动物营养学报    2020, Vol. 32 Issue (3): 1204-1215    PDF    
体外法研究壳聚糖对无乳链球菌诱导的奶牛乳腺上皮细胞炎性损伤的保护作用
孙铭维1 , 童津津1 , 蒋林树1 , 熊本海2 , 毛胜勇3     
1. 北京农学院动物科学技术学院, 奶牛营养学北京市重点实验室, 北京 102206;
2. 中国农业科学院北京畜牧兽医研究所, 北京 100193;
3. 南京农业大学动物科学技术学院, 南京 210014
摘要: 本试验采用体外法研究壳聚糖(CTS)对无乳链球菌(S.agalactiae)诱导的奶牛乳腺上皮细胞(BMECs)炎性损伤的保护作用。首先,采用不同浓度(0、15.625、31.25、62.5、125、250、500和1 000 mg/mL)的CTS处理BMECs 12和24 h后,以四甲基偶氮唑蓝(MTT)法检测BMECs活性,根据BMECs活性筛选出CTS的适宜作用时间(24 h)和作用浓度(31.25、125和250 mg/mL),用于后续试验。然后,采用双因素试验设计,以不进行CTS处理和S.agalactiae诱导的BMECs作为对照组,以S.agalactiae诱导6 h的BMECs作为S.agalactiae组,以不同浓度(31.25、125和250 mg/mL)CTS处理24 h的BMECs作为CTS组,以不同浓度(31.25、125和250 mg/mL)CTS处理24 h后再经S.agalactiae诱导6 h的BMECs作为CTS(-)+sgc组,每组4个重复。使用荧光定量PCR的方法检测各组BMECs的白细胞介素(IL)-6、IL-1β、肿瘤坏死因子-α(TNF-α)、IL-8、Toll样受体2(TLR2)、髓样分化因子88(MyD88)、白细胞介素-1受体相关激酶4(IRAK4)、肿瘤坏死因子受体相关因子6(TRAF6)和转化生长因子β活化激酶1(TAK1)的mRNA表达量,使用Western blot的方法检测各组BMECs的核因子-κB(NF-κB)抑制蛋白-α(IκB-α)、磷酸化NF-κB-p65(p-NF-κB-p65)、磷酸化p38(p-p38)、磷酸化细胞外信号调节激酶1/2(p-ERK1/2)和磷酸化c-Jun氨基末端激酶(p-JNK)的蛋白表达量。结果显示:1)31.25和125 mg/mL的CTS显著或极显著降低了BMECs的IL-6、IL-8、TLR2、MyD88、IRAK4和TRAF6 mRNA表达量(P < 0.05或P < 0.01);31.25、125和250 mg/mL的CTS极显著降低了S.agalactiae诱导的BMECs的IL-6、IL-1βTNF-α、IL-8、TLR2、MyD88、IRAK4、TRAF6和TAK1 mRNA表达量(P < 0.01)。2)31.25、125和250 mg/mL的CTS显著或极显著降低了BMECs和S.agalactiae诱导的BMECs的p-NF-κB-p65、p-p38、p-ERK1/2和p-JNK蛋白表达量(P < 0.05或P < 0.01)。由上述结果可知,CTS可以通过抑制NF-κB和丝裂原活化蛋白激酶(MAPK)信号通路转导来降低S.agalactiae诱导BMECs产生炎症反应,从而有效保护细胞,降低炎性损伤作用。
关键词: 壳聚糖    无乳链球菌    奶牛乳腺上皮细胞    炎性损伤    保护作用    
In Vitro Study on Protective Effect of Chitosan against Inflammation Injury of Bovine Mammary Epithelial Cells Induced by Streptococcus agalactiae
SUN Mingwei1 , TONG Jinjin1 , JIANG Linshu1 , XIONG Benhai2 , MAO Shengyong3     
1. Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China;
2. Institute of Animal Science and Veterinary, Chinese Academy of Agricultural Science, Beijing 100193, China;
3. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210014, China
Abstract: The aim of this study was to investigate the protective effect of chitosan (CTS) against Streptococcus agalactiae (S. agalactiae)-induced inflammatory injury of bovine mammary epithelial cells (BMECs) using an in vitro method. Firstly, the BMECs were treated with different concentrations (0, 15.625, 31.25, 62.5, 125, 250, 500 and 1 000 mg/mL) of CTS for 12 and 24 hours, respectively. The BMECs viability was detected by methyl thiazoyl terazolium (MTT) assay, and the appropriate action time and action concentrations (31.25, 125 and 250 mg/mL) were screened out according to BMECs viability for follow-up experiment. Then, a two-factor experiment design was adopted and divided into four groups with 4 replicates in each group. BMECs in control group were not treated with CTS and not stimulated by S. agalactiae, BMECs in S. agalactiae group were stimulated by S. agalactiae for 6 hours, BMECs in CTS groups were treated with CTS at different concentrations (31.25, 125 and 250 mg/mL) for 24 hours, and BMECs in CTS(-)+sgc group were treated with CTS at different concentrations (31.25, 125 and 250 mg/mL) for 24 hours, and then stimulated by S. agalactiae for 6 hours. The mRNA expression levels of interleukin (IL)-6, IL-1β, tumor necrosis factor-α (TNF-α), IL-8, Toll-like receptor 2 (TLR2), myeloid differentiation factor 88 (MyD88)、IL-1 receptor associated kinase 4 (IRAK4), tumor necrosis factor receptor-associated factor 6 (TRAF6) and transforming growth factor-β activated kinase 1 (TAK1) in BMECs were detected by quantitative real-time PCR method, and the protein expression levels of nuclear transcription factor-κB (NF-κB) inhibitor-α (IκB-α), phosphorylated NF-κB-p65 (p-NF-κB-p65), phosphorylated p38 (p-p38), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and phosphorylated c-Jun N-terminal kinase (p-JNK) in BMECs were detected by Western blot method. The results showed as follows:1) CTS at 31.25 and 125 mg/mL significantly or extremely significantly decreased the mRNA expression levels of IL-6, IL-8, TLR2, MyD88, IRAK4 and TRAF6 in BMECs (P < 0.05 or P < 0.01); CTS at 31.25, 125 and 250 mg/mL extremely significantly decreased the mRNA expression levels of IL-6, IL-1β, TNF-α, IL-8, TLR2, MyD88, IRAK4, TRAF6 and TAK1 in BMECs induced by S. agalactiae (P < 0.01). 2) CTS at 31.25, 125 and 250 mg/mL significantly or extremely significantly reduced the protein levels of p-NF-κB-p65, p-p38, p-ERK1/2 and p-JNK in BMECs and BMECs induced by S. agalactiae (P < 0.05 or P < 0.01). It can be concluded that CTS can effectively protect cells and reduce inflammatory injury by inhibiting the NF-κB and mitogen activated protein kinase (MAPK) signaling pathways of BMECs and inhibiting S. agalactiae-induced inflammatory response.
Key words: chitosan    Streptococcus agalactiae    bovine mammary epithelial cells    inflammation injury    protective effect    

乳腺炎是奶牛常见病之一,危害着奶牛的健康,并且可给畜牧业尤其是乳品行业造成巨大的经济损失[1]。乳腺炎不仅导致奶牛产奶量、乳品质下降,而且对人体健康也是一种潜在危害[2]。无乳链球菌(Streptococcus agalactiae,S. agalactiae)为革兰氏阳性菌,是引起奶牛乳腺炎的常见和主要致病菌之一,主要导致亚临床乳腺炎[3]。奶牛乳腺炎主要是病原菌侵入乳头导管后引发乳腺内感染产生的炎症反应,微生物或其引发的炎症反应对包括分泌乳汁的奶牛乳腺上皮细胞(BMECs)在内的组织细胞造成损害,导致乳腺暂时性或永久性功能丧失[4]。乳头导管是乳腺炎致病菌最常见的入口,乳头导管的适应性屏障构成了阻挡病原菌入侵的第1道防线[5]。构成乳头管、导管系统和腺泡内壁的BMECs则构成了机体阻挡病原菌入侵的第2道防线[6],BMECs之间的紧密连接构成了一个乳腔(腺泡和乳池以及导管腔)和乳腺间隙之间的动态物理屏障,有效防止致病菌的进入,此外,BMECs参与了乳腺内感染后的炎症反应[7]

BMECs作为抵御病原微生物入侵的重要防线,除去产乳功能外,可通过模式识别受体(PRRs)感知病原体的分子成分,启动对致病菌的体外天然免疫应答[8-9]。在PPRs中,Toll样受体2(TLR2)可以识别革兰氏阳性菌,随后引起髓样分化因子88(MyD88)的激活,MyD88的死亡结构域与白细胞介素-1受体相关激酶(IRAK)相互作用,肿瘤坏死因子受体相关因子6(TRAF6)被磷酸化并被招募到IRAK[10],最终导致核因子-κB(NF-κB)和丝裂原活化蛋白激酶(MAPK)的快速协同激活[11]。NF-κB和MAPK信号通路负责调节细胞因子、趋化因子的表达,引起细胞的免疫反应,也导致乳腺损伤的发生[12]

尽管抗生素是针对奶牛乳腺炎治疗最有效的手段,然而,由于成本、耐药、残留和食品安全问题等因素[13],通过天然活性物质治疗或提高奶牛对病原微生物的先天免疫防御越来越受到人们的关注。壳聚糖(chitosan,CTS)由甲壳素获得,而甲壳素是天然大分子中最丰富的多糖,是一种可从甲壳纲、真菌[14]和昆虫[15]中提取的生物聚合物。CTS具有良好的吸附性、吸湿性、成膜性、通透性以及较好的生物相容性、生物降解性和低过敏性等特性[16]。一些研究表明,CTS具有增强免疫和抗炎特性,可作为动物的免疫刺激剂[17]。此外,CTS还具有抗氧化能力,表现出清除自由基和保护机体免受过氧化物损伤的作用[18]。Li等[19]研究发现,补饲500 mg/kg CTS可以增强肉牛的体液和细胞免疫反应,提高其抗氧化能力。然而,CTS对BMECs的免疫调节和炎症保护作用仍不清楚。因此,本试验旨在通过体外感染模型,研究CTS对S. agalactiae引起的BMECs炎性损伤的保护作用及其机制,为CTS在奶牛乳腺炎防治方面的应用提供试验数据和参考。

1 材料与方法 1.1 试验材料

BMECs来自于东北农业大学动物生物化学与分子生物学实验室的惠赠;S. agalactiae为购自于中国兽药监察所的标准菌株(CVCC3940);CTS购自济南海得贝海洋生物工程有限公司,水溶性,分子质量为40 ku,脱乙酰度95.27%;胎牛血清(FBS,10099141)、DMEM培养液(11995065)、F-12培养液(11765054)、Hank’s(14175095)、0.25%胰蛋白酶-EDTA消化液(25200056)和Pen Strep(15140122)购自美国Gibco公司;脑心浸出液肉汤(brain heart infusion broth,BHI)购自英国OXOID公司;总RNA提取试剂盒购自上海OMAGA公司;cDNA反转录试剂盒和TB GreenTM Premix Ex Taq Ⅱ购自日本TaKaRa公司;四甲基偶氮唑蓝(MTT)细胞增殖及细胞毒性检测试剂盒以及Western blot相关试验材料购自上海碧云天公司;一抗β-微管蛋白(β-tubulin,2128)、核因子(NF)-κB抑制蛋白-α(IκB-α,4814s)、磷酸化NF-κB-p65(p-NF-κB-p65,3039s)、磷酸化p38(p-p38,9215s)、磷酸化细胞外信号调节激酶1/2(p-ERK1/2,4370T)和磷酸化c-Jun氨基末端激酶(p-JNK,9164T)购自美国CST公司;二抗购自LABLEAD公司。

1.2 试验方法 1.2.1 BMECs的传代培养

在DMEM/F-12培养液中加入10% FBS和1%青-链霉素(即100 U/mL青霉素和100 μg/mL链霉素),于37 ℃、5%CO2细胞培养箱中培养BMECs[20],传至3~6代后用于后续试验。

1.2.2 含不同浓度CTS的细胞培养液的配制

称取100 g CTS溶解于DMEM/F-12培养液(不加青-链霉素,含2%FBS)中,通过倍比稀释调整CTS浓度分别为15.625、31.25、62.5、125、250、500和1 000 mg/mL,4 ℃保存备用。

1.2.3 含S. agalactiae的细胞培养液的配制

S. agalactiae用BHI培养基培养。将冻存S. agalactiae在37 ℃恒温摇床中扩增18 h后,涂板于BHI固体培养基,37 ℃恒温培养箱中过夜培养,挑取单菌落进行扩增后涂板计数。用DMEM/F-12培养液(不加青-链霉素,含2%FBS)按感染复数(MOI)=50 : 1][21]的接种量稀释菌液,制成含S. agalactiae的细胞培养液,4 ℃保存备用。

1.2.4 BMECs活性检测

将BMECs按5 000个/孔接种于96孔板,37 ℃、5%CO2细胞培养箱中培养24 h后,分别更换为含不同浓度(0、15.625、31.25、62.5、125、250、500和1 000 mg/mL)CTS的DMEM/F-12培养液(不加青-链霉素,含2% FBS),于37 ℃、5%CO2细胞培养箱中分别培养12和24 h。每个浓度设立6个重复。随后,按照MTT细胞增殖及细胞毒性检测试剂盒说明书每孔加入10 μL MTT溶液,在细胞培养箱内继续孵育4 h;每孔加入100 μL formazan溶解液,适当混匀,在细胞培养箱内继续孵育,直至在普通光学显微镜下观察发现formazan全部溶解,用酶标仪(Thermo Fisher Scientific Inc.)在570 nm处测定吸光度(OD570 nm)。

1.2.5 荧光定量PCR检测炎性损伤相关基因表达

接种BMECs于6孔板中,放入37 ℃、5% CO2细胞培养箱中培养至细胞达到90%以上融合,随后采用双因素试验设计,将细胞分为对照组、S. agalactiae组、CTS组和CTS(-)+sgc组,每组4个重复。对照组更换为不添加CTS和S. agalactiae的普通维持培养液[DMEM/F-12培养液(不加青-链霉素,含2%FBS)];S. agalactiae组更换为含S. agalactiae的细胞培养液,用S. agalactiae(MOI=50 : 1)刺激细胞6 h;CTS组更换为含不同浓度CTS(31.25、125和250 mg/mL)的细胞培养液,继续培养24 h;CTS(-)+sgc组更换为含不同浓度CTS(31.25、125和250 mg/mL)的细胞培养液,继续培养24 h后,更换为含S. agalactiae的细胞培养液,用S. agalactiae(MOI=50 : 1)刺激细胞6 h。随后,按照总RNA提取试剂盒提取细胞总RNA,然后采用cDNA合成试剂盒反转录为cDNA,反应条件为37 ℃,15 min;85 ℃,5 s。以β-肌动蛋白(β-actin)为内参基因,采用荧光定量PCR的方法检测炎性损伤相关基因的表达量。荧光定量PCR采用2步法,反应条件为:95 ℃预变性30 s,1个循环;95 ℃延伸5 s,60 ℃退火30 s,40个循环。基因的引物序列见表 1,由生工生物工程(上海)股份有限公司合成。

表 1 基因的引物序列 Table 1 Primer sequences of genes
1.2.6 Western blot检测炎性损伤相关蛋白的表达

接种BMECs于6孔板中,放入37 ℃、5%CO2细胞培养箱中培养至细胞达到90%以上融合,随后试验采用双因素试验设计,分为对照组、S. agalactiae组、CTS组和CTS(-)+sgc组,每组4个重复,后续处理方法同1.2.5。使用细胞裂解液提取细胞蛋白质,聚氰基丙烯酸正丁酯(bicinchoninic acid,BCA)法测定蛋白质浓度,稀释各组细胞蛋白质到相同浓度。配制十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate-polyacrylamide gel electrophoresis,SDS-PAGE)凝胶,蛋白质样品上样量为36 μg/孔,100 V恒压电泳至溴酚蓝刚跑出分离胶底部停止电泳。电泳完毕后,采用湿转法转膜,然后对膜进行封闭和一抗、二抗孵育,电化学发光(electrochemiluminescence,ECL)显色后进行荧光成像仪检测,以β-tubulin为内参蛋白。使用GIS ID分析软件V4.2(上海天介仪器有限公司)分析条带的积分光密度(IOD)。

1.3 数据处理与分析

试验数据采用Excel 2016进行整理,应用统计软件SPSS 20.0进行单因素方差分析(one-way ANOVA)分析,并采用Duncan氏法进行多重比较,P < 0.05代表差异显著,P < 0.01代表差异极显著。试验结果用平均值±标准误(mean±SE)表示。

2 结果与分析 2.1 CTS对BMECs活性的影响

不同浓度(0、15.625、31.25、62.5、125、250、500和1 000 mg/mL)的CTS作用于BMECs 12和24 h后,采用MTT法测定细胞活性,结果如图 1所示。除15.625 mg/mL外的其他浓度的CTS对BMECs活性的提高作用均表现为培养24 h时优于培养12 h时。当培养12 h时,15.625、31.25和62.5 mg/mL的CTS显著提高了BMECs的活性(P < 0.05),1 000 mg/mL的CTS极显著降低了BMECs的活性(P < 0.01);当培养24 h时,15.625和500 mg/mL的CTS显著提高了BMECs的活性(P < 0.05),31.25、62.5、125和250 mg/mL的CTS极显著提高了BMECs的活性(P < 0.01),且以31.25、125和250 mg/mL的CTS对BMECs活性的提高效果较佳。因此,选用作用效果更好的24 h作为作用时间,31.25、125和250 mg/mL作为CTS作用浓度进行后续试验。

“C”代表对照组;数据柱标注“*”表示与对照组相比差异显著(P < 0.05),标注“* *”表示与对照组相比差异极显著(P < 0.01)。
“C” represents the control group; value columns with “*” means significant difference (P < 0.05), and with “* *” means extremely significant difference compared with the control group (P < 0.01).
图 1 CTS对BMECs活性的影响 Fig. 1 Effects of CTS on BMECs viability
2.2 CTS对S. agalactiae诱导的BMECs炎性因子表达的影响

图 2可知,CTS作用BMECs 24 h后,31.25 mg/mL的CTS极显著降低了BMECs的IL-6和IL-8 mRNA表达量(P < 0.01);125 mg/mL的CTS显著降低了BMECs的IL-6 mRNA表达量(P < 0.05),极显著降低了BMECs的IL-8 mRNA表达量(P < 0.01);250 mg/mL的CTS极显著升高了BMECs的IL-6、IL-1βTNF-α mRNA表达量(P < 0.01)。S. agalactiae诱导BMECs 6 h后,极显著提高了BMECs的IL-6、IL-1βTNF-α和IL-8 mRNA表达量(P < 0.01),而31.25和125 mg/mL的CTS极显著降低了S. agalactiae诱导的BMECs的IL-6、IL-1βTNF-α和IL-8 mRNA表达量(P < 0.01),250 mg/mL的CTS极显著降低了S. agalactiae诱导的BMECs的IL-6、TNF-α和IL-8 mRNA表达量(P < 0.01),其中31.25 mg/mL的CTS抑制效果最显著。

“C”代表对照组;“T”代表S. agalactiae组;“CTS”代表CTS组;“CTS(-)+sgc”代表CTS(-)+sgc组;“31.25”、“125”、“250”分别代表 31.25、125、250 mg/mL的CTS。数据柱标注“*”表示与对照组相比差异显著(P < 0.05),标注“* *”表示与对照组相比差异极显著(P < 0.01)。数据柱标注“#”表示与S. agalactiae组相比差异显著(P < 0.05),标注“##”表示与S. agalactiae组相比差异极显著(P < 0.01)。下图同。 "C" represents the control group; "T" represents the S. agalactiae group; "CTS" represents the CTS group; "CTS(-)+sgc" represents the CTS(-)+sgc group; "31.25", "125" and "250" represents 31.25, 125 and 250 mg/mL CTS, respectively. Value columns with "*" means significant difference (P < 0.05), and with "* *" means extremely significant difference compared with the control group (P < 0.01). Value columns with "#" means significant difference (P < 0.05), and with "##" means extremely significant difference compared with the S. agalactiae group (P < 0.01). The same as below. 图 2 CTS对S. agalactiae诱导的BMECs的IL-1βTNF-α、IL-6和IL-8 mRNA表达量的影响 Fig. 2 Effects of CTS on mRNA expression levels of IL-6, IL-1β, TNF-α and IL-8 in BMECs induced by S. agalactiae
2.3 CTS对S. agalactiae诱导的BMECs Toll样受体信号转导通路的影响

图 3可知,CTS作用BMECs 24 h后,31.25和125 mg/mL的CTS极显著降低了BMECs的TLR2 mRNA表达量(P < 0.01);S. agalactiae诱导BMECs 6 h后,极显著提高了BMECs的TLR2 mRNA表达量(P < 0.01),但31.25、125和250 mg/mL的CTS均极显著降低了S. agalactiae诱导的BMECs的TLR2 mRNA表达量(P < 0.01),且31.25 mg/mL的CTS抑制效果最显著。

图 3 CTS对S. agalactiae诱导的BMECs的TLR2 mRNA表达量的影响 Fig. 3 Effects of CST on mRNA expression level of TLR2 in BMECs induced by S. agalactiae

图 4可知,CTS作用BMECs 24 h后,31.25 mg/mL的CTS显著降低了BMECs的MyD88 mRNA表达量(P < 0.05),极显著降低了BMECs的IRAK4和TRAF6 mRNA表达量(P < 0.01);S. agalactiae诱导BMECs 6 h后,极显著提高了BMECs的MyD88、IRAK4、TRAF6和TAK1 mRNA表达量(P < 0.01),而31.25、125和250 mg/mL的CTS均极显著降低了S. agalactiae诱导的BMECs的MyD88、IRAK4、TRAF6和TAK1 mRNA表达量(P < 0.01),且31.25 mg/mL的CTS抑制效果最显著。

图 4 CTS对S. agalactiae诱导的BMECs的MyD88、IRAK4、TRAF6和TAK1 mRNA表达量的影响 Fig. 4 Effects of CTS on mRNA expression levels of MyD88, IRAK4, TRAF6 and TAK1 in BMECs induced by S. agalactiae
2.4 CTS对S. agalactiae诱导的BMECs的IκB-α和p-NF-κB-p65蛋白表达量的影响

图 5可知,CTS作用BMECs 24 h后,31.25 mg/mL的CTS显著降低了BMECs的p-NF-κB-p65蛋白表达量(P < 0.05);125 mg/mL的CTS显著降低了BMECs的IκB-α蛋白表达量(P < 0.05),极显著降低了p-NF-κB-p65蛋白表达量(P < 0.01);250 mg/mL的CTS极显著降低了BMECs的p-NF-κB-p65蛋白表达量(P < 0.01)。S. agalactiae诱导BMECs 6 h后,显著提高了BMECs的IκB-α和p-NF-κB-p65蛋白表达量(P < 0.05),而31.25和125 mg/mL的CTS极显著降低了S. agalactiae诱导的BMECs的IκB-α蛋白表达量(P < 0.01),显著降低了p-NF-κB-p65蛋白表达量(P < 0.05),250 mg/mL的CTS极显著降低了S. agalactiae诱导的BMECs的IκB-α和p-NF-κB-p65蛋白表达量(P < 0.01)。

图 5 CTS对S. agalactiae诱导的BMECs的IκB-α和p-NF-κB-p65蛋白表达量的影响 Fig. 5 Effects of CTS on protein expression levels of IκB-α and p-NF-κB-p65 in BMECs induced by S. agalactiae
2.5 CTS对S. agalactiae诱导的BMECs的p-p38、p-ERK1/2和p-JNK蛋白表达量的影响

图 6可知,CTS作用BMECs 24 h后,31.25、125和250 mg/mL的CTS均极显著降低了BMECs的p-p38、p-ERK1/2和p-JNK蛋白表达量(P < 0.01),且基本呈浓度依赖性趋势。S. agalactiae诱导BMECs 6 h后,显著提高了BMECs的p-p38蛋白表达量(P < 0.05),极显著提高了p-JNK蛋白表达量(P < 0.01),p-ERK1/2蛋白表达量也有一定提高,但差异不显著(P>0.05),而31.25、125和250 mg/mL的CTS均极显著降低了S. agalactiae诱导的BMECs的p-p38、p-ERK1/2和p-JNK蛋白表达量(P < 0.01)。

图 6 CTS对S. agalactiae诱导的BMECs的p-p38、p-ERK1/2和p-JNK蛋白表达量的影响 Fig. 6 Effects of CTS on protein expression levels of p-p38, p-JNK and p-ERK1/2 in BMECs induced by S. agalactiae
3 讨论

一直以来,抗生素治疗是治疗奶牛乳腺炎的首选和有效方法[24],但是由于抗生素的滥用导致了耐药性、安全性等许多突出问题的出现[13],因而探究新的方法和途径预防和治疗奶牛乳腺炎已然成为奶牛养殖业的重要研究课题。CTS作为一种广泛的天然聚合物,表现出了提高机体免疫和抗炎、抗氧化的能力[17-19],但其对S. agalactiae诱导的BMECs的影响及其机制还不清楚。本试验结果显示,15.625、31.25、62.5、125、250和500 mg/mL的CTS显著提高了BMECs的活性,且31.25和250 mg/mL的CTS作用效果显著,而1 000 mg/mL的CTS显著降低了BMECs的活性,表明CTS在15.625~500 mg/mL时可以促进细胞的生长,而1 000 mg/mL的CTS对细胞具有毒性作用。

IL-1β和TNF-α是2种重要的促炎因子,在早期炎症反应帮助宿主抵抗感染方面起着关键作用[25]。IL-6作为一种多功能细胞因子,在宿主防御、免疫应答等方面发挥重要作用[25]。IL-8是一种重要的趋化因子,其可以从血液中招募中性粒细胞到感染部位,清除病原体[26]。为了探究CTS对S. agalactiae诱导的BMECs炎症反应的影响,本试验利用荧光定量PCR的方法探究了CTS对BMECs的IL-6、IL-1βTNF-α和IL-8 mRNA表达量的影响。CTS作用BMECs 24 h后,31.25和125 mg/mL的CTS显著降低了BMECs的IL-6和IL-8 mRNA表达量,250 mg/mL的CTS显著升高了BMECs的IL-6、IL-1βTNF-α mRNA表达量。Kim等[27]的研究也表明,水溶性CTS能抑制人星形细胞瘤中促炎因子TNF-α和IL-6的产生。Zhai等[28]的研究表明,CTS可以促进小鼠巨噬细胞TNF-α的表达,提高机体的免疫能力。因此,本研究中低浓度的CTS可以抑制正常状态下BMECs中炎性因子的表达,降低细胞炎症反应程度,而高浓度的CTS能够引发细胞轻微的炎症反应,调动机体的免疫功能。

S. agalactiae诱导BMECs 6 h后,极显著提高了BMECs的IL-6、IL-1βTNF-α和IL-8 mRNA表达量,表明S. agalactiae能够诱导BMECs的炎性反应。BMECs用CTS预处理24 h后显著降低了S. agalactiae诱导的BMECs的IL-6、IL-1βTNF-α和IL-8 mRNA表达量,且31.25 mg/mL的CTS抑制效果最显著,表明CTS对BMECs具有显著的抗炎作用,可以抑制S. agalactiae诱导的BMECs的炎性反应,且31.25 mg/mL的CTS作用效果最好。Yoon等[29]的研究也显示,CTS能够降低脂多糖(LPS)刺激小鼠的巨噬细胞TNF-αIL-6的表达,降低炎症反应的发生。

研究发现,TLR2在识别革兰氏阳性菌、启动细胞免疫反应方面发挥着重要作用[30],活化的TLR2在胞内与MyD88相互作用并激活信号转导,随后MyD88的死亡结构域与IRAK分子相互作用,TRAF6被磷酸化并被招募到IRAK,启动炎症反应[10, 24]。本研究结果显示,CTS作用BMECs 24 h后,31.25和125 mg/mL的CTS显著降低了BMECs的TLR2 mRNA表达量,S. agalactiae诱导BMECs 6 h后,BMECs的TLR2 mRNA表达量上调,而31.25、125和250 mg/mL的CTS均显著抑制了S. agalactiae诱导的BMECs的TLR2 mRNA表达量的上调。这些结果表明,TLR2在BMECs识别S. agalactiae方面发挥重要作用,且CTS能够抑制BMECs中TLR2 mRNA的表达,降低S. agalactiae对细胞的激活作用。此外,31.25 mg/mL的CTS显著降低了BMECs的MyD88、TRAF6和IRAK4 mRNA表达量,31.25、125和250 mg/mL的CTS对S. agalactiae诱导的BMECs的MyD88、TRAF6、IRAK4和TAK1 mRNA表达量的上调均表现出了极显著的抑制效果。这些结果表明,TLR2信号转导通路在S. agalactiae诱导BMECs炎症反应中发挥重要作用,而CTS通过抑制TLR2受体的活化有效降低TLR2信号转导通路的激活,抑制S. agalactiae诱导的细胞炎症反应,并且31.25 mg/mL的CTS作用效果最显著。

TLR2受体信号转导通路最终激活NF-κB和MAPK及其相关信号通路,导致细胞炎症反应发生[31-33]。NF-κB几乎存在于所有细胞当中,在免疫调控方面发挥重要作用,其中一个重要生理功能是炎症反应过程中调节炎性因子、促炎因子和趋化因子等的表达[34-35]。在已知的5种NF-κB同源蛋白中,p50:p65二聚体在哺乳动物中是最经典和广泛的二聚体,也是奶牛乳腺炎中主要激活靶点[36]。IκB-α是NF-κB的抑制蛋白,正常状态与NF-κB二聚体结合抑制NF-κB的激活,但IκB-α的合成也受NF-κB的调节,当NF-κB激活后促进IκB-α的表达来负反馈调节NF-κB的活化,防止过度炎症反应对机体造成严重危害[37-39]。因此,本研究探讨了CTS对BMECs的IκB-α和p-NF-κB-p65蛋白表达量的影响,结果显示,CTS作用BMECs 24 h后,显著降低了BMECs的p-NF-κB-p65蛋白表达量,极显著降低了S. agalactiae诱导的BMECs的IκB-α和p-NF-κB-p65蛋白表达量,说明CTS抑制BMECs中NF-κB信号通路的激活,这可能是CTS降低细胞炎症反应的作用机制。Khodagholi等[40]的研究也显示CTS可以抑制Nt2神经细胞NF-κB的活化,表现出抗炎和抗氧化的特性。

MAPK作为调控炎症反应的另一个关键因子,其下游的许多目的基因如转录激活因子-1,都与多种炎症因子的转录表达密切相关[41-42]。因此,本研究探究了CTS对BMECs MAPK信号通路中p38、JNK和ERK1/2磷酸化水平的影响,结果显示,CTS作用BMECs 24 h后,CTS极显著降低了BMECs的p-p38、p-ERK1/2和p-JNK蛋白表达量,极显著降低了S. agalactiae诱导的BMECs的p-p38、p-ERK1/2和p-JNK蛋白表达量,说明CTS也能够抑制BMECs MAPK信号通路的活化。Ratih等[43]的研究也显示,CTS能够抑制BV2小胶质细胞的磷酸化,从而降低细胞的炎症反应。因此,CTS对NF-κB和MAPK信号通路转导的抑制作用可能部分阐明了CTS的抗炎机制。

4 结论

在体外培养条件下,CTS可以通过抑制NF-κB和MAPK信号通路转导,减少BMECs中炎性因子IL-6、IL-1βTNF-α和IL-8 mRNA的表达,从而降低S. agalactiae诱导产生炎症的损伤作用,其中31.25 mg/mL的CTS作用效果最显著。

参考文献
[1]
AKERS R M, NICKERSON S C. Mastitis and its impact on structure and function in the ruminant mammary gland[J]. Journal of Mammary Gland Biology and Neoplasia, 2011, 16(4): 275-289. DOI:10.1007/s10911-011-9231-3
[2]
VAN SOEST F J S, SANTMAN-BERENDS I M G A, LAM T J G M, et al. Failure and preventive costs of mastitis on Dutch dairy farms[J]. Journal of Dairy Science, 2016, 99(10): 8365-8374. DOI:10.3168/jds.2015-10561
[3]
ZADOKS R N, MIDDLETON J R, MCDOUGALL S, et al. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans[J]. Journal of Mammary Gland Biology and Neoplasia, 2011, 16(4): 357-372. DOI:10.1007/s10911-011-9236-y
[4]
SANDHOLM M, KAARTINEN L, PYÖRÄLÄ S. Bovine mastitis-why does antibiotic therapy not always work? An overview[J]. Journal of Veterinary Pharmacology and Therapeutics, 1990, 13(3): 248-260. DOI:10.1111/j.1365-2885.1990.tb00774.x
[5]
WITZEL D A. Rhythmic contractions of the teat sphincter in the bovine[J]. Journal of Dairy Science, 1965, 48(2): 251-252.
[6]
SORDILLO L M, SHAFER-WEAVER K, DEROSA D. Immunobiology of the mammary gland[J]. Journal of Dairy Science, 1997, 80(8): 1851-1865. DOI:10.3168/jds.S0022-0302(97)76121-6
[7]
RAINARD P, RIOLLET C. Innate immunity of the bovine mammary gland[J]. Veterinary Research, 2006, 37(3): 369-400. DOI:10.1051/vetres:2006007
[8]
RINALDI M, LI R W, CAPUCO A V. Mastitis associated transcriptomic disruptions in cattle[J]. Veterinary Immunology and Immunopathology, 2010, 138(4): 267-279. DOI:10.1016/j.vetimm.2010.10.005
[9]
SCHUKKEN Y H, GVNTHER J, FITZPATRICK J, et al. Host-response patterns of intramammary infections in dairy cows[J]. Veterinary Immunology and Immunopathology, 2011, 144(3/4): 270-289.
[10]
MEADS M B, LI Z W, DALTON W S. A novel TNF receptor-associated factor 6 binding domain mediates NF-κB signaling by the common cytokine receptor β subunit[J]. The Journal of Immunology, 2010, 185(3): 1606-1615. DOI:10.4049/jimmunol.0902026
[11]
HINES D J, CHOI H B, HINES R M, et al. Prevention of LPS-induced microglia activation, cytokine production and sickness behavior with TLR4 receptor interfering peptides[J]. PLoS One, 2013, 8(3): e60388. DOI:10.1371/journal.pone.0060388
[12]
CALZADO M A, BACHER S, SCHMITZ M L. NF-κB inhibitors for the treatment of inflammatory diseases and cancer[J]. Current Medicinal Chemistry, 2007, 14(3): 367-376. DOI:10.2174/092986707779941113
[13]
KERRO DEGO O, OLIVER S P, ALMEIDA R A. Host-pathogen gene expression profiles during infection of primary bovine mammary epithelial cells with Escherichia coli strains associated with acute or persistent bovine mastitis[J]. Veterinary Microbiology, 2012, 155(2/3/4): 291-297.
[14]
STREIT F, KOCH F, LARANJEIRA M C M, et al. Production of fungal chitosan in liquid cultivation using apple pomace as substrate[J]. Brazilian Journal of Microbiology, 2009, 40(1): 20-25. DOI:10.1590/S1517-83822009000100003
[15]
SONG C, YU H, ZHANG M, et al. Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae[J]. International Journal of Biological Macromolecules, 2013, 60: 347-354. DOI:10.1016/j.ijbiomac.2013.05.039
[16]
ANITHA A, SOWMYA S, KUMAR P T S, et al. Chitin and chitosan in selected biomedical applications[J]. Progress in Polymer Science, 2014, 39(9): 1644-1667. DOI:10.1016/j.progpolymsci.2014.02.008
[17]
KONG X F, ZHOU X L, LIAN G Q, et al. Dietary supplementation with chitooligosaccharides alters gut microbiota and modifies intestinal luminal metabolites in weaned Huanjiang mini-piglets[J]. Livestock Science, 2014, 160: 97-101. DOI:10.1016/j.livsci.2013.11.023
[18]
TOMIDA H, FUJⅡ T, FURUTANI N, et al. Antioxidant properties of some different molecular weight chitosans[J]. Carbohydrate Research, 2009, 344(13): 1690-1696. DOI:10.1016/j.carres.2009.05.006
[19]
LI T, NA R, YU P, et al. Effects of dietary supplementation of chitosan on immune and antioxidative function in beef cattle[J]. Czech Journal of Animal Science, 2015, 60(1): 38-44.
[20]
毕崇亮.硒对金黄色葡萄球菌诱导的巨噬细胞和奶牛乳腺上皮细胞炎性损伤的保护作用研究[D].博士学位论文.扬州: 扬州大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-11117-1016287958.htm
[21]
杨德莲, 童津津, 孙铭维, 等. 无乳链球菌通过抑制酪氨酸激酶/信号转导及转录激活因子和哺乳动物雷帕霉素靶蛋白信号通路影响奶牛乳腺上皮细胞乳蛋白的合成[J]. 动物营养学报, 2019, 31(8): 3706-3718.
[22]
FU Y H, LIU B, FENG X S, et al. Lipopolysaccharide increases Toll-like receptor 4 and downstream Toll-like receptor signaling molecules expression in bovine endometrial epithelial cells[J]. Veterinary Immunology and Immunopathology, 2013, 151(1/2): 20-27.
[23]
PORCHERIE A, CUNHA P, TROTEREAU A, et al. Repertoire of Escherichia coli agonists sensed by innate immunity receptors of the bovine udder and mammary epithelial cells[J]. Veterinary Research, 2012, 43: 14. DOI:10.1186/1297-9716-43-14
[24]
LI F Y, FU Y H, LIU B, et al. Stevioside suppressed inflammatory cytokine secretion by downregulation of NF-κB and MAPK signaling pathways in LPS-stimulated RAW264.7 cells[J]. Inflammation, 2012, 35(5): 1669-1675. DOI:10.1007/s10753-012-9483-0
[25]
BANNERMAN D D. Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows[J]. Journal of Animal Science, 2009, 87(Suppl.13): 10-25.
[26]
ZBINDEN C, STEPHAN R, JOHLER S, et al. The Inflammatory response of primary bovine mammary epithelial cells to Staphylococcus aureus strains is linked to the bacterial phenotype[J]. PLoS One, 2014, 9(1): e87374. DOI:10.1371/journal.pone.0087374
[27]
KIM M S, SUNG M J, SEO S B, et al. Water-soluble chitosan inhibits the production of pro-inflammatory cytokine in human astrocytoma cells activated by amyloid β peptide and interleukin-1β[J]. Neuroscience Letters, 2002, 321(1/2): 105-109.
[28]
ZHAI X C, YANG X, ZOU P, et al. Protective effect of chitosan oligosaccharides against cyclophosphamide-induced immunosuppression and irradiation injury in mice[J]. Journal of Food Science, 2018, 83(2): 535-542. DOI:10.1111/1750-3841.14048
[29]
YOON H J, MOON M E, PARK H S, et al. Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells[J]. Biochemical and Biophysical Research Communications, 2007, 358(3): 954-959. DOI:10.1016/j.bbrc.2007.05.042
[30]
YANG W, ZERBE H, PETZL W, et al. Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-κB in mammary epithelial cells and to quickly induce TNFα and interleukin-8 (CXCL8) expression in the udder[J]. Molecular Immunology, 2008, 45(5): 1385-1397. DOI:10.1016/j.molimm.2007.09.004
[31]
OVIEDO-BOYSO J, VALDEZ-ALARCÓN J J, CAJERO-JUÁREZ M, et al. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis[J]. Journal of Infection, 2007, 54(4): 399-409. DOI:10.1016/j.jinf.2006.06.010
[32]
VUNTA H, DAVIS F, PALEMPALLI U D, et al. The anti-inflammatory effects of selenium are mediated through 15-deoxy-Δ12, 14-prostaglandin J2 in macrophages[J]. The Journal of Biological Chemistry, 2007, 282(25): 17964-17973. DOI:10.1074/jbc.M703075200
[33]
GHOSH S, HAYDEN M S. New regulators of NF-κB in inflammation[J]. Nature Reviews Immunology, 2008, 8(11): 837-848. DOI:10.1038/nri2423
[34]
LI J, PEET G W, BALZARANO D, et al. Novel NEMO/IκB kinase and NF-κB target genes at the pre-B to immature B cell transition[J]. The Journal of Biological Chemistry, 2001, 276(21): 18579-18590. DOI:10.1074/jbc.M100846200
[35]
LI X, MASSA P E, HANIDU A, et al. IKKα, IKKβ, and NEMO/IKKγ are each required for the NF-κB-mediated inflammatory response program[J]. The Journal of Biological Chemistry, 2002, 277(47): 45129-45140. DOI:10.1074/jbc.M205165200
[36]
FANG L, WU H M, DING P S, et al. TLR2 mediates phagocytosis and autophagy through JNK signaling pathway in Staphylococcus aureus-stimulated RAW264.7 cells[J]. Cellular Signalling, 2014, 26(4): 806-814.
[37]
ZHANG W, ZHANG R X, WANG T C, et al. Selenium inhibits LPS-induced pro-inflammatory gene expression by modulating MAPK and NF-κB signaling pathways in mouse mammary epithelial cells in primary culture[J]. Inflammation, 2014, 37(2): 478-485.
[38]
CROY C H, BERGQVIST S, HUXFORD T, et al. Biophysical characterization of the free IκBα ankyrin repeat domain in solution[J]. Protein Science, 2004, 13(7): 1767-1777. DOI:10.1110/ps.04731004
[39]
HOFFMANN A, LEVCHENKO A, SCOTT M L, et al. The IκB-NF-κB signaling module:temporal control and selective gene activation[J]. Science, 2002, 298(5596): 1241-1245. DOI:10.1126/science.1071914
[40]
KHODAGHOLI F, EFTEKHARZADEH B, MAGHSOUDI N, et al. Chitosan prevents oxidative stress-induced amyloid β formation and cytotoxicity in NT2 neurons:involvement of transcription factors Nrf2 and NF-κB[J]. Molecular and Cellular Biochemistry, 2010, 337(1/2): 39-51.
[41]
CARIO E, ROSENBERG I M, BRANDWEIN S L, et al. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors[J]. The Journal of Immunology, 2000, 164(2): 966-972. DOI:10.4049/jimmunol.164.2.966
[42]
BEAUDOIN T, LAFAYETTE S, ROUSSEL L, et al. The level of p38α mitogen-activated protein kinase activation in airway epithelial cells determines the onset of innate immune responses to planktonic and biofilm Pseudomonas aeruginosa[J]. The Journal of Infectious Diseases, 2013, 207(10): 1544-1555. DOI:10.1093/infdis/jit059
[43]
PANGESTUTI R, BAK S S, KIM S K. Attenuation of pro-inflammatory mediators in LPS-stimulated BV2 microglia by chitooligosaccharides via the MAPK signaling pathway[J]. International Journal of Biological Macromolecules, 2011, 49(4): 599-606. DOI:10.1016/j.ijbiomac.2011.06.014