动物营养学报    2020, Vol. 32 Issue (3): 1047-1055    PDF    
改善高产奶牛泌乳初期能量供应的综合调控措施
李永 , 于志鹏 , 姚军虎 , 曹阳春     
西北农林科技大学动物科技学院, 杨凌 712100
摘要: 由于能量采食量不能满足维持和产奶的能量需要,奶牛在泌乳初期常处于能量负平衡(NEB)状态。泌乳初期NEB的程度和恢复速度显著影响奶牛健康、繁殖和泌乳性能。本文总结了高产奶牛泌乳初期产生NEB的原因和评估方法,阐明了泌乳初期NEB对奶牛健康、繁殖和生产性能的影响,分析总结了干奶期和围产期的饲养管理和能量供应对奶牛产后NEB的调控作用,旨在为改善高产奶牛泌乳初期NEB提供理论指导。
关键词: 奶牛    能量负平衡    干奶期    围产期    饲养管理    
Comprehensive Regulation of Energy Supply for High Yield Ruminants in Early Lactation
LI Yong , YU Zhipeng , YAO Junhu , CAO Yangchun     
College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China
Abstract: Dairy cows in early lactation commonly suffer from negative energy balance (NEB), because the amount of energy required for maintenance and milk production exceeds energy intake. The degree of NEB and the recovery rate from NEB in early lactation are critical for future performance of health, fertility and lactation. The present review summarizes the causes and estimating methods of NEB in early lactation of high yield dairy cows, introduces the effects of NEB in early lactation on performance of health, reproduction and milk production, and analyzes and sums up the comprehensive regulation methods of feeding, management and energy supply during dry and transition period to NEB after calving, to improve NEB in early lactation of high yield dairy cows.
Key words: dairy cows    negative energy balance    dry period    transition period    feeding and management    

泌乳初期奶牛常处于能量负平衡(negative energy balance,NEB)状态,主要是由干奶向泌乳转变导致能量需要剧增而超过采食量能够供应的能量,迫使机体通过体脂动员以维持能量平衡[1]。体脂动员会显著增加乳脂率、血液非酯化脂肪酸(non-esterified fatty acid,NEFA)和β-羟基丁酸(β-hydroxybutyrate,BHB)含量以及体况损失,因此可用乳脂率[2-4]、血液NEFA和BHB含量[5]以及体况评分(body condition scores,BCS)损失[1]来评估奶牛泌乳初期的NEB程度。

产后代谢紊乱和繁殖性能低下一直是困扰高产奶牛生产和收益的现实问题。在过去几年间,由于育种工作的定向性,奶牛泌乳性能显著提高,从而加剧了奶牛泌乳初期NEB的程度。NEB将加剧奶牛的代谢紊乱,致使奶牛出现瘤胃酸中毒、子宫炎、酮病和胎衣不下等代谢疾病[6-7],导致繁殖性能下降[8],给奶牛业带来巨大经济损失。增加产后干物质采食量(dry matter intake,DMI)和饲粮能量可有效改善NEB,但提高饲粮能量容易导致奶牛亚急性瘤胃酸中毒等营养代谢病的发生。本文综述了高产奶牛泌乳初期NEB产生的原因和评估方法,NEB对奶牛健康、繁殖和生产性能的影响,以及干奶期和围产期的饲养管理和能量供应对NEB的调控作用,为改善高产奶牛泌乳初期NEB提供思路和启发。

1 奶牛泌乳初期NEB产生原因及评估方法

泌乳初期,奶牛的维持和泌乳能量需要超过能量摄入量,导致NEB。NEB一般在奶牛产后几天内开始出现,到产后2周达到最大值[9],直到产后2个月甚至更长时间能量平衡才能达到正值[10]

1.1 产生NEB的原因 1.1.1 DMI下降

奶牛围产期常伴随DMI的降低,从而导致奶牛能量摄入不足。NRC(2001)[11]总结分析了围产期DMI下降的原因:1)饲粮组成和营养成分含量可影响产前DMI。在围产前期提高饲粮能量和蛋白质水平[12],DMI显著提高。2)分娩时血液激素的变化可显著影响DMI。3)围产期发生代谢紊乱导致DMI下降。NRC(2001)[11]总结了8所大学的49个处理数据,得到奶牛产前21 d内DMI的预测公式为:

式中:t为妊娠天数减去280。

1.1.2 泌乳导致能量需要增加

泌乳需要消耗大量的能量,能量摄入量不能满足泌乳需要,导致NEB。产奶量越高,NEB程度越严重,恢复时间越长[5]

1.1.3 血液NEFA的抑制作用

机体动员体脂导致机体血液NEFA含量增加,这将显著降低肝脏丙酮酸羧化酶和磷酸烯醇丙酮酸羧激酶的mRNA水平和活性,抑制肝脏的糖异生过程[13],高含量的NEFA也会进一步抑制食欲,从而加剧NEB[14]

1.2 能量平衡(energy balance,EB)状态的评估方法 1.2.1 公式计算

EB的定义是动物能量采食量与需要量之间的差值[15]。妊娠牛(妊娠190~279 d)的能量需要为维持需要+妊娠需要+泌乳需要;泌乳牛(产后到妊娠190 d)的能量需要为维持需要+泌乳需要。因此,EB(Mcal/d)(1 Mcal=4.184 MJ)的计算公式为:

式中:NEI为实际DMI的净能值(Mcal/d);NEM为维持需要净能值(Mcal/d);NEP为妊娠需要净能值(Mcal/d);NEL为泌乳需要净能值(Mcal/d)。

1.2.2 乳脂乳蛋白比(ratio of fat to protein of milk,F/P)

F/P一直作为能量状态的潜在评估指标[2]。产后体脂动员导致乳脂率增加,而NEB降低乳蛋白率[16],因此F/P与泌乳初期的EB呈负相关[3]。在产后19 d,F/P>1.5表明过量的脂肪降解,奶牛发生酮病、左侧真胃移位(left displacement of abomasums,LDA)、子宫炎和跛足的风险将显著增加[2]。研究表明,泌乳初期(6~9 d)测定F/P比泌乳2周后测定更有意义[4],因为奶牛NEB最低点常出现在7~14 d[17]。通过分析1 498头奶牛的数据,发现泌乳初期(6~9 d)F/P>2.0增加奶牛胎衣不下、LDA和子宫炎的发生率,增加奶牛淘汰率,降低经产牛泌乳初期产奶量[4]

1.2.3 血液NEFA、BHB和BCS损失

血液NEFA、BHB和BCS损失也是间接评估奶牛NEB程度的有效指标[1, 5]。NEFA反映体脂的代谢程度,体脂动员将导致血液NEFA含量增加。BHB反映脂肪在肝脏的氧化程度,它与丙酮、乙酰乙酸统称为酮体。酮体是脂肪不完全氧化的中间代谢产物,当NEFA含量超过肝脏完全氧化能力时,酮体含量显著增加,诱发机体发生酮病。Ospina等[18]建议应从群体水平调控饲养管理和环境以改善NEB,因为目前单独调控奶牛个体的营养策略仍非常困难。试验选择60个散放式并饲喂全混合日粮的奶牛群,每个奶牛群选择具有代表性的2组奶牛,每组15头。结果发现牛群危险水平为:15%奶牛产前NEFA高于0.27 mEq/L,15%和20%奶牛产后BHB高于10和12 mg/dL,15%奶牛产后NEFA高于0.6和0.7 mEq/L[18]。如果NEFA和BHB超过危险水平,牛群发生LDA和酮病的风险显著增加,受孕率和产奶量显著降低。

体脂动员将直接影响奶牛体重和BCS。相较于体重,BCS评估NEB更为准确。因为体重变化易受肠道充盈度、生长和体型大小的影响[19]。产犊时奶牛BCS以3.0~3.5为宜,高产奶牛BCS损失在产后30 d内不应超过0.5分,产后12~14周开始增加BCS[1, 20]。分娩体况与产后BCS损失之间存在强相关,分娩体况越好泌乳初期BCS损失越大[21]

研究表明,奶牛围产期站立、躺卧时间与能量状态、代谢健康等相关。具有产后亚临床或临床酮症倾向的奶牛在分娩时站立时间较少[22]。分娩前14 d内的躺卧时间与血液NEFA含量呈显著正相关,分娩后14 d内躺卧时间与酮症风险呈显著线性相关,平均躺卧时间每增加1 h(8~15 h/d),酮症诊断的风险增加3.7个百分点[23]。有研究者提出,牛奶的经典酶分析和单一脂肪酸、BHB和丙酮的色谱分析可以更准确、更深入地解释奶牛的能量状态,但这同时需要考虑品种和饲粮对乳成分的影响[24]。还有研究者研究出基于石墨烯的多重一次性电化学生物传感器,可用于农场快速监测NEFA和BHB含量[25]

2 奶牛泌乳初期NEB对生产性能、繁殖性能和动物健康的影响

NEB的程度及其恢复速度显著影响奶牛的生产、繁殖和健康性能[4, 26]。在围产期奶牛经历胰岛素耐受、DMI降低、NEB和氧化应激等过程,同时伴随内分泌、代谢和生理状态的急剧变化,奶牛免疫功能下降[27]。免疫功能不足导致奶牛易发生代谢紊乱,包括:瘤胃酸中毒、胎衣不下、子宫炎、子宫内膜炎、脂肪肝、酮病和LDA[6-7],这些代谢性疾病的发生又会进一步降低奶牛免疫功能,最终导致奶牛进入代谢紊乱的恶性循环[7],生产和繁殖性能低下,牛只淘汰率增加。

随着奶牛泌乳性能的提高,泌乳初期NEB程度加剧,导致奶牛产后繁殖性能下降[8]。产后NEB程度与产后不排卵时间存在强正相关关系[28]。NEB恢复期延长使黄体生成素分泌减少,从而降低卵巢对黄体生成素刺激的敏感性,减少优势卵泡雌二醇分泌,进一步影响优势卵泡排卵[29]。血液NEFA和BHB含量增加将影响奶牛产后卵泡发生,推迟排卵[28, 30]

奶牛产后F/P、血液NEFA和BHB含量与机体健康和泌乳性能显著相关。产前7~10 d内高血液NEFA含量(>0.4 mmol/L)将显著增加2~4倍LDA发病率,增加2倍胎衣不下发病率[31],增加2倍产后60 d内淘汰率,增加1.5倍整个泌乳期淘汰率[32]。产后7~14 d内血液高BHB含量(1.2~1.4 mmol/L)将显著增加LDA发病率[31-32],增加3倍子宫炎发病率,增加4~6倍临床型酮病发病率,增加产后4周内亚临床子宫内膜炎发病率[32],增加乳房炎的持续时间和严重性[33]。产后第1周血液BHB>1.8 mmol/L时,整个泌乳期产奶量至少降低300 kg[32]。产后7 d内奶BHB>0.1 mmol/L对产后机体健康和繁殖性能影响显著[31, 34]。具有高血液NEFA和BHB含量的奶牛难产率也显著增加[35]。奶牛血液BHB含量在1.2~2.9 mmol/L诊断为亚临床酮症,临床酮症血液BHB含量为3.0 mmol/L[36]

3 改善泌乳初期能量负平衡的措施

研究发现,泌乳初期能量校正乳产量与DMI遗传相关性为0.24[37],与EB遗传相关性仅为-0.02[38],表明先天遗传的EB状况并不影响总产奶量。这提示饲养管理决定EB对泌乳性能和繁殖性能的影响。

3.1 干奶期饲养管理

干奶期饲养管理直接影响产后NEB的严重程度和恢复情况,间接影响奶牛产后泌乳性能、繁殖性能和健康。

产前BCS与产后DMI呈负相关关系,产前体况过肥(BCS≥3.5)[20]或采食能量过多[39-40],奶牛产后DMI将下降更快,BCS损失更大,故而需要更长时间恢复EB,对机体健康、肝脏功能和生产性能不利。因此,干奶期限饲[40-41]或饲喂低能饲粮[42-43]可有效改善产后NEB和体况损失。通过添加切碎麦秸调控饲粮能量为5.07~5.23 MJ/kg,可有效控制干奶前期奶牛DMI和能量采食量[39, 43],从而实现控制产犊时奶牛适宜的BCS(3.0~3.5)。干奶后期增加能量供应对于围产期有益[12],能够促进瘤胃乳头发育,及早适应产后的高能饲粮[11]。NRC(2001)[11]推荐围产前期饲粮含有相对高的非纤维性碳水化合物(36%~44%)以提高围产期DMI,降低NEFA。

研究表明,产前能量来源不影响受孕率、产奶量和奶成分[44-45]。但也有研究指出,产前5周添加8%的亚麻籽(含有更多不饱和脂肪酸)与添加8%的菜籽相比,增加产奶量,降低血液NEFA含量,降低第1次排卵天数[41]。产前5周分别用10%和18%小麦代替大麦,可改善产后NEB,增加产奶量[46]。产前补充过瘤胃胆碱[47-49]、共轭亚油酸[50]或硼[51]可增加产奶量,降低血液NEFA、BHB含量和肝脏甘油三酯(TG)累积,缓解脂肪肝,改善奶牛代谢健康。

缩短干奶期至4周或更短,有利于增加DMI、降低血液NEFA含量和改善繁殖性能[52],但由于用于乳腺组织修复的时间不足,缩短干奶期将降低下一泌乳期的产奶量5%~6%[16, 53]。但也有研究表明,与干奶8周相比,干奶4周可改善奶牛EB,提高乳蛋白含量,虽然产后前12周产奶量减少,但总产奶量没有显著差异[54],还降低了血液NEFA和肝脏TG含量[16]。生产中除考虑最大化产奶量外,还应将牛只健康和繁殖性能等重要的经济参数纳入考虑范围。Watters等[53]用781头商业牧场牛比较干奶时间(56和34 d)对血液激素和牛只产后健康的影响,结果显示56 d干奶产奶量更高,差别主要来自于2胎牛;而34 d干奶显著降低产前、产后血液NEFA含量和淘汰率;干奶时间不影响产后酮病、子宫炎、LDA和胎衣不下的发病率。

3.2 产后饲养管理

泌乳初期改善奶牛NEB的措施主要包括改善饲粮适口性和增加饲粮能量以实现最大化DMI。产后高能饲粮可显著提高血液葡萄糖和胰岛素含量,改善NEB[55]。通过减少粗饲料纤维含量改善饲粮适口性也可显著增加产奶量[56]。饲喂高糖饲粮(占饲粮的8.7%)并没有改善产奶量,但可降低瘤胃酸中毒发生率,增加DMI[57]。产后饲粮添加脂肪,可有效增加饲粮能量,改善NEB和繁殖性能[28, 58],但添加量超过5%~6%[59],将抑制瘤胃微生物活动,降低纤维消化率。还有研究表明饲粮中添加过瘤胃蛋白可提高乳蛋白含量和DMI,改善NEB[60]

添加淀粉和脂肪是提高产后奶牛饲粮能量,改善NEB的常用措施。但不同的淀粉和脂肪饲喂方案对产后泌乳性能和繁殖性能影响很大。Garnsworthy等[61]比较了4种不同的淀粉和脂肪饲喂方案(产后120 d高淀粉饲粮或高脂肪饲粮、产后30 d高淀粉饲粮+90 d高脂肪饲粮、产后30 d高脂肪饲粮+90 d高淀粉饲粮)对奶牛产后泌乳和繁殖性能的影响,结果发现各处理对能量供应和产奶量无显著影响,但产后120 d高淀粉饲粮或高脂肪组显著增加血液BHB含量,产后30 d高淀粉饲粮+90 d高脂肪饲粮组显著改善奶牛繁殖性能。出现这种差异的原因可能是淀粉和脂肪对血液胰岛素含量的影响不同。高淀粉饲粮刺激血液胰岛素含量增加,血液胰岛素含量与卵泡的发育紊乱有关[62],高胰岛素含量有利于产后卵巢功能的恢复和排卵[28]。而低胰岛素含量可导致脂肪降解,增加血液NEFA含量,进一步危害颗粒细胞功能[62],增加产生酮病、LDA和脂肪肝等疾病的风险[6]。高血液胰岛素含量对卵母细胞和囊胚的发育不利,因此在奶牛排卵后,高脂肪饲粮不增加血液胰岛素含量,有利于囊胚发育[63]。Garnsworthy等[28]指出在产后至配种前20 d为维持卵巢功能饲粮淀粉含量应高于16%,脂肪含量低于4.4%。

有研究表明,产后灌服丙二醇[64]、钙磷镁合剂+复方口服补液盐[65]可降低血液BHB含量,降低酮病发生率,并且钙磷镁合剂+复方口服补液盐效果优于丙二醇。还有研究表明分娩至产后21 d饲粮中添加吡格列酮(6 mg/kg)可提高DMI和胰岛素含量,降低NEFA含量[66]

3.3 围产期饲养管理协同调控

Rabelo等[67]比较了围产期能量供应对产后生产性能的影响,结果显示围产前期高能(7.12 MJ/kg)比低能(6.61 MJ/kg)有更大的产前DMI,但产前的处理并不影响产后生产性能。围产后期高能(6.99 MJ/kg)比低能(6.53 MJ/kg)显著改善产后奶牛产奶量的增加速率和DMI。同时,试验证明产前产后处理不存在交互作用。Kokkonen等[68]比较了围产前期精粗比和围产后期精料的增加速率对奶牛生产性能的影响,试验处理包括围产前期3个精粗比(精料比例分别为20%、40%和60%)和产后快速、慢速增加精料,结果显示围产前期高精料显著改善产后NEB,降低血液NEFA含量,不影响产后生产性能。产后快速增加精料处理显著增加泌乳初期产奶量。产前产后处理对生产性能没有交互作用,但对BCS变化存在交互作用。

能量的利用部位也是影响NEB的因素[69],研究发现与黑小麦型饲粮相比,围产期玉米型饲粮显著降低产后血液NEFA含量,改善奶牛繁殖性能,表明围产期玉米相对于黑小麦来说是更好的能量来源,可能主要因为玉米提供了更多的过瘤胃淀粉[70],而淀粉在小肠消化比在瘤胃降解具有更高的能量效率[71]

淀粉和脂肪是奶牛饲粮的主要能量来源,但二者在奶牛围产期的饲喂效果显著不同[58, 72]。淀粉型饲粮可显著降低产前产后血液NEFA含量,改善经产牛产后NEB,但不影响泌乳性能。对于脂肪型饲粮来说,研究者更应关注脂肪的组成形式,相对于饱和脂肪酸,添加不饱和脂肪酸更能增加产后DMI,降低血液NEFA含量,改善NEB,提高泌乳性能,但与不添加脂肪饲粮相比无显著差异[73]。还有研究表明添加脂肪酸钙盐可改善产后NEB,但对产奶量的影响结果不一致[74-75],这可能与添加时间和脂肪酸种类等有关。

较多研究表明围产期添加B族维生素可改善NEB[76-77]。烟酸[78-79]、胆碱[80-82]、生物素(30 mg/d)和烟酰胺(45 g/d)[83]均可降低肝脏TAG和血液NEFA、BHB含量,改善NEB。瘤胃保护叶酸还可提高初产母牛受胎率[84]。含乙酰蛋氨酸96 mg、氰钴胺素10 mg、α-硫辛酸5 mg的复合物也可改善NEB[85]。而产前3周到产后8周饲喂5, 6-二甲基苯并咪唑(1.5 g/d)能改善产后奶牛的维生素B12供应、产奶量和能量平衡[86]。还有研究表明从干奶期到产后4周补充免疫调节饲料添加剂奥奶净(60 g/d)可以减少或调节与分娩相关的炎症反应(如乳腺炎和乳房水肿),改善产后健康[87]。而植物生物活性脂质化合物(也称为“精油”)和生物素组合或许能替代预防酮病的莫能菌素[88],减少奶牛产后BCS损失和酮病发病率[89],精油还可杀灭部分病原菌预防奶牛持续感染[90]。而过瘤胃葡萄糖也可提高机体免疫力,改善NEB[91]

4 小结

综上概述,产前和产后饲养管理对奶牛生产性能和繁殖性能的影响不存在交互作用,但存在可加性,只有好的产前管理结合好的产后管理才能实现最佳的生产性能和繁殖性能。大量的试验结果表明,产后泌乳性能和机体健康、繁殖性能存在负相关关系,高的产奶性能必然导致机体健康状况和繁殖性能下降。目前较多研究表明部分B族维生素可改善围产期奶牛NEB。而在能量供应方面,干奶期饲喂高能饲粮,奶牛产后NEB更为剧烈,但泌乳初期产奶量也会相对较高。缩短干奶期至30~35 d可有效改善繁殖性能和机体健康。不饱和脂肪酸钙盐虽然改善产后NEB,但降低产奶量。增加饲粮淀粉和脂肪含量都是提高产后饲粮能量的可行方案,但在不同时期添加量应适当控制,产后至配种前20 d为维持卵巢功能饲粮淀粉含量应高于16%,脂肪含量低于4.4%;而配种后宜增加脂肪含量至6%~7%。因此,生产中需在泌乳初期产奶量和机体健康、繁殖性能之间找到平衡点,以实现奶牛整个生命周期的最佳生产性能。

参考文献
[1]
FERGUSON J D. Diet, production and reproduction in dairy cows[J]. Animal Feed Science and Technology, 1996, 59(1/2/3): 173-184.
[2]
HEUER C, SCHUKKEN Y H, DOBBELAAR P. Postpartum body condition score and results from the first test day milk as predictors of disease, fertility, yield, and culling in commercial dairy herds[J]. Journal of Dairy Science, 1999, 82(2): 295-304. DOI:10.3168/jds.S0022-0302(99)75236-7
[3]
BUTTCHEREIT N, STAMER E, JUNGE W, et al. Evaluation of five lactation curve models fitted for fat protein ratio of milk and daily energy balance[J]. Journal of Dairy Science, 2010, 93(4): 1702-1712. DOI:10.3168/jds.2009-2198
[4]
TONI F, VINCENTI L, GRIGOLETTO L, et al. Early lactation ratio of fat and protein percentage in milk is associated with health, milk production, and survival[J]. Journal of Dairy Science, 2011, 94(4): 1772-1783. DOI:10.3168/jds.2010-3389
[5]
STAUFENBIEL R, SCHRODER U, GELFERT C C, et al. Body condition and metabolic stability as basis of high milk yield, reproductive performance, and general health in dairy cows[J]. Archiv Fur Tierzucht, 2003, 46(6): 513-526.
[6]
ROCHE J R, BERRY D P. Periparturient climatic, animal, and management factors influencing the incidence of milk fever in grazing systems[J]. Journal of Dairy Science, 2006, 89(7): 2775-2783. DOI:10.3168/jds.S0022-0302(06)72354-2
[7]
MULLIGAN F J, DOHERTY M L. Production diseases of the transition cow[J]. The Veterinary Journal, 2008, 176(1): 3-9. DOI:10.1016/j.tvjl.2007.12.018
[8]
STEVENSON J S. Reproductive management of dairy cows in high milk-producing herds[J]. Journal of Dairy Science, 2001, 84: E128-E143. DOI:10.3168/jds.S0022-0302(01)70207-X
[9]
BUTLER W R, SMITH R D. Interrelationships between energy balance and postpartum reproductive function in dairy cattle[J]. Journal of Dairy Science, 1989, 72(3): 767-783. DOI:10.3168/jds.S0022-0302(89)79169-4
[10]
KNIGHT C H. Lactation and gestation in dairy cows:flexibility avoids nutritional extremes[J]. Proceedings of the Nutrition Society, 2001, 60(4): 527-537. DOI:10.1079/PNS2001115
[11]
NRC. Nutrient requirements of dairy cattle.7th ed[M]. Washington, D.C.: National Academy Press, 2011.
[12]
VANDEHAAR M J, YOUSIF G, SHARMA B K, et al. Effect of energy and protein density of prepartum diets on fat and protein metabolism of dairy cattle in the periparturient period[J]. Journal of Dairy Science, 1999, 82(6): 1282-1295. DOI:10.3168/jds.S0022-0302(99)75351-8
[13]
LI X W, BAI G B, CHEN H, et al. Effects of non-esterified fatty acids on the gluconeogenesis in bovine hepatocytes[J]. Molecular and Cellular Biochemistry, 2012, 359(1/2): 385-388.
[14]
MACMILLAN K L, LEAN I J, WESTWOOD C T. The effects of lactation on the fertility of dairy cows[J]. Australian Veterinary Journal, 1996, 73(4): 141-147. DOI:10.1111/j.1751-0813.1996.tb10007.x
[15]
RASTANI R R, GRUMMER R R, BERTICS S J, et al. Reducing dry period length to simplify feeding transition cows:milk production, energy balance, and metabolic profiles[J]. Journal of Dairy Science, 2005, 88(3): 1004-1014. DOI:10.3168/jds.S0022-0302(05)72768-5
[16]
KESSEL S, STROEHL M, MEYER H H D, et al. Individual variability in physiological adaptation to metabolic stress during early lactation in dairy cows kept under equal conditions[J]. Journal of Animal Science, 2008, 86(11): 2903-2912. DOI:10.2527/jas.2008-1016
[17]
BAUMAN D E, GRIINARI J M. Nutritional regulation of milk fat synthesis[J]. Annual Review of Nutrition, 2003, 23: 203-227. DOI:10.1146/annurev.nutr.23.011702.073408
[18]
OSPINA P A, NYDAM D V, STOKOL T, et al. Association between the proportion of sampled transition cows with increased nonesterified fatty acids and β-hydroxybutyrate and disease incidence, pregnancy rate, and milk production at the herd level[J]. Journal of Dairy Science, 2010, 93(8): 3595-3601. DOI:10.3168/jds.2010-3074
[19]
NEBEL R L, MCGILLIARD M L. Interactions of high milk yield and reproductive performance in dairy cows[J]. Journal of Dairy Science, 1993, 76(10): 3257-3268. DOI:10.3168/jds.S0022-0302(93)77662-6
[20]
ROCHE J R, FRIGGENS C, KAY J K, et al. Invited review:body condition score and its association with dairy cow productivity, health, and welfare[J]. Journal of Dairy Science, 2009, 92(12): 5769-5801. DOI:10.3168/jds.2009-2431
[21]
HOLTENIUS K, AGENÄS S, DELAVAUD C, et al. Effects of feeding intensity during the dry period.2.Metabolic and hormonal responses[J]. Journal of Dairy Science, 2003, 86(3): 883-891. DOI:10.3168/jds.S0022-0302(03)73671-6
[22]
RODRIGUEZ-JIMENEZ S, HAERR K J, TREVISI E, et al. Prepartal standing behavior as a parameter for early detection of postpartal subclinical ketosis associated with inflammation and liver function biomarkers in peripartal dairy cows[J]. Journal of Dairy Science, 2018, 101(9): 8224-8235. DOI:10.3168/jds.2017-14254
[23]
PIÑEIRO J M, MENICHETTI B T, BARRAGAN A A, et al. Associations of pre-and postpartum lying time with metabolic, inflammation, and health status of lactating dairy cows[J]. Journal of Dairy Science, 2019, 102(4): 3348-3361. DOI:10.3168/jds.2018-15386
[24]
GROSS J J, BRUCKMAIER R M. Review:metabolic challenges in lactating dairy cows and their assessment via established and novel indicators in milk[J]. Animal, 2019, 13(Suppl.1): S75-S81.
[25]
TUTEJA S K, DUFFIELD T, NEETHIRAJAN S. Graphene-based multiplexed disposable electrochemical biosensor for rapid on-farm monitoring of NEFA and βHBA dairy biomarkers[J]. Journal of Materials Chemistry B, 2017, 5(33): 6930-6940. DOI:10.1039/C7TB01382E
[26]
REMPPIS S, STEINGASS H, GRUBER L, et al. Effects of energy intake on performance, mobilization and retention of body tissue, and metabolic parameters in dairy cows with special regard to effects of pre-partum nutrition on lactation-a review[J]. Asian-Australasian Journal of Animal Sciences, 2011, 24(4): 540-572. DOI:10.5713/ajas.2011.10134
[27]
SORDILLO L M, AITKEN S L. Impact of oxidative stress on the health and immune function of dairy cattle[J]. Veterinary Immunology and Immunopathology, 2009, 128(1/2/3): 104-109.
[28]
GARNSWORTHY P C, LOCK A, MANN G E, et al. Nutrition, metabolism, and fertility in dairy cows:1.Dietary energy source and ovarian function[J]. Journal of Dairy Science, 2008, 91(10): 3814-3823. DOI:10.3168/jds.2008-1031
[29]
BULTER W R. Energy balance relationships with follicular development, ovulation and fertility in postpartum dairy cows[J]. Livestock Production Science, 2003, 83(2/3): 211-218.
[30]
SHARMA A, BADDELA V S, BECKER F, et al. Elevated free fatty acids affect bovine granulosa cell function:a molecular cue for compromised reproduction during negative energy balance[J]. Endocrine Connections, 2019, 8(5): 493-505. DOI:10.1530/EC-19-0011
[31]
LEBLANC S J, LESLIE K E, DUFFIELD T F. Metabolic predictors of displaced abomasum in dairy cattle[J]. Journal of Dairy Science, 2005, 88(1): 159-170. DOI:10.3168/jds.S0022-0302(05)72674-6
[32]
DUFFIELD T F, LISSEMORE K D, MCBRIDE B W, et al. Impact of hyperketonemia in early lactation dairy cows on health and production[J]. Journal of Dairy Science, 2009, 92(2): 571-580. DOI:10.3168/jds.2008-1507
[33]
SURIYASATHAPORN W, HEUER C, NOORDHUIZEN-STASSEN E N, et al. Hyperketonemia and the impairment of udder defense:a review[J]. Veterinary Research, 2000, 31(4): 397-412. DOI:10.1051/vetres:2000128
[34]
WALSH R B, WALTON J S, KELTON D F, et al. The effect of subclinical ketosis in early lactation on reproductive performance of postpartum dairy cows[J]. Journal of Dairy Science, 2007, 90(6): 2788-2796. DOI:10.3168/jds.2006-560
[35]
JEONG J K, CHOI I S, KANG H G, et al. Relationship between serum metabolites, body condition, peri-and postpartum health and resumption of postpartum cyclicity in dairy cows[J]. Livestock Science, 2015, 181: 31-37. DOI:10.1016/j.livsci.2015.09.022
[36]
BENEDET A, MANUELIAN C L, ZIDI A, et al. Invited review:β-hydroxybutyrate concentration in blood and milk and its associations with cow performance[J]. Animal, 2019, 13(8): 1-14.
[37]
LI B, FIKSE W F, LØVENDAHL P, et al. Genetic heterogeneity of feed intake, energy-corrected milk, and body weight across lactation in primiparous Holstein, Nordic Red, and Jersey cows[J]. Journal of Dairy Science, 2018, 101(11): 10011-10021. DOI:10.3168/jds.2018-14611
[38]
SPURLOCK D M, DEKKERS J C, FERNANDO R, et al. Genetic parameters for energy balance, feed efficiency, and related traits in Holstein cattle[J]. Journal of Dairy Science, 2012, 95(9): 5393-5402. DOI:10.3168/jds.2012-5407
[39]
DANN H M, LITHERLAND N B, UNDERWOOD J P, et al. Diets during far-off and close-up dry periods affect periparturient metabolism and lactation in multiparous cows[J]. Journal of Dairy Science, 2006, 89(9): 3563-3577. DOI:10.3168/jds.S0022-0302(06)72396-7
[40]
DOUGLAS G N, OVERTON T R, BATEMAN H G, et al. Prepartal plane of nutrition, regardless of dietary energy source, affects periparturient metabolism and dry matter intake in Holstein cows[J]. Journal of Dairy Science, 2006, 89(6): 2141-2157. DOI:10.3168/jds.S0022-0302(06)72285-8
[41]
HAYIRLI A, KEISLER D H, DOEPEL L, et al. Peripartum responses of dairy cows to prepartal feeding level and dietary fatty acid source[J]. Journal of Dairy Science, 2011, 94(2): 917-930. DOI:10.3168/jds.2010-3674
[42]
MANN S, YEPES F A L, OVERTON T R, et al. Dry period plane of energy:effects on feed intake, energy balance, milk production, and composition in transition dairy cows[J]. Journal of Dairy Science, 2015, 98(5): 3366-3382. DOI:10.3168/jds.2014-9024
[43]
JANOVICK N A, BOISCLAIR Y R, DRACKLEY J K. Prepartum dietary energy intake affects metabolism and health during the periparturient period in primiparous and multiparous Holstein cows[J]. Journal of Dairy Science, 2011, 94(3): 1385-1400. DOI:10.3168/jds.2010-3303
[44]
ROCHE J R, KAY J K, PHYN C V C, et al. Dietary structural to nonfiber carbohydrate concentration during the transition period in grazing dairy cows[J]. Journal of Dairy Science, 2010, 93(8): 3671-3683. DOI:10.3168/jds.2009-2868
[45]
RADUNZ A E, FLUHARTY F L, DAY M L, et al. Prepartum dietary energy source fed to beef cows:Ⅰ.Effects on pre-and postpartum cow performance[J]. Journal of Dairy Science, 2010, 88(8): 2717-2728.
[46]
NIKKHAH A, EHSANBAKHSH F, ZAHMATKESH D, et al. Prepartal wheat grain feeding improves energy and calcium status of periparturient Holstein heifers[J]. Animal, 2011, 5(4): 522-527. DOI:10.1017/S1751731110002065
[47]
SHAHSAVARI A, D'OCCHIO M J, AI JASSIM R. The role of rumen-protected choline in hepatic function and performance of transition dairy cows[J]. British Journal of Nutrition, 2016, 116(1): 35-44. DOI:10.1017/S0007114516001641
[48]
COOKE R F, DEL RÍO N S, CARAVIELLO D Z, et al. Supplemental choline for prevention and alleviation of fatty liver in dairy cattle[J]. Journal of Dairy Science, 2007, 90(5): 2413-2418. DOI:10.3168/jds.2006-028
[49]
ZENOBI M G, SCHEFFLER T L, ZUNIGA J E, et al. Feeding increasing amounts of ruminally protected choline decreased fatty liver in nonlactating, pregnant Holstein cows in negative energy status[J]. Journal of Dairy Science, 2018, 101(7): 5902-5923. DOI:10.3168/jds.2017-13973
[50]
OLIVEIRA R C, PRALLE R S, DE RESENDE L C, et al. Prepartum supplementation of conjugated linoleic acids (CLA) increased milk energy output and decreased serum fatty acids and β-hydroxybutyrate in early lactation dairy cows[J]. PLoS One, 2018, 13(5): e0197733. DOI:10.1371/journal.pone.0197733
[51]
BASOGLU A, BASPINAR N, TENORI L, et al. Effects of boron supplementation on peripartum dairy cows' health[J]. Biological Trace Element Research, 2017, 179(2): 218-225. DOI:10.1007/s12011-017-0971-9
[52]
GUMEN A, KESKIN A, YILMAZBAS-MECITOGLU G, et al. Dry period management and optimization of post-partum reproductive management in dairy cattle[J]. Reproduction in Domestic Animals, 2011, 46: 11-17. DOI:10.1111/j.1439-0531.2011.01851.x
[53]
WATTERS R D, GUENTHER J N, BRICKNER A E, et al. Effects of dry period length on milk production and health of dairy cattle[J]. Journal of Dairy Science, 2008, 91(7): 2595-2603. DOI:10.3168/jds.2007-0615
[54]
O'HARA E A, OMAZIC A, OLSSON I, et al. Effects of dry period length on milk production and energy balance in two cow breeds[J]. Animal, 2018, 12(3): 508-514. DOI:10.1017/S1751731117001987
[55]
DOS SANTOS G B, BRANDÃO F Z, DOS SANTOS RIBEIRO L, et al. Metabolic, follicular and embryo production responses of postpartum crossbred Holstein×Gir dairy cows fed diets with different energy levels[J]. Animal Production Science, 2018, 59(8): 1446-1453. DOI:10.1071/an18090
[56]
JANICEK B N, KONONOFF P J, GEHMANN A M, et al. Short communication:effect of increasing levels of corn bran on milk yield and composition[J]. Journal of Dairy Science, 2007, 90(9): 4313-4316. DOI:10.3168/jds.2007-0275
[57]
PENNER G B, OBA M. Increasing dietary sugar concentration may improve dry matter intake, ruminal fermentation, and productivity of dairy cows in the postpartum phase of the transition period[J]. Journal of Dairy Science, 2009, 92(7): 3341-3353. DOI:10.3168/jds.2008-1977
[58]
VAN KNEGSEL A T, VAN DEN BRAND H, DIJKSTRA J, et al. Dietary energy source in dairy cows in early lactation:energy partitioning and milk composition[J]. Journal of Dairy Science, 2007, 90(3): 1467-1476. DOI:10.3168/jds.S0022-0302(07)71632-6
[59]
张吉鹍. 浅析反刍家畜日粮中饲料组合效应产生的机理[J]. 中国饲料添加剂, 2005(5): 6-11.
[60]
AMANLOU H, FARAHANI T A, FARSUNI N E. Effects of rumen undegradable protein supplementation on productive performance and indicators of protein and energy metabolism in Holstein fresh cows[J]. Journal of Dairy Science, 2017, 100(5): 3628-3640. DOI:10.3168/jds.2016-11794
[61]
GARNSWORTHY P C, FOULADI-NASHTA A A, MANN G E, et al. Effect of dietary-induced changes in plasma insulin concentrations during the early post partum period on pregnancy rate in dairy cows[J]. Reproduction, 2009, 137(4): 759-768. DOI:10.1530/REP-08-0488
[62]
VANHOLDER T, LEROY J L M R, DEWULF J, et al. Hormonal and metabolic profiles of high-yielding dairy cows prior to ovarian cyst formation or first ovulation post partum[J]. Reproduction in Domestic Animals, 2005, 40(5): 460-467. DOI:10.1111/j.1439-0531.2005.00601.x
[63]
FOULADI-NASHTA A A, GUTIERREZ C G, GARNSWORTHY P C, et al. Effects of dietary carbohydrate source on oocyte/embryo quality and development in high-yielding, lactating dairy cattle[J]. Biology of Reproduction, 2005, 135-136.
[64]
王艳辉, 高阳, 张洪友. 丙二醇预防酮病的效果研究[J]. 黑龙江八一农垦大学学报, 2016, 28(6): 43-48.
[65]
严宝英, 侯引绪, 曾光祥, 等. 产后灌服丙二醇与钙磷镁合剂及复方口服补液盐对奶牛血液生化指标的影响[J]. 中国奶牛, 2014(16): 23-25.
[66]
GHEISE N J E, RIASI A, CELI P, et al. Effects of dietary supplementation of pioglitazone or walnut meal on metabolic profiles and oxidative status in dairy cows with high pre-calving BCS[J]. The Journal of Dairy Research, 2018, 85(1): 16-22. DOI:10.1017/S0022029917000784
[67]
RABELO E, REZENDE R L, BERTICS S J, et al. Effects of transition diets varying in dietary energy density on lactation performance and ruminal parameters of dairy cows[J]. Journal of Dairy Science, 2003, 86(3): 916-925. DOI:10.3168/jds.S0022-0302(03)73674-1
[68]
KOKKONEN T, TESFA A, TUORI M, et al. Concentrate feeding strategy of dairy cows during transition period[J]. Livestock Production Science, 2004, 86(1/2/3): 239-251.
[69]
MIKUŁA R, NOWAK W, JAŚKOWSKI J M, et al. Effects of different starch sources on metabolic profile, production and fertility parameters in dairy cows[J]. Polish Journal of Veterinary Sciences, 2011, 14(1): 55-64.
[70]
DE VISSER H.Characterization of carbohydrates in concentrates for dairy cows[M]//GAINSWORTHY P G, COLE D J A.Recent advances in animal nutrition.Nottingham: University Press, 1993: 19.
[71]
HARMON D L, MCLEOD K R. Glucose uptake and regulation by intestinal tissues:implications and whole-body energetic[J]. Journal of Animal Science, 2001, 79(Suppl.E): E59-E72. DOI:10.2527/jas2001.79E-SupplE59x
[72]
VAN KNEGSEL A T M, VAN DEN BRAND H, GRAAT E A M, et al. Dietary energy source in dairy cows in early lactation:metabolites and metabolic hormones[J]. Journal of Dairy Science, 2007, 90(3): 1477-1485. DOI:10.3168/jds.S0022-0302(07)71633-8
[73]
PETIT H V, PALIN M F, DOEPEL L. Hepatic lipid metabolism in transition dairy cows fed flaxseed[J]. Journal of Dairy Science, 2007, 90(10): 4780-4792. DOI:10.3168/jds.2007-0066
[74]
CALDARI-TORRES C, LOCK A L, STAPLES C R, et al. Performance, metabolic, and endocrine responses of periparturient Holstein cows fed 3 sources of fat[J]. Journal of Dairy Science, 2011, 94(3): 1500-1510. DOI:10.3168/jds.2010-3748
[75]
张海波. 日粮补充脂肪酸钙对泌乳早期奶牛泌乳性能、血液生化指标及激素浓度的影响[J]. 中国畜牧杂志, 2018, 54(12): 73-77.
[76]
MORRISON E I, REINHARDT H, LECLERC H, et al. Effect of rumen-protected B vitamins and choline supplementation on health, production, and reproduction in transition dairy cows[J]. Journal of Dairy Science, 2018, 101(10): 9016-9027. DOI:10.3168/jds.2018-14663
[77]
YOUSSEF M A, YOUNIS M S, EL-ASHKER M R, ET AL. Effect of prepartum supplementation with niacin, choline and cod liver oil on postpartum insulin sensitivity and the redox status in cows with subclinical ketosis[J]. Animal Production Science, 2017, 58(10): 1847-1853.
[78]
陈志远, 王剑飞, 高健, 等. 过瘤胃烟酸对围产期奶牛生产性能和脂肪代谢的影响[J]. 中国奶牛, 2018(4): 10-13.
[79]
陈志远, 李炎, 王剑飞. 基于Meta分析烟酸对奶牛血液酮体指标的影响[J]. 饲料广角, 2017(8): 31-33. DOI:10.3969/j.issn.1002-8358.2017.08.015
[80]
史杰. 过瘤胃胆碱对围产期奶牛泌乳性能及部分血液生化指标的影响[J]. 中国奶牛, 2018(9): 14-18.
[81]
叶耿坪, 张晓峰, 王文丹, 等. 富硒和过瘤胃胆碱新型添加剂对围产期奶牛生产性能及健康状况的影响[J]. 动物营养学报, 2018, 30(3): 1073-1083.
[82]
孙菲菲.胆碱和蛋氨酸对奶牛围产期营养平衡和机体健康的影响及机制[D].博士学位论文.杨凌: 西北农林科技大学, 2017.
[83]
WEI X S, CAI C J, HE J J, et al. Effects of biotin and nicotinamide supplementation on glucose and lipid metabolism and milk production of transition dairy cows[J]. Animal Feed Science and Technology, 2018, 237: 106-117. DOI:10.1016/j.anifeedsci.2018.01.012
[84]
LI H Q, LIU Q, WANG C, et al. Effects of dietary supplements of rumen-protected folic acid on lactation performance, energy balance, blood parameters and reproductive performance in dairy cows[J]. Animal Feed Science and Technology, 2016, 213: 55-63. DOI:10.1016/j.anifeedsci.2016.01.005
[85]
FIORE E, PERILLO L, PICCIONE G, et al. Effect of combined acetylmethionine, cyanocobalamin and α-lipoic acid on hepatic metabolism in high-yielding dairy cow[J]. Journal of Dairy Research, 2016, 83(4): 438-441. DOI:10.1017/S0022029916000509
[86]
WANG D M, ZHANG B X, WANG J K, et al. Short communication:effects of dietary 5, 6-dimethylbenzimidazole supplementation on vitamin B12 supply, lactation performance, and energy balance in dairy cows during the transition period and early lactation[J]. Journal of Dairy Science, 2018, 101(3): 2144-2147. DOI:10.3168/jds.2017-13725
[87]
WU Z, ALUGONGO G M, XIAO J X, et al. Effects of an immunomodulatory feed additive on body weight, production parameters, blood metabolites, and health in multiparous transition Holstein cows[J]. Animal Science Journal, 2019, 90(2): 167-177. DOI:10.1111/asj.13066
[88]
DRONG C, MEYER U, VON SOOSTEN D, et al. Effect of monensin and essential oils on performance and energy metabolism of transition dairy cows[J]. Journal of Animal Physiology and Animal Nutrition, 2016, 100(3): 537-551. DOI:10.1111/jpn.12401
[89]
HAUSMANN J, DEINER C, PATRA A K, et al. Effects of a combination of plant bioactive lipid compounds and biotin compared with monensin on body condition, energy metabolism and milk performance in transition dairy cows[J]. PLoS One, 2018, 13(3): e0193685. DOI:10.1371/journal.pone.0193685
[90]
王欣荣, 苏东伟, 成述儒, 等. 牛至精油对奶牛产后发情及繁殖性能的影响[J]. 中国兽医学报, 2017, 37(11): 2211-2214.
[91]
张小丽, 吴建, 韩雪峰, 等. 过瘤胃葡萄糖对围产期奶牛空肠微生物群落和黏膜代谢及免疫相关基因表达的影响[J]. 动物营养学报, 2019, 31(7): 3143-3155.