动物营养学报    2020, Vol. 32 Issue (6): 2567-2574    PDF    
亚麻油对宁乡猪不同组织长链脂肪酸谱的影响
邢月腾1 , 郁元年1 , 谢春艳2 , 吴信3 , 肖定福1 , 杨志武4 , 张彬1     
1. 湖南农业大学动物科学技术学院, 长沙 410128;
2. 湖南农业大学资源环境学院, 长沙 410128;
3. 中国科学院亚热带农业生态研究所, 长沙 410125;
4. 宁乡市畜牧兽医水产局, 长沙 410600
摘要: 本试验旨在研究亚麻油对宁乡猪背肌和3种不同脂肪组织中长链脂肪酸谱的影响,并探究脂肪酸生成的潜在机制。选取日龄相近、平均体重(43.21±0.64)kg的宁乡阉母猪30头,随机分为2组,每组5个重复,每个重复3头。对照组饲喂基础饲粮,试验组在基础饲粮中添加2%亚麻油,试验期56 d。结果显示:与对照组相比,饲粮中添加2%亚麻油后,宁乡猪背肌中花生一烯酸(C20:1)、γ-亚麻酸(C18:3n-6)、α-亚麻酸(C18:3n-3)含量显著提高(P < 0.05),花生四烯酸(C20:4n-6)含量显著降低(P < 0.05);饲粮中添加2%亚麻油对3个脂肪组织中脂肪酸含量的影响与背肌趋于一致,如能显著提高背脂、腹脂和肾周脂中亚油酸(C18:2n-6c)、C18:3n-6、C18:3n-3、二十碳三烯酸(C20:3n-6)含量(P < 0.05),降低背脂和腹脂中油酸(C18:1n-9c)(P < 0.05)、C20:4n-6(0.05≤P < 0.10)及肾周脂中硬脂酸(C18:0)含量(P < 0.05);同时,饲粮中添加2%亚麻油还能显著降低3种脂肪组织中n-6/n-3多不饱和脂肪酸(PUFA)比值(P < 0.05),使3种脂肪组织中平均n-6/n-3 PUFA比值降到5.92。此外,饲粮中添加2%亚麻油能显著下调背脂中乙酰辅酶A羧化酶α(ACCα)、γ-过氧化酶活化增生受体(PPARγ)和脂肪酸去饱和酶2(FADS2)基因的表达(P < 0.05),对α-过氧化酶活化增生受体(PPARα)基因的表达也有抑制趋势(0.05≤P < 0.10)。上述结果表明,饲粮中添加2%亚麻油能显著提高宁乡猪背肌、背脂、腹脂和肾周脂中C18:3n-3含量,使3种脂肪组织中平均n-6/n-3 PUFA比值降至《中国居民膳食指南(2016)》推荐范围(4~6)内;这可能是通过调控细胞分化及抑制脂肪酸从头合成途径实现的。
关键词: 亚麻油    长链脂肪酸    脂代谢    宁乡猪    
Effects of Linseed Oil on Long-Chain Fatty Acid Profile in Different Tissues of Ningxiang Pigs
XING Yueteng1 , YU Yuannian1 , XIE Chunyan2 , WU Xin3 , XIAO Dingfu1 , YANG Zhiwu4 , ZHANG Bin1     
1. College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
2. College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China;
3. Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
4. Ningxiang Animal Husbandry and Veterinary Bureau, Changsha 410600, China
Abstract: This experiment was conducted to study the linseed oil (LO) on fatty acid profile in longissimus dorsi muscle (LDM) and three different adipose tissues of Ningxiang pigs, and then investigate the underlying lipogenesis mechanisms. Thirty castrated female pigs with a similar age and average body weight of (43.21±0.64) kg were randomly allocated into 2 groups with 5 repetitions per group and 3 pigs per repetition. Pigs in control group were fed a basal diet, and those in experimental group were fed the basal diet supplemented with 2% LO for 56 days. The results showed that dietary supplemented with 2% LO significantly increased the contents of eicosenoic acid (C20:1), γ-linolenic acid (C18:3n-6) and α-linolenic acid (C18:3n-3) in LDM (P < 0.05), and significantly decreased the content of arachidonic acid (C20:4n-6) in LDM compared with control group (P < 0.05). The fatty acid contents in 3 adipose tissues influenced by 2% LO were analogous to those found in the LDM. The contents of linoleic acid (C18:2n-6c), C18:3n-6, C18:3n-3 and epoxyeicosatrienoic acid (C20:3n-6) in dorsal subcutaneous adipose (DSA), abdominal subcutaneous adipose (ASA) and perirenal adipose (PA) were significantly increased (P < 0.05) accompanied by a corresponding decrease in oleic acid (C18:1n-9c) (P < 0.05), C20:4n-6 (0.05≤P < 0.10) in DSA and APA, as well as stearic acid (C18:0) in PA (P < 0.05). Meanwhile, dietary supplemented with 2% LO could significantly the ratio of n-6/n-3 polyunsaturated fatty acids (PUFA) in 3 adipose tissues (P < 0.05), and make the average n-6/n-3 PUFA ratio reduce to 5.92. Furthermore, dietary supplemented with 2% LO could down-regulate the expression of acetyl coenzyme A carboxylase α (ACCα), peroxisome proliferators-activated receptor γ (PPARγ), fatty acid desaturase 2 (FADS2) genes in DSA (P < 0.05), and had an inhibitory tendency on the expression of peroxisome proliferators-activated receptor α (PPARα) gene in DSA (0.05≤P < 0.10). These results indicate that dietary supplemented with 2% LO can significantly increase the content of C18:3n-3 in LDM, DSA, ASA and PA of Ningxiang pigs, and make the average n-6/n-3 PUFA ratio in three adipose tissues down to 5.92, which in the recommended range (4 to 6) of Dietary Guidelines for Chinese Residents (2016). The regulation of LO on lipid metabolism may be achieved through regulating the de novo synthesis of fatty acids and cell differentiation.
Key words: linseed oil    long-chain fatty acid    lipid metabolism    Ningxiang pigs    

n-3多不饱和脂肪酸(PUFA)是人体必需脂肪酸,对防治心血管疾病、维系大脑发育及提高免疫力等具有重要作用[1-2]。宁乡猪是我国四大名猪之一,作为偏脂肪型猪种,其脂肪沉积能力远强于瘦肉型猪(42.3% vs. 21.9%)[3],但脂肪组织中n-3 PUFA含量偏低,相应脂肪组织中n-6/n-3 PUFA比值较高,造成脂肪酸组成不平衡[4]。研究发现,猪对饲粮脂肪酸的摄入与其在体内沉积高度相关[5-6],因此在饲粮中添加富含α-亚麻酸(C18:3n-3,合成n-3 PUFA的前体)的亚麻油(linseed oil,LO)或籽是提高猪肌肉或脂肪组织中n-3 PUFA含量及降低n-6/n-3 PUFA比值的有效途径[7-9]。目前关于亚麻油对猪长链脂肪酸谱影响的研究多集中在瘦肉型猪上,在脂肪型猪上的报道较少,尤其是在腹脂和肾周脂等组织上的相关研究更是少见。因此,本试验拟研究亚麻油对脂肪型猪种宁乡猪不同组织中长链脂肪酸含量的影响,并以背脂为研究对象探讨其影响机制。

1 材料与方法 1.1 试验材料

本试验所用亚麻油通过亚麻籽压榨提取,其脂肪酸组成如下:棕榈酸(C16:0)5.97%、硬脂酸(C18:0)4.08%、油酸(C18:1n-9c)17.92%、亚油酸(C18:2n-6c)20.16%、C18:3n-3 33.86%、γ-亚麻酸(C18:3n-6)7.98%、花生酸(C20:0)0.31%、花生一烯酸(C20:1)8.79%、二十碳三烯酸(C20:3n-6)0.55%、花生四烯酸(C20:4n-6)0.14%和其他脂肪酸0.24%。

1.2 试验动物、分组与饲养管理

本研究采用单因素试验设计。选择同栏舍、同批次、平均体重为(43.21±0.64) kg的宁乡阉母猪30头,随机分为2组,每组5个重复,每个重复3头。对照组饲喂基础饲粮,基础饲粮参照我国《猪饲养标准》(NY/T 65—2004)中肉脂型猪营养需要并结合《宁乡猪饲养技术规程》进行配制,其组成及营养水平参见Xing等[10]。试验组在基础饲粮中添加2%亚麻油,其添加量参考蔡传江等[7]。经测定,对照组与试验组饲粮中脂肪酸组成如表 1所示。饲养试验在湖南宁乡大龙畜牧科技有限公司进行。试验期56 d。试验期间,每日饲喂3次(08:00、12:00和18:00),自由饮水,消毒和免疫等按照该公司常规程序进行。

表 1 饲粮中脂肪酸组成(占总脂肪酸的百分比) Table 1 Fatty acid composition in diets (percentage of total fatty acids)  
1.3 肌肉和脂肪组织中长链脂肪酸含量检测

饲养试验结束后,从每个重复中挑选1头猪进行屠宰(宰前禁食24 h,自由饮水),取背最长肌、背脂、腹脂和肾周脂,用锡箔纸包裹好,放入液氮速冻后转置-80 ℃冰箱中保存。将样品冷冻干燥后,称0.5 g左右,经苯石油醚提取、氢氧化钾甲醇甲酯化后,进气相色谱仪(Agilent 6890N)配氢火焰离子化检测器(FID)分析,具体方法参见喻文娟等[11]的外标气相-色谱-质谱法进行。通过与标准品(Sigma,美国)保留时间比较确定脂肪酸,并以峰面积占总面积的百分比进行量化。

1.4 背脂中脂代谢相关基因表达量测定

采用Trizol试剂(Invitrogen公司,美国)提取背脂中总RNA。取1 000 ng提取的总RNA,采用PrimeScriptTM RT Reagent试剂盒(TaKaRa公司,日本)进行反转录,具体操作方法按试剂盒说明书进行。再使用Luminaris Color HiGreen High ROX(Thermo Scientific公司,美国)在Bio-Rad iCycler仪器上进行实时荧光定量PCR(real-time qPCR),引物由生工生物工程(上海)公司合成(引物序列见表 2),其中以甘油醛-3-磷酸脱氢酶(GAPDH)为内参基因,以2-ΔΔCt法计算目的基因脂肪酸合成酶(FAS)、乙酰辅酶A羧化酶α(ACCα)、α-过氧化酶活化增生受体(PPARα)、γ-过氧化酶活化增生受体(PPARγ)、硬脂酰辅酶A去饱和酶(SCD)、脂肪酸去饱和酶1(FADS1)、脂肪酸去饱和酶2(FADS2)、极长链脂肪酸延长酶2(ELOVL2)、极长链脂肪酸延长酶5(ELOVL5)的相对表达量。

表 2 引物序列 Table 2 Primer sequences
1.5 统计分析

试验数据经Excel 2016初步整理后,用SPSS 21.0统计软件中的独立样本t检验进行组间差异显著性比较,结果以平均值±标准误(mean±SE)表示。P < 0.05表示差异显著,0.05≤P < 0.10表示差异有显著趋势。

2 结果 2.1 亚麻油对宁乡猪不同组织中长链脂肪酸组成的影响

亚麻油对宁乡猪不同组织中脂肪酸组成的影响见表 3。与对照组相比,试验组宁乡猪背肌C20:1、C18:3n-6和C18:3n-3含量显著提高(P < 0.05),而C20:4n-6含量显著降低(P < 0.05);在脂肪组织中,饲粮中添加亚麻油能显著提高背脂、腹脂和肾周脂中C18:2n-6c、C18:3n-6、C18:3n-3、C20:3n-6及腹脂中C20:1含量(P < 0.05),降低背脂和腹脂中C18:1n-9c(P < 0.05)、C20:4n-6(0.05≤P < 0.10)及腹脂中棕榈油酸(C16:1)(P < 0.05)和肾周脂中C18:0含量(P < 0.05);同时,饲粮中添加亚麻油还能显著降低3种脂肪组织中n-6/n-3 PUFA比值(P < 0.05),使3种脂肪组织中平均n-6/n-3 PUFA比值降到5.92。

表 3 亚麻油对宁乡猪不同组织长链脂肪酸组成的影响(占总脂肪酸的百分比) Table 3 Effects of linseed oil on long-chain fatty acid composition in different tissues of Ningxiang pigs (percentage of total fatty acids)  
2.2 亚麻油对宁乡猪背脂中脂代谢相关基因表达的影响

亚麻油对宁乡猪背脂中脂代谢相关基因表达的影响见表 4。与对照组相比,饲粮中添加亚麻油能显著下调对宁乡猪背脂中ACCαPPARγFADS2基因的表达(P < 0.05),对PPARα基因也有下调表达的趋势(0.05≤P < 0.10)。

表 4 亚麻油对宁乡猪背脂中脂代谢相关基因表达的影响 Table 4 Effects of linseed oil on expression of lipid metabolism-related genes in dorsal subcutaneous adipose of Ningxiang pigs
3 讨论

脂肪酸是衡量猪肉品质的重要因素,饲粮中添加的脂肪酸在肠道内吸收后,可不经过氢化作用直接合成脂肪在组织中沉积,猪脂肪组织中超过60%脂肪酸组成的变化与饲粮脂肪酸来源和含量相关[12]。猪因缺乏Δ12和Δ15去饱和酶,不能够从棕榈烯酸进一步合成PUFA,且合成n-3 PUFA的前体C18:3n-3必须由饲粮提供。亚麻油富含C18:3n-3,猪不但可以沉积C18:3n-3,而且能通过去饱和延长代谢合成长链n-3 PUFA[13]。本研究结果显示,饲粮中添加2.0%亚麻油显著提高了宁乡猪4种组织中C18:3n-3的含量,其中脂肪组织中沉积C18:3n-3的能力明显强于背肌,但更长链的n-3 PUFA如C22:6n-3的含量则未发生显著改变,可能在饲粮中添加大剂量的亚麻油才会对C22:6n-3的生成和沉积起作用[7]。据推测,猪从饲粮中摄入的C18:3n-3等n-3 PUFA可替代原膜磷脂中的C20:4n-6,由此显著提高脂肪酸中n-3 PUFA的比例或降低n-6 PUFA的比例,并改善n-6/n-3 PUFA比值。在本研究中,饲粮中添加2.0%亚麻油后,C20:4n-6含量在背肌中降低了90.63%;而3种脂肪组织中平均n-6/n-3 PUFA比值由20.46降到5.92,在《中国居民膳食指南(2016)》[14]推荐范围(4~6)内,这与前人研究结果[15-16]一致。蔡传江等[7]报道,在饲粮中添加1.5%和3.0%亚麻油均能显著提高大白猪皮下脂肪中C18:3n-3等n-3 PUFA的含量,并使n-6/n-3 PUFA比值分别降到4.1和2.5。但有研究显示饲粮中添加更高剂量(如5.0%)亚麻油可能对猪肉风味和氧化稳定性有负面影响[17]

研究显示n-3 PUFA在肌肉和脂肪组织中沉积效率不同,受合成、转化、氧化及同工酶等多种因素影响[18-19]。例如,背最长肌作为缓慢性糖酵解收缩肌,其基质-血管干细胞和前脂肪细胞百分比更高,更易实现脂肪酸碳链去饱和和延长[20]。饲粮中添加亚麻油后,宁乡猪不同组织中均有富集C18:2n-6c、C18:3n-6等n-6 PUFA的趋势,原因可能与饲粮中相应脂肪酸含量较高有关[21-22]。如摄入的C18:2n-6c远高于生物膜合成需要量,则很大一部分会被储存在脂肪组织中[5]。此外,亚麻油能不同程度地降低组织中单不饱和脂肪酸(MUFA)含量,尤其是背脂和腹脂中C18:1n-9c以及肾周脂中C18:0含量显著降低。以上结果表明,亚麻油对不同组织中脂肪酸组成的影响虽有一些共性,但也表现出一定程度的组织特异性[23-24]。通常MUFA在脂肪组织中的含量随沉积部位从外到内依次降低,即与背脂和腹脂相比,肾周脂具有更强的脂肪生成能力及含有更多的饱和脂肪酸(SFA)、更少的MUFA[25]。与脂肪组织不同,背肌中调控PUFA的FAS、苹果酸酶、葡萄糖-6-脱氢酶等酶的活性几乎不受饲粮n-3 PUFA含量的影响[26]

一般来讲,饲粮中添加n-3 PUFA可以通过抑制固醇元件结合蛋白-1c(SREBP-1c)基因表达或在核中释放,进而抑制肌肉和脂肪组织中生脂基因的转录[27]。为进一步探讨富含n-3 PUFA的亚麻油对宁乡猪脂肪代谢的调控机制,本试验选取背脂(猪进行脂肪代谢最为重要的位点)作为研究对象。乙酰辅酶A在ACCα的催化作用下合成丙二酸单酰辅酶A,从而为长链脂肪酸的合成提供二碳单位,因此ACCα是脂肪酸从头合成的限速酶和反馈调节的作用位点[28-29]。本试验结果显示,亚麻油能下调ACCαFAS基因的表达,表明亚麻油负反馈抑制背脂中脂肪酸合成,尤其是从头合成的脂肪酸[26]。SCD可使SFA转化成MUFA,饲粮中添加富含C18:3n-3的亚麻油后,SCD的活性被抑制,合成MUFA能力有限,尤其是使得C18:1n9c含量显著降低,此结果也被前人研究[18-19]证实。PPARγ作为调控糖脂代谢的重要因子,主要调节脂肪细胞分化,受饲粮中C18:2n-6c含量影响很大[30]PPARγ基因表达下调表明前脂肪细胞向成熟脂肪细胞分化减少,而其靶标脂蛋白脂肪酶也与C18:1n9c含量降低密切相关[31]FADS2编码Δ6去饱和酶,受饲粮中n-3 PUFA含量影响,竞争性地参与合成n-6和n-3 PUFA。本试验中,亚麻油对FADS2基因表达有下调的趋势,表明C18:3n-3转化成其他n-3 PUFA能力较弱,也没有抑制n-6 PUFA的生成。产生该结果除受猪种影响外,也可能与本试验所用亚麻油含C18:3n-3较低有关,使得FADS2更倾向于n-6 PUFA合成代谢途径[24]

4 结论

① 饲粮中添加2%亚麻油可使宁乡猪背肌、背脂、腹脂和肾周脂中C18:3n-3含量分别提高87.50%、409.38%、336.11%和381.82%,并使3种脂肪组织中平均n-6/n-3 PUFA比值降到了5.92左右,在《中国居民膳食指南(2016)》推荐范围(4~6)内,从而提高了宁乡猪脂肪组织的营养价值。

② 亚麻油可能通过负反馈抑制脂肪细胞分化和脂肪酸从头合成等途径影响宁乡猪背脂中脂肪酸代谢。

参考文献
[1]
周晶晶, 李家速, 王奇金. Omega-3多不饱和脂肪酸对脂肪代谢调节作用研究进展[J]. 第二军医大学学报, 2019, 40(1): 68-73.
[2]
SAINI R K, KEUM Y S. Omega-3 and omega-6 polyunsaturated fatty acids:dietary sources, metabolism, and significance-a review[J]. Life Sciences, 2018, 203: 255-267.
[3]
HE Q, REN P, KONG X, et al. Comparison of serum metabolite compositions between obese and lean growing pigs using an NMR-based metabonomic approach[J]. The Journal of Nutritional Biochemistry, 2012, 23(2): 133-139.
[4]
JIANG Q, LI C, YU Y, et al. Comparison of fatty acid profile of three adipose tissues in Ningxiang pigs[J]. Animal Nutrition, 2018, 4(3): 256-259.
[5]
RAJ S, SKIBA G, WEREMKO D, et al. The relationship between the chemical composition of the carcass and the fatty acid composition of intramuscular fat and backfat of several pig breeds slaughtered at different weights[J]. Meat Science, 2010, 86(2): 324-330.
[6]
SOBOL M, SKIBA G, RAJ S. Effect of n-3 polyunsaturated fatty acid intake on its deposition in the body of growing-finishing pigs[J]. Animal Feed Science and Technology, 2015, 208: 107-118.
[7]
蔡传江, 车向荣, 赵克斌, 等. 亚麻油对育肥猪肉品质及脂肪组织脂肪酸组成的影响[J]. 畜牧兽医学报, 2009, 40(12): 1755-1760.
[8]
CORINO C, ROSSI R, CANNATA S, et al. Effect of dietary linseed on the nutritional value and quality of pork and pork products:systematic review and Meta-analysis[J]. Meat Science, 2014, 98(4): 679-688.
[9]
邓波, 门小明, 吴杰, 等. 亚麻籽对生长育肥猪生长性能、胴体性状、肉质和脂肪酸组成的影响[J]. 动物营养学报, 2019, 31(9): 4024-4032.
[10]
XING Y, WU X, XIE C, et al. Meat quality and fatty acid profiles of Chinese Ningxiang pigs following supplementation with N-carbamylglutamate[J]. Animals, 2020, 10(1): 88.
[11]
喻文娟, 侯静文, 朱邦尚. 外标-气相色谱-质谱法准确测定猪肉中的14种脂肪酸[J]. 分析仪器, 2012(3): 10-16.
[12]
APPLE J K, MAXWELL C V, GALLOWAY D L, et al. Interactive effects of dietary fat source and slaughter weight in growing-finishing swine:Ⅲ.Carcass and fatty acid compositions[J]. Journal of Animal Science, 2009, 87(4): 1441-1454.
[13]
WOOD J D, ENSER M, FISHER A V, et al. Fat deposition, fatty acid composition and meat quality:a review[J]. Meat Science, 2008, 78(4): 343-358.
[14]
中国营养学会. 中国居民膳食指南2016[M]. 北京: 人民卫生出版社, 2016.
[15]
HUANG F R, ZHAN Z P, LUO J, et al. Duration of dietary linseed feeding affects the intramuscular fat, muscle mass and fatty acid composition in pig muscle[J]. Livestock Science, 2008, 118(1/2): 132-139.
[16]
DANNENBERGER D, NUERNBERG G, NUERNBERG K, et al. Effects of diets supplemented with n-3 or n-6 PUFA on pig muscle lipid metabolites measured by non-targeted LC-MS lipidomic profiling[J]. Journal of Food Composition and Analysis, 2017, 56: 47-54.
[17]
NUERNBERG K, FISCHER K, NUERNBERG G, et al. Effects of dietary olive and linseed oil on lipid composition, meat quality, sensory characteristics and muscle structure in pigs[J]. Meat Science, 2005, 70(1): 63-74.
[18]
GUILLEVIC M, KOUBA M, MOUROT J. Effect of a linseed diet or a sunflower diet on performances, fatty acid composition, lipogenic enzyme activities and stearoyl-CoA-desaturase activity in the pig[J]. Livestock Science, 2009, 124(1/2/3): 289-294.
[19]
KOUBA M, ENSER M, WHITTINGTON F M, et al. Effect of a high-linolenic acid diet on lipogenic enzyme activities, fatty acid composition, and meat quality in the growing pig[J]. Journal of Animal Science, 2003, 81(8): 1967-1979.
[20]
MOUROT J, KOUBA M, PEINIAU P. Comparative study of in vitro lipogenesis in various adipose tissues in the growing domestic pig (Sus domesticus)[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 1995, 111(3): 379-384.
[21]
KIM J S, INGALE S L, LEE S H, et al. Impact of dietary fat sources and feeding level on adipose tissue fatty acids composition and lipid metabolism related gene expression in finisher pigs[J]. Animal Feed Science and Technology, 2014, 196: 60-67.
[22]
REY A I, LOPEZ-BOTE C J, KERRY J P, et al. Modification of lipid composition and oxidation in porcine muscle and muscle microsomes as affected by dietary supplementation of n-3 with either n-9 or n-6 fatty acids and α-tocopheryl acetate[J]. Animal Feed Science and Technology, 2004, 113(1/2/3/4): 223-238.
[23]
REALINI C E, DURAN-MONTGÉ P, LIZARDO R, et al. Effect of source of dietary fat on pig performance, carcass characteristics and carcass fat content, distribution and fatty acid composition[J]. Meat Science, 2010, 85(4): 606-612.
[24]
DE TONNAC A, KARIM-LUISSET S, MOUROT J. Effect of different dietary linseed sources on fatty acid composition in pig tissues[J]. Livestock Science, 2017, 203: 124-131.
[25]
MONZIOLS M, BONNEAU M, DAVENEL A, et al. Comparison of the lipid content and fatty acid composition of intermuscular and subcutaneous adipose tissues in pig carcasses[J]. Meat Science, 2007, 76(1): 54-60.
[26]
DE TONNAC A, LABUSSIÈRE E, VINCENT A, et al. Effect of α-linolenic acid and DHA intake on lipogenesis and gene expression involved in fatty acid metabolism in growing-finishing pigs[J]. British Journal of Nutrition, 2016, 116(1): 7-18.
[27]
HILLER B, HERDMANN A, NUERNBERG K. Dietary n-3 fatty acids significantly suppress lipogenesis in bovine muscle and adipose tissue:a functional genomics approach[J]. Lipids, 2011, 46(7): 557-567.
[28]
LIU C Y, GRANT A L, KIM K H, et al. Porcine somatotropin decreases acetyl-CoA carboxylase gene expression in porcine adipose tissue[J]. Domestic Animal Endocrinology, 1994, 11(1): 125-132.
[29]
SMITH S, WITKOWSKI A, JOSHI A K. Structural and functional organization of the animal fatty acid synthase[J]. Progress in Lipid Research, 2003, 42(4): 289-317.
[30]
SPURLOCK M E, HOUSEKNECHT K L, PORTOCARRERO C P, et al. Regulation of PPARγ but not obese gene expression by dietary fat supplementation[J]. Journal of Nutritional Biochemistry, 2000, 11(5): 260-266.
[31]
DING S T, SCHINCKEL A P, WEBER T E, et al. Expression of porcine transcription factors and genes related to fatty acid metabolism in different tissues and genetic populations[J]. Journal of Animal Science, 2000, 78(8): 2127-2134.