动物营养学报    2020, Vol. 32 Issue (5): 2037-2045    PDF    
植物多酚的抗氧化作用及其改善肉质的机制
郑红梅 , 王少英 , 史新娥     
西北农林科技大学动物科技学院, 动物脂肪沉积与肌肉发育实验室, 陕西省动物遗传育种与繁殖重点实验室, 杨凌 712100
摘要: 随着社会经济的发展和人们生活水平的提高,消费者越来越关注肉制品的健康和营养。植物多酚具有天然的抗氧化、抗菌等特性,能够抑制氧化酶活性,促进抗氧化酶活性。大量研究表明,植物多酚不仅能够通过改善肌肉的肉色、pH、剪切力、滴水损失、肌纤维类型、脂肪酸组成等多项指标改善肉品质,还能够抑制肉制品中微生物的生长,延缓脂肪氧化,减少营养物质的损失,并延长肉制品的保质期。本综述阐述了植物多酚在畜牧业和食品行业的应用,详细论述了植物多酚抗氧化作用机制,为植物多酚更广泛的应用提供理论依据。
关键词: 植物多酚    抗氧化    肉质    机制    
Antioxidative Effects of Plant Polyphenols and Its Mechanism of Improving Meat Quality
ZHENG Hongmei , WANG Shaoying , SHI Xin     
Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
Abstract: With the development of social economy and the improvement of people's living standard, consumers are paying more and more attention to the health and nutrition of meat products. Plant polyphenols have natural antioxidant and antibacterial properties. They can inhibit oxidase activity and promote antioxidant enzyme activity. Numerous studies have shown that plant polyphenols can not only improve meat quality by improving muscle color, pH, shear, drip loss, muscle fiber type, fatty acid composition and other indicators; but also can inhibit the growth of microorganisms in meat products, delay fat oxidation, reduce the loss of nutritional value, and prolong the shelf life of meat products. This review not only describes the application of plant polyphenols in animal husbandry and food industry, but also discusses the mechanism of antioxidant, providing a theoretical basis for the wider application of plant polyphenols.
Key words: plant polyphenols    antioxidation    meat quality    mechanism    

随着生活品质的不断提高,人们对消费的肉产品的安全和品质要求也越来越高。提高肉品质的途径很多,一方面,动物营养是影响肉品质的主要原因之一,可通过改变动物饲粮来改善动物肉品质。动物营养可改善肉品质的主要指标有:pH、肉色、肌内脂肪、嫩度、滴水损失、系水力、风味、多汁性、总脂含量、胆固醇含量、脂肪酸的组成等。目前改善肉类脂肪酸的组成就是其中一个研究热点,含有更高的多不饱和脂肪酸和更低的脂肪酸n-6/n-3比率的肉类更健康。食用富含长链n-3脂肪酸的肉类,如二十碳五烯酸和二十二碳六烯酸,能够保护心血管[1],具有抗炎特性[2],还能降低发生特定类型癌症的风险[3]。另一方面,肉质保鲜是确保消费者餐桌上的肉制品品质的重要一环。为了保鲜和延长肉制品的保质期,目前的食品添加剂中多数是合成抗氧化剂,如丁基羟基茴香醚、丁基化羟基甲苯、叔丁基羟基醌和没食子酸丙酯等,但是合成抗氧化剂的使用对人体健康具有潜在的危害,并促进了癌症的发生,导致消费者对合成食品添加剂的普遍排斥。然而作为合成氧化剂的替代品生育酚和抗坏血酸或其衍生物在食品中的添加效果要差得多,因此,需要开发和利用更有效的天然来源的抗氧化剂。总之,开发一种营养丰富、低脂肪、低钠含量的新型肉制品已经成当今食品技术专家和动物营养学家的研究热点。植物多酚作为一种天然的饲料添加剂和食品添加剂被添加到动物饲粮和肉制品中,由于其具有改善肉质的特性得到广泛的研究和应用。

1 植物多酚的种类

多酚在植物中无处不在,它们作为次生代谢产物生成,参与多种代谢的关键过程。多酚在结构上,因具有多个酚基团而得名,按结构大致可分为酚酸、芪、木酚素和类黄酮4类(表 1)。黄酮类化合物是一种主要的多酚类,根据杂环-α-鸟嘌呤、氟茚酮、异佛尔酮、氟哌嗪、查耳酮和花青素的氧化程度,可分为不同的亚类,如烷醇类、黄酮醇类、黄酮类、二氢黄酮类、异黄酮类、花色素类、单宁类等。

表 1 多酚分类及化合物的植物来源 Table 1 Classification of polyphenols and plant sources of compounds

植物多酚具有天然的抗氧化、抗炎、抗菌等特性,大量研究表明,植物多酚这些特性能够改善动物肉品质,并且能够抑制肉制品中微生物的生长、延缓其脂肪氧化、延长其保质期,还有研究者将植物多酚与合成抗菌药和抗氧化剂进行了比较,发现植物多酚比合成化合物更有效、更安全。因此,植物多酚在畜牧业和食品行业得到广泛应用。

2 植物多酚对肉品质的改善作用

在动物营养领域,植物多酚作为一种天然的饲料添加剂,在猪、鸡、羊、鱼上都得到了广泛应用(表 2)。通过添加不同种类的植物多酚,对各种动物肉品质产生了积极影响。绝大多数研究表明,在猪和鸡的饲粮中添加植物多酚提高了肌肉的pH,改善了肉色,同时显著降低了肌肉失水率、剪切力、滴水损失等指标[4-13],说明植物多酚能够提高肌肉保水性能,这对维持猪、鸡肉嫩度、多汁性和口感十分有利,改善了肉质特性。此外,植物多酚还能通过改变肌纤维密度、直径和横截面积来改善猪肉品质[6-7],肌纤维密度越大,直径越小,肌肉嫩度、风味越好。但也有少数研究表明,儿茶素对猪肉品质没有显著影响[14]。富含n-3和n-6多不饱和脂肪酸的肉类产品更健康,但是这些脂肪酸的稳定性低,易于因脂质氧化而更快的降解。植物多酚可以稳定肉制品中的这些功能性成分,减少肉制品营养物质的损失。有研究表明,在羊的饲粮中添加植物多酚,羊肉中多不饱和脂肪酸的含量增加,并且多不饱和脂肪酸n-6/n-3的比率下降[15-17],提高了羊肉的营养价值。丙二醛(MDA)含量反映了体内抗氧化的程度,通常用作肉中二级脂质氧化的标志物并且具有诱变和致癌性质的特征,其含量越低说明植物肌肉氧化稳定性越好,肌肉营养物质的损失越少。Liu等[18]和Cimmino等[19]研究表明,植物多酚降低了羊肉中MDA的含量,抑制脂肪氧化,提高了羊肉的品质。在红海鲷的饲料中添加8%富含羟基酪醇的橄榄叶,与对照组相比,鱼的肌原纤维含量提高1.4倍,酸溶性胶原蛋白含量提高2.2倍[20],说明羟基酪醇通过加强肌肉中的胶原蛋白结构来增强肌肉的品质。另外,在虹鳟饲料中添加茶多酚,也显著提高了鱼肉中粗蛋白质的含量,降低了粗脂肪的含量,从而提高了鱼肉的品质[21]。总之,在不同的动物饲粮中添加不同的植物多酚,可提高各项肉品质指标,减少肌肉中营养物质的损失,改善动物的肉品质。

表 2 植物多酚作为饲料添加剂的应用 Table 2 Application of plant polyphenols as feed additives

植物多酚由于其防腐保鲜作用,作为一种保鲜剂被添加到各种动物肉制品中,与合成的抗氧化剂相比,植物多酚更安全、更高效,所以它作为一种食品添加剂更是受到广泛推崇(表 3)。众多的文献研究表明,植物多酚能够降低猪肉、牛肉、羊肉、鸡肉和鱼肉肉制品中硫代巴比妥酸(TBA)和总挥发性盐基氮(TVB-N)含量[26-33],说明植物多酚能够延缓脂肪氧化,减少氨基酸的破坏,保持肉质鲜度,从而提高肉制品品质,并充分体现了植物多酚的抗氧化特性。水产品由于含有丰富的蛋白质和脂肪酸,极易腐败变质, 植物多酚作为一种很好的生物保鲜剂,在水产品保鲜领域中的应用尤为广泛。植物多酚能有效地抑制水产品微生物的生长[34],延缓脂肪氧化[32],减少营养价值的损失[35],并延长其货架期[34, 36]。综上所述,具有抗氧化性能的植物多酚可以减少动物肉制品的营养物质的损失,确保了肉制品的新鲜度和品质。

表 3 植物多酚作为食品添加剂的应用 Table 3 Application of plant polyphenols as food additives
3 植物多酚改善肉品质作用机制 3.1 植物多酚发挥抗氧化活性的机制

众所周知,降低脂质过氧化和改善抗氧化状态可以改善肉质,同时,抑制血红蛋白的氧化可以直接影响肉色。类黄酮作为植物多酚中的一大类,在体外具有强大的抗氧化活性,能够清除各种活性氧、活性氮和氯物质,以及过氧亚硝酸和次氯酸[41]。它们作为特殊的氢或电子供体,可以快速将氢原子捐赠给脂质自由基来阻碍脂质氧化。此外,它们可以终止链自由基反应,从而防止脂质在不同的脂质底物中氧化[42]。类黄酮还可以通过氧化还原催化金属离子来螯合金属离子以及分解过氧化物[32]。研究表明,表没食子儿茶素没食子酸酯(EGCG)的抗氧化作用主要表现在3方面:1)螯合金属离子;2)清除活性氧自由基;3)抑制氧化酶及促进抗氧化酶活性[43]。据报道,EGCG主要通过蛋白激酶B(Akt)和c-Jun氨基末端激酶(JNK)途径的磷酸化调节,降低活性氧水平,增加细胞活力,抑制过氧化氢(H2O2)诱导的细胞凋亡[44]。Wistar大鼠摄入EGCG也表明氧化应激的血浆标志物减少,抗氧化酶增加[45]。低浓度的茶多酚(1.6 mg/L)不仅不会破坏血红蛋白(Hb)结构,还可以作为抗氧化剂有效地抑制血红素铁氧化并保持Hb的红色,从而保持肉色[46]。此外,其他类别的植物多酚也表现出抗氧化特性。Maqsood等[32]通过不同的体外试验证明了4种不同酚类化合物(儿茶素、咖啡酸、阿魏酸和单宁酸)的抗氧化活性。测试结果表明,单宁酸表现出最高的1,1-二苯基-2-三硝基苯肼和2, 2-联氮-二(3乙基苯并噻唑-6-磺酸)二铵盐自由基清除活性和铁还原抗氧化能力;儿茶素具有最高的金属螯合活性;咖啡酸具有最高的脂氧合酶抑制活性。咖啡酸浓度为10和30 μg/mL时,对油脂乳剂的脂质过氧化的抑制率分别为68.2%和75.8%。姜黄素能抑制核因子κB抑制蛋白(IκB)和JNK的磷酸化,它与棕榈酸作用能够抑制活性氧水平的增加[47]。在小鼠试验中,鱼油和姜黄素的组合,增强了热休克蛋白70和合成代谢信号(Akt磷酸化、p70核糖体蛋白S6激酶磷酸化)的丰度,同时减少了氧化应激源非吞噬细胞氧化酶活性[48]。迷迭香酸虽不影响Akt磷酸化,但能使AMP依赖的蛋白激酶磷酸化增加[49]。Zhang等[11]研究表明,白藜芦醇能够显著增加鸡肉中过氧化物酶体增殖物激活受体γ共激活因子1α和核呼吸因子1 mRNA水平,同时增加柠檬酸合成酶活性。以上研究充分说明,植物多酚通过调节Akt和JNK的磷酸化,降低活性氧水平,充分发挥抗氧化性。

核因子E2相关基因2(Nrf2)是抗氧化反应的主要调节剂,保护细胞免受活性氧的影响[50]。Keap1的是富含半胱氨酸的蛋白,是Nrf2在细胞质中的结合蛋白,主要通过结合Nrf2使之无法进入细胞核,从而抑制其活性。氧化应激物或亲电子体诱导Keap1半胱氨酸残基的共价修饰,从而增加Nrf2的在细胞核的积累,导致下游内源性抗氧化剂如超氧化物歧化酶、过氧化氢酶和过氧化物酶的合成增加[51]。在Sriram等[52]的一项研究中,EGCG被证明可以保护小鼠肺免于肺纤维化,可通过激活Nrf2-Keap1信号传导恢复抗氧化酶活性来增加Nrf2的表达。同时,EGCG还能上调血红素加氧酶1、烟酰胺腺嘌呤二核苷酸磷酸、醌氧化还原酶1和谷胱甘肽S-转移酶等Nrf2-Keap1信号传导途径的下游靶基因表达。虽然有的植物多酚在体内不足以作为自由基清除剂直接发挥抗氧化功能,但暴露于活性氧后会转化为亲电子醌和氢醌,然后与Keap 1相互作用并激活Nrf2[50]。因此,植物多酚能够通过促进Keap1-Nrf2-抗氧化反应元件(ARE)途径上调内源性抗氧化能力。

3.2 植物多酚改善肌纤维特性的机制

肌纤维的直径、密度、横截面积和纤维类型与肌肉品质密切相关。成年猪骨骼肌中只有4种不同的肌纤维类型:慢速氧化型、快速氧化型、中间类型和快速酵解型,并且它们分别对应肌球蛋白重链(MyHC)的基因型为MyHC Ⅰ、MyHC Ⅱa、MyHC Ⅱx和MyHC Ⅱb。不同的肌纤维类型中肌红蛋白含量和系水力不同,因此肌肉的红度也不同。肌纤维中肌红蛋白含量为MyHC Ⅰ>MyHC Ⅱa>MyHC Ⅱx>MyHC Ⅱb。相关研究表明,植物多酚能够减小肌纤维的直径、增加肌纤维密度、改变肌纤维类型,从而改善肌肉肉色、嫩度和口味。通过研究发现,儿茶素类通过诱导生肌因子5(Myf5)激活卫星细胞,还通过在骨骼肌卫星细胞和C2C12成肌细胞中诱导肌原性标记物(包括肌细胞生成素和肌肉肌酸激酶)来促进肌原性分化。研究结果表明,儿茶素刺激肌肉干细胞活化和肌肉再生的分化[53]。在小鼠体内注入10 μg/d尿石素B(一种鞣花单宁衍生的代谢物),连续注入28 d后发现尿石素B通过增加肌肉蛋白质合成和抑制泛素-蛋白酶体途径来增强C2C12成肌细胞肌管的生长和分化[54]。在猪的饲粮中添加白藜芦醇可增加肌球蛋白重链MyHC Ⅱa的mRNA水平,降低肌球蛋白重链MyHC Ⅱb的mRNA水平,同时降低肌纤维横截面积[6]。Jiang等[55]在鼠上的研究发现,口服白藜芦醇能够增加小鼠趾长伸肌(EDL)和比目鱼肌(SOL)中肌球蛋白重链MyHC Ⅰ、MyHC Ⅱa和MyHC Ⅱx的表达。此外,相关机理研究表明,白藜芦醇可以通过AdiopR1-AMPK-PGC-1α途径调节骨骼纤维类型的转换。同样在鼠的饲粮中添加苹果多酚也发现类似的结果,0.5%的苹果多酚饲粮能够显著下调跖肌中MyHC Ⅱb比率,显著上调趾长伸肌中MyHC Ⅰ和MyHC Ⅱa的比率,此研究结果说明0.5%的苹果多酚能够刺激肌纤维类型从快速到慢速的转变[56]。在猪的饲粮中添加杜仲叶的多酚提取物,可以显著增加肌纤维密度,显著降低肌纤维直径,同时显著增加MyHC Ⅰ的mRNA表达水平,显著降低MyHC Ⅱb的mRNA表达水平,说明杜仲叶的多酚提取物可以通过调节肌纤维类型来改善肉质[7]。阿魏酸作为植物细胞壁的多酚化合物也能增加小鼠MyHC I和MyHC Ⅱa的mRNA表达水平,降低MyHC Ⅱb的mRNA表达水平,同时蛋白质印迹分析表明,阿魏酸显著增加了慢肌蛋白质水平,显著降低了快肌蛋白质水平,同时研究结果表明阿魏酸是通过Sirt1/AMPK信号通路调节肌纤维类型的形成[57]。所以,植物多酚可以通过影响肌纤维类型、肌纤维面积等指标来改善肌肉的肉色、嫩度和口味,从而改善肉品质。

4 小结

在过去的几十年中,由于植物多酚来源广泛,具有天然的抗氧化性、抗菌性,并且安全性能高,应用效果好,所以被广泛应用到畜牧和食品行业中。一方面,植物多酚作为一种植物来源的饲料添加剂添加到动物饲粮中,改善动物肉品质;另一方面,植物多酚作为一种替代合成抗氧化剂的食品添加剂添加到肉制品中,减少肉制品营养物质损失,延长其货架期。通过这2种途径,植物多酚让从农场到餐桌的肉产品更健康更优质。

尽管植物多酚抗氧化和抗菌方面非常有效,但目前只允许部分酚类化合物作为食品抗氧化剂。为提高植物多酚潜在的应用,还需进一步研究植物多酚在较高剂量下的生物毒性,确定动物以及人类消耗植物多酚的最适添加量和安全范围,并开发出安全高效的植物多酚添加策略,以增强植物多酚的吸收并发挥出最佳的作用。同时,还有很多植物多酚的作用机制并不十分清楚,还需进一步深入研究。

参考文献
[1]
JAIN A P, AGGARWAL K K, ZHANG P Y. Omega-3 fatty acids and cardiovascular disease[J]. European Review for Medical and Pharmacological Sciences, 2015, 19(3): 441-445.
[2]
WALL R, ROSS R P, FITZGERALD G F, et al. Fatty acids from fish:the anti-inflammatory potential of long-chain omega-3 fatty acids[J]. Nutrition Reviews, 2010, 68(5): 280-289.
[3]
JAYATHILAKE A G, SENIOR P V, SU X Q. Krill oil extract suppresses cell growth and induces apoptosis of human colorectal cancer cells[J]. BMC Complementary and Alternative Medicine, 2016, 16(1): 328.
[4]
姚波, 屠幼英, 王春花. 茶多酚作为育肥猪天然肉质改良剂的应用研究[J]. 饲料工业, 2015, 36(20): 12-14.
[5]
徐晓娟, 蔡海莹, 张磊, 等. 日粮中添加茶多酚对青脚麻鸡生长性能、胴体品质和血脂的影响[J]. 中国饲料, 2011(10): 30-33, 40.
[6]
ZHANG C, LUO J Q, YU B, et al. Dietary resveratrol supplementation improves meat quality of finishing pigs through changing muscle fiber characteristics and antioxidative status[J]. Meat Science, 2015, 102: 15-21.
[7]
ZHOU Y, RUAN Z, LI X L, et al. Eucommia ulmoides Oliver leaf polyphenol supplementation improves meat quality and regulates myofiber type in finishing pigs[J]. Journal of Animal Science, 2016, 94(Suppl.3): 164-168.
[8]
ZHANG C, ZHAO X H, WANG L, et al. Resveratrol beneficially affects meat quality of heat-stressed broilers which is associated with changes in muscle antioxidant status[J]. Animal Science Journal, 2017, 88(10): 1569-1574.
[9]
李伟, 陈运娇, 谭荣威, 等. 桉叶多酚对胡须鸡肌肉抗氧化性能和肉质品质影响的研究[J]. 现代食品科技, 2017, 33(8): 58-65.
[10]
CHEN Y, CHEN H, LI W, et al. Polyphenols in Eucalyptus leaves improved the egg and meat qualities and protected against ethanol-induced oxidative damage in laying hens[J]. Journal of Animal Physiology and Animal Nutrition, 2018, 102(1): 214-223.
[11]
ZHANG C, YANG L, ZHAO X H, et al. Effect of dietary resveratrol supplementation on meat quality, muscle antioxidative capacity and mitochondrial biogenesis of broilers[J]. Journal of the Science of Food and Agriculture, 2018, 98(3): 1216-1221.
[12]
ZHAO J X, LI Q, ZHANG R X, et al. Effect of dietary grape pomace on growth performance, meat quality and antioxidant activity in ram lambs[J]. Animal Feed Science and Technology, 2018, 236: 76-85.
[13]
MAZUR-KUSNIREK M, ANTOSZKIEWICZ Z, LIPIŃ SKI K, et al. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens exposed to high temperature[J]. Archives of Animal Nutrition, 2019, 73(2): 111-126.
[14]
陈君君. 茶多酚对生长猪机体维生素E状态、抗氧化性能及肉质的影响[J]. 中国饲料, 2019(4): 55-58.
[15]
KAFANTARIS I, KOTSAMPASI B, CHRISTODOULOU V, et al. Effects of dietary grape pomace supplementation on performance, carcass traits and meat quality of lambs[J]. In Vivo, 2018, 32(4): 807-812.
[16]
LETICIA M, PAOLA D, JORDI O, et al. Effects of sage distillation by-product (Salvia lavandulifolia Vahl.) dietary supplementation in light lambs fed on concentrates on meat shelf life and fatty acid composition[J]. Meat Science, 2017, 134: 44-53.
[17]
MUÍÑO I, APELEO E, DE LA FUENTE J, et al. Effect of dietary supplementation with red wine extract or vitamin E, in combination with linseed and fish oil, on lamb meat quality[J]. Meat Science, 2014, 98(2): 116-123.
[18]
LIU H W, ZHAO J S, LI K, et al. Effects of chlorogenic acids-enriched extract from Eucommia ulmoides leaves on growth performance, stress response, antioxidant status and meat quality of lambs subjected or not to transport stress[J]. Animal Feed Science and Technology, 2018, 238: 47-56.
[19]
CIMMINO R, BARONE C M A, CLAPS S, et al. Effects of dietary supplementation with polyphenols on meat quality in Saanen goat kids[J]. BMC Veterinary Research, 2018, 14(1): 181.
[20]
ARSYAD M A, AKAZAWA T, NOZAKI C, et al. Effects of olive leaf powder supplemented to fish feed on muscle protein of red sea bream[J]. Fish Physiology and Biochemistry, 2018, 44(5): 1299-1308.
[21]
徐奇友.茶多酚对虹鳟生长性能、生化指标和非特异性免疫指标的影响[C]//中国畜牧兽医学会动物营养学分会第十次学术研讨会论文集.北京: 中国畜牧兽医学会动物营养学分会, 2008: 633.
[22]
ZHANG H Z, CHEN D W, HE J, et al. Long-term dietary resveratrol supplementation decreased serum lipids levels, improved intramuscular fat content, and changed the expression of several lipid metabolism-related miRNAs and genes in growing-finishing pigs[J]. Journal of Animal Science, 2019, 97(4): 1745-1756.
[23]
STARČEVIĆ K, KRSTULOVIČ L, BROZIĆ D, et al. Production performance, meat composition and oxidative susceptibility in broiler chicken fed with different phenolic compounds[J]. Journal of the Science of Food and Agriculture, 2015, 95(6): 1172-1178.
[24]
ZHAO J S, DENG W, LIU H W. Effects of chlorogenic acid-enriched extract from Eucommia ulmoides leaf on performance, meat quality, oxidative stability, and fatty acid profile of meat in heat-stressed broilers[J]. Poult Science, 2019, 98(7): 3040-309.
[25]
SALAMI S A, VALENTI B, O'GRADY M N, et al. Influence of dietary cardoon meal on growth performance and selected meat quality parameters of lambs, and the antioxidant potential of cardoon extract in ovine muscle homogenates[J]. Meat Science, 2019, 153: 126-134.
[26]
侯晓卫, 唐善虎, 李思宁, 等. 复合保鲜涂膜液对冷鲜牦牛肉保鲜及抗氧化效果的影响[J]. 食品工业科技, 2017, 38(7): 269-274.
[27]
LEE H J, LEE J J, JUNG M O, et al. Meat quality and storage characteristics of pork loin marinated in grape pomace[J]. Korean Journal for Food Science of Animal Resources, 2017, 37(5): 726-734.
[28]
WANG W D, SUN Y E. Preservation effect of meat product by natural antioxidant tea polyphenol[J]. Cellular and Molecular Biology (Noisy-le-Grand, France), 2016, 62(13): 44-48.
[29]
FAN W J, CHEN Y C, SUN J X, et al. Effects of tea polyphenol on quality and shelf life of pork sausages[J]. Journal of Food Science and Technology, 2014, 51(1): 191-195.
[30]
QIN Y Y, YANG J Y, LU H B, et al. Effect of chitosan film incorporated with tea polyphenol on quality and shelf life of pork meat patties[J]. International Journal of Biological Macromolecules, 2013, 61: 312-316.
[31]
VAITHIYANATHAN S, NAVEENA B M, MUTHUKUMAR M, et al. Effect of dipping in pomegranate (Punica granatum) fruit juice phenolic solution on the shelf life of chicken meat under refrigerated storage (4 ℃)[J]. Meat Science, 2011, 88(3): 409-414.
[32]
MAQSOOD S, BENJAKUL S. Comparative studies of four different phenolic compounds on in vitro antioxidative activity and the preventive effect on lipid oxidation of fish oil emulsion and fish mince[J]. Food Chemistry, 2010, 119(1): 123-132.
[33]
DEVATKAL S K, NARSAIAH K, BORAH A. Anti-oxidant effect of extracts of kinnow rind, pomegranate rind and seed powders in cooked goat meat patties[J]. Meat Science, 2010, 85(1): 155-159.
[34]
MAQSOOD S, BENJAKUL S. Synergistic effect of tannic acid and modified atmospheric packaging on the prevention of lipid oxidation and quality losses of refrigerated striped catfish slices[J]. Food Chemistry, 2010, 121(1): 29-38.
[35]
MAQSOOD S, BENJAKUL S, SHAHIDI F. Emerging role of phenolic compounds as natural food additives in fish and fish products[J]. Critical Reviews in Food Science and Nutrition, 2013, 53(2): 162-179.
[36]
ALI M, IMRAN M, NADEEM M, et al. Oxidative stability and Sensoric acceptability of functional fish meat product supplemented with plant-based polyphenolic optimal extracts[J]. Lipids in Health and Disease, 2019, 18(1): 35.
[37]
NOWAK A, CZYZOWSKA A, EFENBERGER M, et al. Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products[J]. Food Microbiology, 2016, 59: 142-149.
[38]
LORENZO J M, SINEIRO J, AMADO I R, et al. Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties[J]. Meat Science, 2014, 96(1): 526-534.
[39]
BELLÉS M, ALONSO V, RONCALÉS P, et al. Sulfite-free lamb burger meat:antimicrobial and antioxidant properties of green tea and carvacrol[J]. Journal of the Science of Food and Agriculture, 2019, 99(1): 464-472.
[40]
ORTUÑO J, SERRANO R, BAÑóN S. Antioxidant and antimicrobial effects of dietary supplementation with rosemary diterpenes (carnosic acid and carnosol) vs vitamin E on lamb meat packed under protective atmosphere[J]. Meat Science, 2015, 110: 62-69.
[41]
HERNÁNDEZ I, ALEGRE L, VAN BREUSEGEM F, et al. How relevant are flavonoids as antioxidants in plants?[J]. Trends in Plant Science, 2009, 14(3): 125-132.
[42]
MAQSOOD S, BENJAKUL S, ABUSHELAIBI A, et al. Phenolic compounds and plant phenolic extracts as natural antioxidants in prevention of lipid oxidation in seafood:a detailed review[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(6): 1125-1140.
[43]
潘俊娴, 刘均, 吕杨俊, 等. 茶多酚对水产品保鲜作用的研究进展[J]. 中国茶叶加工, 2018(3): 10-14.
[44]
WANG D X, WANG Y J, WAN X C, et al. Green tea polyphenol (-)-epigallocatechin-3-gallate triggered hepatotoxicity in mice:responses of major antioxidant enzymes and the Nrf2 rescue pathway[J]. Toxicology and Applied Pharmacology, 2015, 283(1): 65-74.
[45]
LI Y, ZHAO S, ZHANG W, et al. Epigallocatechin-3-O-gallate (EGCG) attenuates FFAs-induced peripheral insulin resistance through AMPK pathway and insulin signaling pathway in vivo[J]. Diabetes Research and Clinical Practice, 2011, 93(2): 205-214.
[46]
DONG J W, ZHOU Y Q, LU Y H, et al. Effect of tea polyphenols on the oxidation and color stability of porcine hemoglobin[J]. Journal of Food Science, 2019, 84(8): 2086-2090.
[47]
SADEGHI A, ROSTAMIRAD A, SEYYEDEBRAHIMI S, et al. Curcumin ameliorates palmitate-induced inflammation in skeletal muscle cells by regulating JNK/NF-kB pathway and ROS production[J]. Inflammopharmacology, 2018, 26(5): 1265-1272.
[48]
LAWLER J M, GARCIA-VILLATORO E L, GUZZONI V, et al. Effect of combined fish oil & curcumin on murine skeletal muscle morphology and stress response proteins during mechanical unloading[J]. Nutrition Research, 2019, 65: 17-28.
[49]
VLAVCHESKI F, NAIMI M, MURPHY B, et al. Rosmarinic acid, a rosemary extract polyphenol, increases skeletal muscle cell glucose uptake and activates AMPK[J]. Molecules, 2017, 22(10): 1669.
[50]
HUANG Y, LI W J, SU Z Y, et al. The complexity of the Nrf2 pathway:beyond the antioxidant response[J]. The Journal of Nutritional Biochemistry, 2015, 26(12): 1401-1413.
[51]
FORMAN H J, DAVIES K J A, URSINI F. How do nutritional antioxidants really work:nucleophilic tone and para-hormesis versus free radical scavenging in vivo[J]. Free Radical Biology and Medicine, 2014, 66: 24-35.
[52]
SRIRAM N, KALAYARASAN S, SUDHANDIRAN G. Epigallocatechin-3-gallate augments antioxidant activities and inhibits inflammation during bleomycin-induced experimental pulmonary fibrosis through Nrf2-Keap1 signaling[J]. Pulmonary Pharmacology & Therapeutics, 2009, 22(3): 221-236.
[53]
KIM A R, KIM K M, BYUN M R, et al. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration[J]. Biochemical and Biophysical Research Communications, 2017, 489(2): 142-148.
[54]
RODRIGUEZ J, PIERRE N, NASLAIN D, et al. Urolithin B, a newly identified regulator of skeletal muscle mass[J]. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8(4): 583-597.
[55]
JIANG Q Y, CHENG X F, CUI Y Y, et al. Resveratrol regulates skeletal muscle fibers switching through the AdipoR1-AMPK-PGC-1α pathway[J]. Food & Function, 2019, 10(6): 3334-3343.
[56]
MIZUNOYA W, OKAMOTO S, MIYAHARA H, et al. Fast-to-slow shift of muscle fiber-type composition by dietary apple polyphenols in rats:impact of the low-dose supplementation[J]. Animal Science Journal, 2017, 88(3): 489-499.
[57]
CHEN X L, GUO Y F, JIA G, et al. Ferulic acid regulates muscle fiber type formation through the Sirt1/AMPK signaling pathway[J]. Food & Function, 2019, 10(1): 259-265.