动物营养学报    2020, Vol. 32 Issue (6): 2782-2790    PDF    
饥饿胁迫对彭泽鲫幼鱼形体指标、肌肉脂肪酸组成和肝脏脂蛋白脂酶基因表达的影响
陈文静 , 丁立云 , 邓勇辉 , 肖俊 , 章海鑫 , 王生 , 巫伟华     
江西省水产科学研究所, 南昌 330039
摘要: 本试验旨在研究饥饿胁迫对彭泽鲫幼鱼形体指标、肌肉脂肪酸组成和肝脏脂蛋白脂酶基因表达的影响。选用初始体质量为(14.35±0.59)g的彭泽鲫180尾,随机分为3个组,每组3个重复,每个重复20尾鱼。设定3组试验鱼的饥饿时间分别为0(对照组)、14(S14组)和28 d(S28组)。结果表明:随着饥饿时间的延长,彭泽鲫幼鱼的体质量、肝体比(HSI)、脏体比(VSI)和肥满度(CF)均呈下降趋势,S28组幼鱼的体质量、HSI、VSI和CF显著低于对照组(P < 0.05),S14组幼鱼的CF显著低于对照组(P < 0.05)。S28组幼鱼的肌肉粗脂肪和粗蛋白质含量显著低于对照组(P < 0.05)。S28组幼鱼肌肉中C16:0、C18:1n-9、总饱和脂肪酸(SFA)和总单不饱和脂肪酸(MUFA)相对含量显著低于对照组(P < 0.05),C22:6n-3(DHA)、C20:4n-6(ARA)、总多不饱和脂肪酸(PUFA)和总高不饱和脂肪酸(HUFA)相对含量则显著高于对照组(P < 0.05)。随着饥饿时间的延长,肝脏中脂蛋白脂酶(LPL)mRNA相对表达量呈先增后降的趋势,S14组显著高于对照组和S28组(P < 0.05)。综上所述,饥饿胁迫使彭泽鲫幼鱼的体质量、HSI、VSI和CF均降低。饥饿过程中彭泽鲫幼鱼可同时消耗体内的脂肪和蛋白质维持代谢,以利用脂肪为主。饥饿期间彭泽鲫幼鱼主要利用SFA和MUFA氧化供能,对PUFA尤其是DHA和ARA则选择性保留。
关键词: 饥饿胁迫    彭泽鲫    形体指标    脂肪酸    脂蛋白脂酶    
Effects of Starvation Stress on Physical Indices, Muscle Fatty Acid Composition and Liver Lipoprotein Lipase Gene Expression of Juvenile Crucian Carp (Carassius auratus var. Pengze)
CHEN Wenjing , DING Liyun , DENG Yonghui , XIAO Jun , ZHANG Haixin , WANG Sheng , WU Weihua     
Jiangxi Fisheries Research Institute, Nanchang 330039, China
Abstract: This experiment was conducted to evaluate the effects of starvation stress on physical indices, muscle fatty acid composition and liver lipoprotein lipase gene expression of juvenile crucian carp (Carassius auratus var. Pengze). A total of 180 Carassius auratus var. Pengze with an initial body weight of (14.35±0.59) g were randomly divided into 3 groups with 3 replicates per group and 20 fish per replicate. The starvation time of 3 groups was 0 (control group), 14 (S14 group) and 28 days (S28 group), respectively. The results showed that the body weight, hepatosomatic index, viserosomatic index and condition factor of juvenile Carassius auratus var. Pengze exhibited a declining trend with starvation time lengthening. Compared with the control group, the body weight, hepatosomatic index, viserosomatic index and condition factor in the S28 group were significantly decreased (P < 0.05), and the condition factor in the S14 group was significantly decreased (P < 0.05). The contents of crude fat and crude protein in muscle in the S28 group were significantly lower than those in the control group (P < 0.05). Compared with the control group, the relative contents of C16:0, C18:1n-9, total saturated fatty acids (SFA) and total monounsaturated fatty acids (MUFA) in muscle were significantly decreased, while the relative contents of C22:6n-3 (DHA), C20:4n-6 (ARA), total polyunsaturated fatty acids (PUFA) and total highly unsaturated fatty acids (HUFA) were significantly increased in the S28 group (P < 0.05). With the starvation time lengthening, the mRNA relative expression level of lipoprotein lipase gene in liver was firstly increased and then decreased. The mRNA relative expression level of lipoprotein lipase gene in the S14 group was significantly higher than that in the control group and S28 group (P < 0.05). In conclusion, the body weight, hepatosomatic index, viserosomatic index and condition factor of juvenile Carassius auratus var. Pengze were decreased under starvation stress. Carassius auratus var. Pengze can consume both body fat and protein to maintain metabolism during starvation, mainly using fat. Carassius auratus var. Pengze gets energy by oxidation of SFA and MUFA mainly, while PUFA, especially DHA and ARA are selectively retained during starvation.
Key words: starvation stress    Carassius auratus var. Pengze    physical indices    fatty acid    lipoprotein lipase    

养殖和野生水生动物通常面临因栖息地破坏、季节变化和短期食物资源匮乏而导致的饥饿胁迫[1-3]。蜕皮、繁殖以及外界温度的变化同样使得很多动物减少食物的摄食量[4]。饥饿胁迫后,水生动物会采取相应的活动行为、生理生化代谢,以降低在饥饿条件下的维持代谢[2]。然而,不同物种在饥饿期间对营养物质的代谢利用存在一定的差异。饥饿胁迫下大多数动物主要消耗机体储存的糖原和脂类物质来维持其基础代谢,其中甘油三酯中的脂肪酸是饥饿期间水生动物能量需求的主要来源之一[5-6]。研究发现,饥饿期间不同物种对机体脂肪酸的利用顺序不同[7]。革胡子鲶(Clarias gariepinus)饥饿导致C14 : 0、C16 : 1n-9和C18 : 1n-9等脂肪酸的相对含量下降,C20 : 5n-3(eicosapentaenoic acid, EPA)和C22 : 6n-3(docosahexaenoic acid, DHA)的相对含量升高[8]。大西洋鲑(Salmo salar)[9]、罗非鱼(Oreochromis mossambicus×O. niloticus)[10]和鱼(Miichthys miiuy)[11]在饥饿期间首先利用饱和脂肪酸(saturated fatty acids, SFA),然后利用单不饱和脂肪酸(monounsaturated fatty acids, MUFA)供应能量,且以n-9>n-6>n-3顺序利用各种单体脂肪酸,多不饱和脂肪酸(poly unsaturated fatty acids, PUFA)尤其是C20 : 4n-6(arachidonic acid, ARA)、EPA和DHA等被优先选择性保留下来。

彭泽鲫(Carassius auratus var. Pengze)隶属鲤形目鲤科鲫属,为鲫鱼的一个品种,是江西省水产科学研究所和九江市水产科学研究所经过7年6代从野生鲫鱼中选育获得的一个优良养殖品种,1989年通过农业部水产原种和良种审定委员会的审定。它具有生长快、耐低氧、抗病力强、病害少、不易脱鳞、肉质鲜美等诸多优良性状[12],已成为我国重要的鲫鱼养殖品种之一。饲养条件下饲养密度过大、投饲不均、投喂不及时等原因均会造成彭泽鲫饥饿现象,尤其是冬季野外活饵不足的情况下。但有关饥饿胁迫对彭泽鲫脂肪酸代谢和代谢酶基因表达的影响尚未见报道。本文探讨了饥饿胁迫对彭泽鲫幼鱼形体指标、肌肉脂肪酸组成和脂蛋白脂酶(lipoprotein lipase,LPL)基因表达的影响,旨在丰富彭泽鲫生理学基础知识,为其健康养殖提供理论依据。

1 材料与方法 1.1 试验鱼及饲料

彭泽鲫由江西省水产科学研究所育种室提供,正式试验前在循环水系统中驯养14 d,投喂鲫鱼商品饲料,主要营养水平见表 1。每日投喂2次,饱食投喂。试验设置饥饿时间分别为0(对照组)、14(S14组)、28 d(S28组)的3组,每组设3个重复,以重复为单位养殖于9个圆形养殖桶(规格为直径800 mm×高650 mm)内,每桶放养健康无病、规格、体质量基本一致的彭泽鲫幼鱼20尾,初始体质量约为(14.35±0.59) g。

表 1 鲫鱼商品饲料的主要营养水平(干物质基础) Table 1 Proximate nutrient levels of commercial feed of Carassius auratus (DM basis)  
1.2 饲养管理

饥饿试验开始后,每天吸污1次并监测水温和水质状况,24 h充氧,确保养殖水质的清新。整个试验期间水质监测情况为:水温(26.0±1.5) ℃,溶解氧浓度不低于7 mg/L,pH 7.53±0.12,氨氮和亚硝酸浓度不高于0.1 mg/L。光周期为自然周期。

1.3 样品采集与分析

按照试验设计,对照组、S14组、S28组分别在饥饿0、14、28 d时采集样本,每个重复采集6尾幼鱼,经MS-222麻醉,称体质量后采血,测量体长和全长;冰上解剖,称取内脏总质量、肝脏质量,迅速剪取米粒大小肝脏组织,放入液氮中用于分析LPL基因表达;取侧线背侧的肌肉,于-20 ℃冰箱保存,分析肌肉水分、粗蛋白质、粗脂肪和脂肪酸等营养成分的含量。

饲料、肌肉常规营养成分含量的测定参照AOAC(2016)[13]的方法进行,其中水分、粗脂肪和粗蛋白质含量分别采用恒温(105 ℃)干燥法、索氏抽提法和凯氏定氮法测定,粗灰分含量采用550 ℃马福炉灼烧法测定,粗纤维含量采用酸碱消煮法测定。采用气质联用(GC-MS)技术分析脂肪酸组成,参考Zuo等[14]的方法检测各脂肪酸含量。

按照Trizol试剂(北京全式金生物技术有限公司)说明书提取彭泽鲫肝脏总RNA,分别用ND-2000核酸定量检测仪(NanoDrop,美国)和琼脂糖凝胶电泳检测RNA的浓度和质量。按照One-Step gDNA Removal and cDNA Synthesis SuperMix(北京全式金生物技术有限公司)试剂盒说明书进行RNA反转录,合成cDNA第1链。

根据已知的彭泽鲫LPL(GenBank序列号:FJ204474)[15]cDNA序列采用Primer Premier 5.0软件设计实时荧光定量PCR引物,检测引物特异性及扩增效率,筛选后每个基因各得到1对特异性引物,引物序列见表 2,引物由深圳华大基因科技有限公司合成。

表 2 实时荧光定量PCR引物序列 Table 2 Primer sequences of real-time quantitative PCR

定量检测仪器为实时荧光定量PCR仪(LightCycler 96,Roche,瑞士),反应体系为20 μL,上、下游引物各1.0 μL,10 μL 2×conc SYBR Green Ⅰ Master(罗氏,瑞士),1 μL cDNA模板和7 μL DEPC水。反应条件为:95 ℃ 2 min,紧接着95 ℃ 15 s,58 ℃ 10 s,72 ℃ 10 s,共45个循环。以β-肌动蛋白(β-actin)作为内参基因[15],以对照组目的基因mRNA表达量为1,采用2-ΔΔCt[16]得到各组目的基因的mRNA相对表达量。

1.4 计算公式
1.5 数据统计与分析

试验所得数据用SPSS 17.0统计软件进行单因素方差分析,差异达到显著水平(P<0.05)时,采用Turkey’s法进行组间的多重比较。试验结果以平均值±标准误(mean±SE)表示。

2 结果 2.1 饥饿胁迫对彭泽鲫幼鱼形体指标的影响

饥饿胁迫对彭泽鲫幼鱼形体指标的影响见表 3。随着饥饿胁迫时间的延长,彭泽鲫幼鱼的体质量、HSI、VSI和CF均呈下降的趋势,S28组幼鱼的体质量、HSI、VSI、CF均显著低于对照组(P < 0.05);S14组幼鱼仅CF显著低于对照组(P < 0.05),其他指标与对照组差异不显著(P>0.05)。

表 3 饥饿胁迫对彭泽鲫幼鱼形体指标的影响 Table 3 Effects of starvation stress on physical indices of juvenile Carassius auratus var. Pengze
2.2 饥饿胁迫对彭泽鲫幼鱼肌肉营养成分含量的影响

饥饿胁迫对彭泽鲫幼鱼肌肉营养成分含量的影响见表 4。彭泽鲫幼鱼肌肉粗脂肪和粗蛋白质含量随饥饿时间的延长急剧下降,S28组显著低于对照组(P < 0.05),与S14组无显著差异(P>0.05);肌肉水分含量随饥饿时间的延长而上升,S28组显著高于对照组(P < 0.05),与S14组无显著差异(P>0.05)。

表 4 饥饿胁迫对彭泽鲫幼鱼肌肉营养成分含量的影响 Table 4 Effects of starvation stress on muscle nutritional component contents of juvenile Carassius auratus var. Pengze  
2.3 饥饿胁迫对彭泽鲫幼鱼肌肉脂肪酸组成的影响

饥饿胁迫对彭泽鲫幼鱼肌肉脂肪酸组成的影响见表 5。S28组幼鱼肌肉中C16 : 0、C18 : 1n-9、总SFA和总MUFA的相对含量显著低于对照组、S14组(P < 0.05),DHA、ARA、总PUFA、总高不饱和脂肪酸(highly unsaturated fatty acids,HUFA)、n-3PUFA和n-6PUFA相对含量显著高于对照组、S14组(P < 0.05);S28组、S14组幼鱼肌肉中EPA的相对含量显著低于对照组(P < 0.05)。

表 5 饥饿胁迫对彭泽鲫幼鱼肌肉脂肪酸组成的影响(占脂肪酸的百分比) Table 5 Effects of starvation stress on fatty acid composition in muscle of juvenile Carassius auratus var. Pengze (percentage of total fatty acids)  
2.4 饥饿胁迫对彭泽鲫幼鱼肝脏中LPL mRNA相对表达量的影响

图 1所示,随着饥饿时间的延长,幼鱼肝脏中LPL mRNA相对表达量呈先增后降的趋势,S14组显著高于对照组和S28组(P < 0.05)。

图 1 饥饿胁迫对彭泽鲫幼鱼肝脏脂蛋白脂酶基因表达的影响 Fig. 1 Effects of starvation stress on LPL gene expression in liver of juvenile Carassius auratus var. Pengze
3 讨论 3.1 饥饿胁迫对彭泽鲫幼鱼形体指标及肌肉营养成分含量的影响

自然生态条件下,鱼类面临季节性饥饿的现象普遍存在,导致鱼体消耗自身储备的能量物质,出现机体负增长[17-18]。本试验中,彭泽鲫饥饿28 d时,体质量显著下降,这与吉富罗非鱼(GIFT,Oreochromis niloticus)[19]、南乳鱼(Galaxias maculatus)[20]、虹鳟(Oncorhynchus mykiss,Walbaum,1792)[21]等的研究结果一致。CF和HSI的变化在一定程度上反映了鱼体在饥饿状态下自身营养物质的消耗与积累[22],是对长期和短期营养方式非常敏感的形态学指标[23]。彭泽鲫幼鱼在饥饿28 d时,HSI显著下降,这表明彭泽鲫幼鱼在饥饿过程中会大量动用肝脏中储存的能量物质,特别是脂肪,导致饥饿幼鱼的HSI显著下降。对银鲳(Pampus argenteus)幼鱼的研究发现,饥饿致死时的幼鱼CF是正常鱼的59%~75%[24],而在本试验中,饥饿使彭泽鲫幼鱼的CF逐渐降低,饥饿28 d时,幼鱼的CF只有对照组的55%,但未致死,说明不同种类的鱼对饥饿的耐受力存在较大的差异。对金头鲷(Sparus aurata)[25]、刀鲚(Coilia nasus)[26]等鱼类的研究发现,饥饿胁迫导致CF和HSI显著降低。

鱼类面对食物不足或饥饿等营养限制时,需利用自身贮存的营养物质如碳水化合物、脂肪和蛋白质等来提供能量[21, 27];通常鱼类先消耗脂肪和糖原,再利用蛋白质作为能量维持生长代谢和正常生命活动的需要[28]。本试验观察到,彭泽鲫幼鱼肌肉粗脂肪和粗蛋白质含量在饥饿28 d时显著下降,但粗脂肪含量的降幅大于粗蛋白质含量的降幅,表明彭泽鲫幼鱼在饥饿过程中可同时消耗体内的脂肪和蛋白质来维持代谢活动,但以脂肪为主,类似的结果在吉富罗非鱼[19]、刀鲚[26]、大西洋鲑(Salmo salar)[29]和杂交鳢(Channa argus♂×C. maculate ♀)[30]的研究中也有报道。彭泽鲫在饥饿过程中肌肉水分含量不断增加,这主要是由于肌肉粗脂肪含量下降导致的[31]

3.2 饥饿胁迫对彭泽鲫幼鱼肌肉脂肪酸组成的影响

脂肪酸的氧化在能源供应中起着非常重要的作用[32]。鱼类对自身脂肪酸的利用存在一定的规律性,一般首先利用SFA,其次利用低不饱和脂肪酸,最后才利用HUFA[33]。本研究中,彭泽鲫幼鱼饥饿28 d时,肌肉中总SFA和部分MUFA的相对含量显著下降,总PUFA和总HUFA的相对显著上升,表明彭泽鲫幼鱼对脂肪酸的氧化利用具有高度选择性。其可能的原因是,彭泽鲫组织中的SFA和MUFA易通过线粒体β-氧化为其提供能量[34],虽然PUFA和HUFA同样可经β-氧化途径分解,但需差向酶和异构酶的参与[35-36]。彭泽鲫这样有选择性的利用SFA和MUFA氧化供能,主要是因为PUFA和HUFA,尤其是ARA和DHA等脂肪酸是磷脂生物膜、视觉和神经系统等的结构组分,具有比供能更加重要的生物功能,被优选保存下来[37-39]。对大黄鱼(Larimichthys crocea)的研究发现,饥饿导致幼鱼肌肉中SFA含量降低,PUFA含量升高,并以此认为,通过适当的饥饿处理,可以较好地改善大黄鱼的肉质[40]

3.3 饥饿胁迫对彭泽鲫幼鱼肝脏中LPL基因表达的影响

在银鲳、金钱鱼(Scatophagus argus)、异育银鲫中科3号(Carassius auratus gibelio var. CAS Ⅲ)等鱼类上的研究表明,鱼类处于短期饥饿状态缺乏外来能源供应时,可通过激活脂肪代谢相关基因[LPL、脂肪酸转运蛋白(FATP)、脂肪酸结合蛋白(FABP)、激素敏感脂肪酶(HSL)、过氧化物酶体增生物激活受体(PPARs)等]的表达,增加脂质的动员和利用,用于机体氧化供能[18, 41-42]LPL基因的表达量不仅与肌内脂肪沉积有关,而且显著影响血浆中脂质水平,与脂质代谢密切相关[43-44]。目前,LPL的主要功能被认为是催化血浆中乳糜微粒和低密度脂蛋白中的甘油三酯水解,产生甘油和游离脂肪酸为组织提供能量,或再酯化为甘油三酯储存在脂肪组织中[45-46]。本试验中,彭泽鲫幼鱼饥饿14 d时,肝脏中LPL mRNA的相对表达量显著增加,这与在银鲳[41]、金钱鱼[18]、花鲈(Lateolabrax maculatus)[47]和家兔(Oryctolagus cuniculus)[48]上的研究结果一致,暗示饥饿过程中加速了甘油三酯水解生成脂肪酸和甘油,满足机体能量需求。然而,当彭泽鲫饥饿到28 d时,LPL mRNA的相对表达量又显著下降,这可能是由于肝脏中输出的脂类降低,造成了氧化底物的不足,引起LPL的表达下调,使得能量供应不足,生长代谢受阻。有研究发现,混合营养期的圆斑星鲽(Verasper variegatus)仔鱼因摄食及消化器官发育均不完善,摄食和消化能力较弱,使LPL缺乏底物,从而导致LPL mRNA表达下调[49]

4 结论

① 饥饿胁迫使彭泽鲫幼鱼形体指标如体质量、HSI、VSI和CF发生显著变化。

② 随着饥饿时间的延长,彭泽鲫幼鱼在饥饿过程中可同时消耗体内的脂肪和蛋白质来维持代谢,以动用体内的脂肪为主。

③ 彭泽鲫幼鱼对脂肪酸的氧化利用具有高度选择性,主要利用SFA和MUFA氧化供能,对DHA和ARA有较强的选择性保留能力。

参考文献
[1]
WANG T, HUNG C C Y, RANDALL D J. The comparative physiology of food deprivation:from feast to famine[J]. Annual Review of Physiology, 2006, 68: 223-251. DOI:10.1146/annurev.physiol.68.040104.105739
[2]
ZENG L Q, LI F J, LI X M, et al. The effects of starvation on digestive tract function and structure in juvenile southern catfish (Silurus meridionalis Chen)[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2012, 162(3): 200-211.
[3]
SUN Y F, WANG F, DONG S L. A comparative study of the effect of starvation regimes on the foraging behavior of Portunus trituberculatus and Charybdis japonica[J]. Physiology & Behavior, 2015, 151: 168-177.
[4]
ANTONOPOULOU E, KENTEPOZIDOU E, FEIDANTSIS K, et al. Starvation and re-feeding affect Hsp expression, MAPK activation and antioxidant enzymes activity of European Sea Bass (Dicentrarchus labrax)[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2013, 165(1): 79-88.
[5]
OH S Y, NOH C H, KANG R S, et al. Compensatory growth and body composition of juvenile black rockfish Sebastes schlegeli following feed deprivation[J]. Fisheries Science, 2008, 74(4): 846-852. DOI:10.1111/j.1444-2906.2008.01598.x
[6]
覃川杰, 邵婷, 杨洁萍, 等. 饥饿胁迫对瓦氏黄颡鱼脂肪代谢的影响[J]. 水生生物学报, 2015, 39(1): 58-65.
[7]
WEN X B, CHEN L Q, KU Y M, et al. Effect of feeding and lack of food on the growth, gross biochemical and fatty acid composition of juvenile crab, Eriocheir sinensis[J]. Aquaculture, 2006, 252(2/3/4): 598-607.
[8]
ZAMAL H, OLLEVIER F. Effect of feeding and lack of food on the growth, gross biochemical and fatty acid composition of juvenile catfish[J]. Journal of Fish Biology, 1995, 46(3): 404-414. DOI:10.1111/j.1095-8649.1995.tb05980.x
[9]
WATHNE E. Strategies for directing slaughter quality of farmed Atlantic salmon (Salmo salar) with emphasis on diet composition and fat deposition[M]. Norges Landbruks Høgskole: [s.n.], 1995.
[10]
DE SILVA S S, GUNASEKERA R M, AUSTIN C M. Changes in the fatty acid profiles of hybrid red tilapia, Oreochromis mossambicus×O.niloticus, subjected to short-term starvation, and a comparison with changes in seawater raised fish[J]. Aquaculture, 1997, 153(3/4): 273-290.
[11]
柳敏海, 罗海忠, 傅荣兵, 等. 短期饥饿胁迫对鮸鱼生化组成、脂肪酸和氨基酸组成的影响[J]. 水生生物学报, 2009, 33(2): 230-235.
[12]
丁立云, 饶毅, 陈文静, 等. 投喂频率对彭泽鲫幼鱼生长性能、形体指标和肌肉品质的影响[J]. 江苏农业科学, 2017, 45(19): 228-231.
[13]
AOAC.Official methods of analysis of AOAC international[S].20th ed. Rockville, MD: AOAC, 2016.
[14]
ZUO R T, AI Q H, MAI K S, et al. Effects of dietary n-3 highly unsaturated fatty acids on growth, nonspecific immunity, expression of some immune related genes and disease resistance of large yellow croaker (Larmichthys crocea) following natural infestation of parasites (Cryptocaryon irritans)[J]. Fish & Shellfish Immunology, 2012, 32(2): 249-258.
[15]
CHENG H L, WANG X, PENG Y X, et al. Molecular cloning and tissue distribution of lipoprotein lipase full-length cDNA from Pengze crucian carp (Carassius auratus var.Pengze)[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2009, 153(1): 109-115. DOI:10.1016/j.cbpb.2009.02.006
[16]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 2001, 25(4): 402-408.
[17]
NAVARRO I, GUTIÉRREZ J. Fasting and starvation[J]. Biochemistry and Molecular Biology of Fishes, 1995, 4: 393-434. DOI:10.1016/S1873-0140(06)80020-2
[18]
LI H Y, XU W J, JIN J Y, et al. Effects of starvation on glucose and lipid metabolism in gibel carp (Carassius auratus gibelio, var.CAS Ⅲ)[J]. Aquaculture, 2018, 496: 166-175. DOI:10.1016/j.aquaculture.2018.07.015
[19]
刘波, 何庆国, 唐永凯, 等. 饥饿胁迫对吉富罗非鱼生长及生理生化指标的影响[J]. 中国水产科学, 2009, 16(2): 230-237. DOI:10.3321/j.issn:1005-8737.2009.02.011
[20]
BOY C C, VANELLA F A, LATTUCA M E, et al. Effect of starvation on growth rate, muscle growth and energy density of puyen, Galaxias maculatus[J]. Journal of Applied Ichthyology, 2013, 29(5): 1001-1007. DOI:10.1111/jai.12147
[21]
TAŞBOZAN O, EMRE Y, GÖKÇE M A, et al. The effects of different cycles of starvation and re-feeding on growth and body composition in rainbow trout (Oncorhynchus mykiss, Walbaum, 1792)[J]. Journal of Applied Ichthyology, 2016, 32(3): 583-588. DOI:10.1111/jai.13045
[22]
周凡, 线婷, 贝亦江, 等. 周期性"饥饿-再投喂"对大口黑鲈幼鱼补偿生长的影响[J]. 水产学杂志, 2019, 32(3): 27-33. DOI:10.3969/j.issn.1005-3832.2019.03.006
[23]
FOSTER A R, HOULIHAN D F, HALL S I. Effects of nutritional regime on correlates of growth rate in juvenile atlantic cod (Gadus morhua):comparison of morphological and biochemical measurements[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50(3): 502-512. DOI:10.1139/f93-059
[24]
王腾飞, 郭晓鸽, 谷江稳, 等. 饥饿及过量投喂下银鲳幼鱼形态学指标及体成分变化[J]. 海洋学研究, 2015, 33(4): 83-89. DOI:10.3969/j.issn.1001-909X.2015.04.010
[25]
PERES H, SANTOS S, OLIVA-TELES A. Lack of compensatory growth response in gilthead seabream (Sparus aurata) juveniles following starvation and subsequent refeeding[J]. Aquaculture, 2011, 318(3/4): 384-388.
[26]
金鑫, 徐钢春, 杜富宽, 等. 饥饿胁迫对刀鲚形体、体成分及血液生化指标的影响[J]. 动物学杂志, 2014, 49(6): 897-903.
[27]
WANG Y, LI C, QIN J G, et al. Cyclical feed deprivation and refeeding fails to enhance compensatory growth in Nile tilapia, Oreochromis niloticus L[J]. Aquaculture Research, 2009, 40(2): 204-210. DOI:10.1111/j.1365-2109.2008.02083.x
[28]
BABAEI S, KENARI A A, HEDAYATI M, et al. Effect of diet composition on growth performance, hepatic metabolism and antioxidant activities in Siberian sturgeon (Acipenser baerii, Brandt, 1869) submitted to starvation and refeeding[J]. Fish Physiology and Biochemistry, 2016, 42(6): 1509-1520. DOI:10.1007/s10695-016-0236-0
[29]
EINEN O, WAAGAN B, THOMASSEN M S. Starvation prior to slaughter in Atlantic salmon (Salmo salar):Ⅰ.Effects on weight loss, body shape, slaughter-and fillet-yield, proximate and fatty acid composition[J]. Aquaculture, 1998, 166(1/2): 85-104.
[30]
周爱国, 茅沈丽, 王超, 等. 饥饿胁迫对杂交鳢生长及生化组成的影响[J]. 水生态学杂志, 2012, 33(5): 78-82.
[31]
HUNG S S O, LIU W, LI H B, et al. Effect of starvation on some morphological and biochemical parameters in white sturgeon, Acipenser transmontanus[J]. Aquaculture, 1997, 151(1/2/3/4): 357-363.
[32]
HALVER J E. Fish nutrition[M]. 2nd ed.New York: Academic Press, 1989: 239-345.
[33]
谢小军, 邓利, 张波. 饥饿对鱼类生理生态学影响的研究进展[J]. 水生生物学报, 1998, 22(2): 181-188. DOI:10.3321/j.issn:1000-3207.1998.02.014
[34]
SARGENT J R, TOCHER D R, BELL J G.The lipids[M]//HALVER J E, HARDY R W.Fish nutrition.San Diego, CA, USA: Academic Press, 2002: 181-257.
[35]
SIDELL B D, CROCKETT E L, DRIEDZIC W R. Antarctic fish tissues preferentially catabolize monoenoic fatty acids[J]. Journal of Experimental Zoology, 1995, 271(2): 73-81. DOI:10.1002/jez.1402710202
[36]
MCKENZIE D J, HIGGS D A, DOSANJH B S, et al. Dietary fatty acid composition influences swimming performance in Atlantic salmon (Salmo salar) in seawater[J]. Fish Physiology and Biochemistry, 1998, 19(2): 111-122.
[37]
MOURENTE G, TOCHER D R. Effects of weaning onto a pelleted diet on docosahexaenoic acid (22 : 6n-3) levels in brain of developing turbot (Scophthalmus maximus L)[J]. .Aquaculture, 1992, 105(3/4): 363-377.
[38]
SARGENT J R, BELL J G, BELL M V, et al. Requirement criteria for essential fatty acids[J]. Journal of Applied Ichthyology, 1995, 11(3/4): 183-198.
[39]
ZABELINSKII S A, CHEBOTAREVA M A, KOSTKIN V B, et al. Phospholipids and their fatty acids in mitochondria, synaptosomes and myelin from the liver and brain of trout and rat:a new view on the role of fatty acids in membranes[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 1999, 124(2): 187-193. DOI:10.1016/S0305-0491(99)00113-3
[40]
刘峰, 吕小康, 刘阳阳, 等. 饥饿对大黄鱼幼鱼肌肉中氨基酸和脂肪酸组成的影响[J]. 渔业科学进展, 2018, 39(5): 58-65.
[41]
LIAO K, MENG R, RAN Z S, et al. Short-term starvation in silver pomfret (Pampus argenteus):molecular effects on lipid mobilization and utilization[J]. Aquaculture Research, 2017, 48(9): 4874-4885. DOI:10.1111/are.13307
[42]
刘建业, 陈华谱, 江东能, 等. 饥饿及复投喂对金钱鱼肠型脂肪酸结合蛋白基因表达的影响[J]. 水生生物学报, 2019, 43(4): 701-707.
[43]
ZAPPATERRA M, DESERTI M, MAZZA R, et al. A gene and protein expression study on four porcine genes related to intramuscular fat deposition[J]. Meat Science, 2016, 121: 27-32. DOI:10.1016/j.meatsci.2016.05.007
[44]
GELDENHUYS W J, LIN L, DARVESH A S, et al. Emerging strategies of targeting lipoprotein lipase for metabolic and cardiovascular diseases[J]. Drug Discovery Today, 2017, 22(2): 352-365.
[45]
WARNKE I, GORALCZYK R, FUHRER E, et al. Dietary constituents reduce lipid accumulation in murine C3H10 T1/2 adipocytes:a novel fluorescent method to quantify fat droplets[J]. Nutrition & Metabolism, 2011, 8(1): 30.
[46]
WANG H, ECKEL R H. Lipoprotein lipase:from gene to obesity[J]. American Journal of Physiology:Endocrinology and Metabolism, 2009, 297(2).
[47]
HUANG H L, ZHANG Y, CAO M Y, et al. Effects of fasting on the activities and mRNA expression levels of lipoprotein lipase (LPL), hormone-sensitive lipase (HSL) and fatty acid synthetase (FAS) in spotted seabass Lateolabrax maculatus[J]. Fish Physiology and Biochemistry, 2018, 44(1): 387-400.
[48]
张斌, 李福昌, 王诚, 等. 短期限饲对家兔肝脏和骨骼肌脂质代谢的影响[J]. 动物营养学报, 2019, 31(1): 243-250. DOI:10.3969/j.issn.1006-267x.2019.01.030
[49]
王贞杰, 叶保民, 常青, 等. 维生素C对圆斑星鲽早期发育的影响[J]. 渔业科学进展, 2018, 39(2): 96-103.