重要的意义。首先,目前研究偏重和局限于脂联素及其受体在性腺组织中的表达和作用,而对中枢系统(下丘脑-垂体)的表达和调控以及对HPG轴的整体和系统研究鲜有报道;其次,脂联素及其受体在不同种属之间的作用机制也不尽相同,在鸟类,编码Kisspeptin及其受体GPR54的基因在进化过程中丢失,脂联素及其受体调控禽类GnRH释放的机制有待进一步研究。

致谢:

感谢河南农业大学牧医工程学院刘小军教授对文稿所提的宝贵意见。

参考文献
[1]
HUYPENS P, MOENS K, HEIMBERG H, et al. Adiponectin-mediated stimulation of AMP-activated protein kinase (AMPK) in pancreatic beta cells[J]. Life Sciences, 2005, 77(11): 1273-1282. DOI:10.1016/j.lfs.2005.03.008
[2]
YAMAUCHI T, IWABU M, OKADA-IWABU M, et al. Adiponectin receptors:a review of their structure, function and how they work[J]. Best Practice & Research Clinical Endocrinology & Metabolism, 2014, 28(1): 15-23.
[3]
WANG P H, KO Y H, LIU B H, et al. The expression of porcine adiponectin and stearoyl coenzyme A desaturase genes in differentiating adipocytes[J]. Asian-Australasian Journal of Animal Sciences, 2004, 17(5): 588-593. DOI:10.5713/ajas.2004.588
[4]
KADOWAKI T, YAMAUCHI T. Adiponectin and adiponectin receptors[J]. Endocrine Reviews, 2005, 26(3): 439-451. DOI:10.1210/er.2005-0005
[5]
TANABE H, FUJⅡ Y, OKADA-IWABU M, et al. Crystal structures of the human adiponectin receptors[J]. Nature, 2015, 520(7547): 312-316. DOI:10.1038/nature14301
[6]
FANG H, JUDD R L. Adiponectin regulation and function[J]. Comprehensive Physiology, 2018, 8(3): 1031-1063.
[7]
YAMAUCHI T, KADOWAKI T. Adiponectin receptor as a key player in healthy longevity and obesity-related diseases[J]. Cell Metabolism, 2013, 17(2): 185-196. DOI:10.1016/j.cmet.2013.01.001
[8]
KOS K, HARTE A L, DA SILVA N F, et al. Adiponectin and resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus[J]. The Journal of Clinical Endocrinology & Metabolism, 2007, 92(3): 1129-1136.
[9]
KUSMINSKI C M, MCTERNAN P G, SCHRAW T, et al. Adiponectin complexes in human cerebrospinal fluid:distinct complex distribution from serum[J]. Diabetologia, 2007, 50(3): 634-642. DOI:10.1007/s00125-006-0577-9
[10]
KUBOTA N, YANO W, KUBOTA T, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake[J]. Cell Metabolism, 2007, 6(1): 55-68. DOI:10.1016/j.cmet.2007.06.003
[11]
WEN J P, LV W S, YANG J, et al. Globular adiponectin inhibits GnRH secretion from GT1-7 hypothalamic GnRH neurons by induction of hyperpolarization of membrane potential[J]. Biochemical and Biophysical Research Communications, 2008, 371(4): 756-761. DOI:10.1016/j.bbrc.2008.04.146
[12]
WEN J P, LIU C, BI W K, et al. Adiponectin inhibits KISS1 gene transcription through AMPK and specificity protein-1 in the hypothalamic GT1-7 neurons[J]. Journal of Endocrinology, 2012, 214(2): 177-189. DOI:10.1530/JOE-12-0054
[13]
KLENKE U, TAYLOR-BURDS C, WRAY S. Metabolic influences on reproduction:adiponectin attenuates GnRH neuronal activity in female mice[J]. Endocrinology, 2014, 155(5): 1851-1863. DOI:10.1210/en.2013-1677
[14]
WILKINSON M, BROWN R, IMRAN S A, et al. Adipokine gene expression in brain and pituitary gland[J]. Neuroendocrinology, 2007, 86(3): 191-209. DOI:10.1159/000108635
[15]
PSILOPANAGIOTI A, PAPADAKI H, KRANIOTI E F, et al. Expression of adiponectin and adiponectin receptors in human pituitary gland and brain[J]. Neuroendocrinology, 2009, 89(1): 38-47.
[16]
SHPAKOV A O, RYZHOV J R, BAKHTYUKOV A A, et al.The regulation of the male hypothalamic-pituitary-gonadal axis and testosterone production by adipokines[M]//MANUEL E.Advances in testosterone action.[s.l.]: [s.n.], 2018.
[17]
KIEZUN M, SMOLINSKA N, MALESZKA A, et al. Adiponectin expression in the porcine pituitary during the estrous cycle and its effect on LH and FSH secretion[J]. American Journal of Physiology:Endocrinology and Metabolism, 2014, 307(11): E1038-E1046. DOI:10.1152/ajpendo.00299.2014
[18]
RODRIGUEZ-PACHECO F, MARTINEZ-FUENTES A J, TOVAR S, et al. Regulation of pituitary cell function by adiponectin[J]. Endocrinology, 2007, 148(1): 401-410. DOI:10.1210/en.2006-1019
[19]
KIM J, ZHENG W L, GRAFER C, et al. GnRH decreases adiponectin expression in pituitary gonadotropes via the calcium and PKA pathways[J]. Reproductive Sciences, 2013, 20(8): 937-945. DOI:10.1177/1933719112468947
[20]
LI Y, ZHOU J, ZHANG L Q, et al. The developmental changes and correlation of adiponectin, adiponectin receptors and hormones of the hypothalamic-pituitary-ovarian axis in growing wannan spotted gilts[J]. Journal of Biomedical Sciences, 2016, 5(2): 12.
[21]
SARMENTO-CABRAL A, PEINADO J R, HALLIDAY L C, et al. Adipokines (leptin, adiponectin, resistin) differentially regulate all hormonal cell types in primary anterior pituitary cell cultures from two primate species[J]. Scientific Reports, 2017, 7: 43537. DOI:10.1038/srep43537
[22]
TABANDEH M R, HOSSEINI A, SAEB M, et al. Changes in the gene expression of adiponectin and adiponectin receptors (AdipoR1 and AdipoR2) in ovarian follicular cells of dairy cow at different stages of development[J]. Theriogenology, 2010, 73(5): 659-669. DOI:10.1016/j.theriogenology.2009.11.006
[23]
CAO Z, MENG B, FAN R, et al. Comparative proteomic analysis of ovaries from Huoyan geese between pre-laying and laying periods using an iTRAQ-based approach[J]. Poultry Science, 2018, 97(6): 2170-2182. DOI:10.3382/ps/pey029
[24]
MELLOUK N, RAMÉ C, MARCHAND M, et al. Effect of different levels of feed restriction and fish oil fatty acid supplementation on fat deposition by using different techniques, plasma levels and mRNA expression of several adipokines in broiler breeder hens[J]. PLoS One, 2018, 13(1): e0191121. DOI:10.1371/journal.pone.0191121
[25]
RICHARDS J S, LIU Z L, KAWAI T, et al. Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human[J]. Fertility and Sterility, 2012, 98(2): 471-479.e1. DOI:10.1016/j.fertnstert.2012.04.050
[26]
CHABROLLE C, TOSCA L, CROCHET S, et al. Expression of adiponectin and its receptors (AdipoR1 and AdipoR2) in chicken ovary:potential role in ovarian steroidogenesis[J]. Domestic Animal Endocrinology, 2007, 33(4): 480-487. DOI:10.1016/j.domaniend.2006.08.002
[27]
TABANDEH M, GOLESTANI N, KAFI M, et al. Gene expression pattern of adiponectin and adiponectin receptors in dominant and atretic follicles and oocytes screened based on brilliant cresyl blue staining[J]. Animal Reproduction Science, 2012, 131(1/2): 30-40.
[28]
LAGALY D V, AAD P Y, GRADO-AHUIR J A, et al. Role of adiponectin in regulating ovarian theca and granulosa cell function[J]. Molecular and Cellular Endocrinology, 2008, 284(1/2): 38-45.
[29]
MALESZKA A, SMOLINSKA N, NITKIEWICZ A, et al. Adiponectin expression in the porcine ovary during the oestrous cycle and its effect on ovarian steroidogenesis[J]. International Journal of Endocrinology, 2014, 2014: 957076.
[30]
CHABROLLE C, TOSCA L, TECHNICIAN C R, et al. Adiponectin increases insulin-like growth factor Ⅰ-induced progesterone and estradiol secretion in human granulosa cells[J]. Fertility and Sterility, 2009, 92(6): 1988-1996. DOI:10.1016/j.fertnstert.2008.09.008
[31]
PIERRE P, FROMENT P, NÈGRE D, et al. Role of adiponectin receptors, AdipoR1 and AdipoR2, in the steroidogenesis of the human granulosa tumor cell line, KGN[J]. Human Reproduction, 2009, 24(11): 2890-2901. DOI:10.1093/humrep/dep292
[32]
CHENG L X, SHI H, JIN Y, et al. Adiponectin deficiency leads to female subfertility and ovarian dysfunctions in mice[J]. Endocrinology, 2016, 157(12): 4875-4887. DOI:10.1210/en.2015-2080
[33]
MAILLARD V, UZBEKOVA S, GUIGNOT F, et al. Effect of adiponectin on bovine granulosa cell steroidogenesis, oocyte maturation and embryo development[J]. Reproductive Biology and Endocrinology, 2010, 8: 23. DOI:10.1186/1477-7827-8-23
[34]
CHABROLLE C, TOSCA L, DUPONT J. Regulation of adiponectin and its receptors in rat ovary by human chorionic gonadotrophin treatment and potential involvement of adiponectin in granulosa cell steroidogenesis[J]. Reproduction, 2007, 133(4): 719-731. DOI:10.1530/REP-06-0244
[35]
ANURADHA K A. Modulation of ovarian steroidogenesis by adiponectin during delayed embryonic development of Cynopterus sphinx[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2014, 143: 291-305. DOI:10.1016/j.jsbmb.2014.04.009
[36]
COMIM F V, HARDY K, FRANKS S. Adiponectin and its receptors in the ovary:further evidence for a link between obesity and hyperandrogenism in polycystic ovary syndrome[J]. PLoS One, 2013, 8(11): e80416. DOI:10.1371/journal.pone.0080416
[37]
KIM S, MARQUARD K, STEPHENS S, et al. Adiponectin and adiponectin receptors in the mouse preimplantation embryo and uterus[J]. Human Reproduction, 2010, 26(1): 82-95.
[38]
ČIKOŠ Š, BURKUŠ J, BUKOVSKÁ A, 等. Expression of adiponectin receptors and effects of adiponectin isoforms in mouse preimplantation embryos[J]. Human Reproduction, 2010, 25(9): 2247-2255.
[39]
CHAPPAZ E, ALBORNOZ M S, CAMPOS D, et al. Adiponectin enhances in vitro development of swine embryos[J]. Domestic Animal Endocrinology, 2008, 35(2): 198-207. DOI:10.1016/j.domaniend.2008.05.007
[40]
GOMES E T, COSTA J A S, SILVA D M F, et al. Effects of adiponectin during in vitro maturation of goat oocytes:MEK 1/2 pathway and gene expression pattern[J]. Reproduction in Domestic Animals, 2018, 53(6): 1323-1329. DOI:10.1111/rda.13251
[41]
OLIVEIRA B S P, COSTA J A S, GOMES E T, et al. Expression of adiponectin and its receptors (AdipoR1 and AdipoR2) in goat ovary and its effect on oocyte nuclear maturation in vitro[J]. Theriogenology, 2017, 104: 127-133. DOI:10.1016/j.theriogenology.2017.08.013
[42]
WANG Q, TANG S B, SONG X B, et al. High-glucose concentrations change DNA methylation levels in human IVM oocytes[J]. Human Reproduction, 2018, 33(3): 474-481. DOI:10.1093/humrep/dey006
[43]
MARTIN L J. Implications of adiponectin in linking metabolism to testicular function[J]. Endocrine, 2014, 46(1): 16-28. DOI:10.1007/s12020-013-0102-0
[44]
KASIMANICKAM V R, KASIMANICKAM R K, KASTELIC J P, et al. Associations of adiponectin and fertility estimates in Holstein bulls[J]. Theriogenology, 2013, 79(5): 766-777.e3. DOI:10.1016/j.theriogenology.2012.12.001
[45]
HEINZ J F L, SINGH S P, JANOWITZ U, et al. Characterization of adiponectin concentrations and molecular weight forms in serum, seminal plasma, and ovarian follicular fluid from cattle[J]. Theriogenology, 2015, 83(3): 326-333. DOI:10.1016/j.theriogenology.2014.06.030
[46]
GUI Y T, SILHA J V, MURPHY L J. Sexual dimorphism and regulation of resistin, adiponectin, and leptin expression in the mouse[J]. Obesity Research, 2004, 12(9): 1481-1491. DOI:10.1038/oby.2004.185
[47]
YARROW J F, BEGGS L A, CONOVER C F, et al. Influence of androgens on circulating adiponectin in male and female rodents[J]. PLoS One, 2012, 7(10): e47315. DOI:10.1371/journal.pone.0047315
[48]
邵康, 周杰, 吴小雪, 等. 猪卵巢中脂联素受体与FSHRCYP19基因表达的发育变化及其相关性研究[J]. 南京农业大学学报, 2013, 36(4): 141-144.
[49]
KADOOKA K, SATO M, MATSUMOTO T, et al. Pig testis extract augments adiponectin expression and secretion through the peroxisome proliferator-activated receptor signaling pathway in 3T3-L1 adipocytes[J]. Cytotechnology, 2018, 70(3): 983-992. DOI:10.1007/s10616-018-0213-9
[50]
OCÓN-GROVE O M, KRZYSIK-WALKER S M, MADDINENI S R, et al. Adiponectin and its receptors are expressed in the chicken testis:influence of sexual maturation on testicular ADIPOR1 and ADIPOR2 mRNA abundance[J]. Reproduction, 2008, 136(5): 627-638. DOI:10.1530/REP-07-0446
[51]
COMBS T P, MARLISS E B. Adiponectin signaling in the liver[J]. Reviews in Endocrine and Metabolic Disorders, 2014, 15(2): 137-147. DOI:10.1007/s11154-013-9280-6
[52]
CAMINOS J, NOGUEIRAS R, GAYTÁN F, et al. Novel expression and direct effects of adiponectin in the rat testis[J]. Endocrinology, 2008, 149(7): 3390-3402. DOI:10.1210/en.2007-1582
[53]
LANDRY D, PARÉ A, JEAN S, et al. Adiponectin influences progesterone production from MA-10 Leydig cells in a dose-dependent manner[J]. Endocrine, 2015, 48(3): 957-967. DOI:10.1007/s12020-014-0456-y
[54]
邵康, 周杰, 吴小雪, 等. 猪睾丸中脂联素受体与LHRCYP11A1、StAR基因表达的发育变化及其相关性研究[J]. 畜牧兽医学报, 2011, 42(12): 1680-1685.
[55]
KADIVAR A, KHOEI H H, HASSANPOUR H, et al. Correlation of adiponectin mRNA abundance and its receptors with quantitative parameters of sperm motility in rams[J]. International Journal of Fertility & Sterility, 2016, 10(1): 127-135.