动物营养学报    2020, Vol. 32 Issue (7): 2959-2965    PDF    
ω-3多不饱和脂肪酸营养强化鸡蛋储存期稳定性的研究进展
王浩1,2 , 赵青余1,2 , 张军民1,2 , 秦玉昌1     
1. 中国农业科学院北京畜牧兽医研究所, 动物营养学国家重点实验室, 北京 100193;
2. 中国农业科学院北京畜牧兽医研究所, 农业农村部华北动物遗传资源与营养科学观测实验站, 北京 100193
摘要: ω-3多不饱和脂肪酸(ω-3 PUFA)营养强化鸡蛋对居民的健康饮食具有重要意义。通过营养调控方式,可高效稳定地生产出ω-3 PUFA营养强化鸡蛋。但因ω-3 PUFA的不饱和键易发生脂质氧化,会加速储存期鸡蛋的变质和ω-3 PUFA损失,影响其营养价值和经济价值。如何保证鸡蛋储存期品质及ω-3 PUFA含量已成为生产ω-3 PUFA营养强化鸡蛋的新问题。本文在简述ω-3 PUFA营养强化鸡蛋脂肪酸特点的基础上,围绕储存期ω-3 PUFA营养强化鸡蛋的蛋品质和脂质变化规律,以及提高储存期ω-3 PUFA稳定性的措施进行综述,以期为解决ω-3 PUFA营养强化鸡蛋的储存问题提供借鉴。
关键词: 鸡蛋    蛋品质    ω-3多不饱和脂肪酸    储存期    抗氧化物    
Storage Stability of ω-3 Polyunsaturated Fatty Acid-Enriched Egg: A Review
WANG Hao1,2 , ZHAO Qingyu1,2 , ZHANG Junmin1,2 , QIN Yuchang1     
1. State Key Laboratory of Animal Nutrition, Institute of Animal Science and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
2. North China Animal Genetic Resources and Nutrition Science Observation Experimental Station, Institute of Animal Science and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Abstract: Since consumers strive to gain additional health benefits from foods, omega-3 polyunsaturated fatty acids (PUFA) fortified-eggs turn out being very important for food fortification. Enrichment of eggs with ω-3 PUFA is possible through supplementation of diets with ω-3 PUFA sources. ω-3 PUFA in egg yolk is abundant, making it susceptible to oxidation. Thenceforth, ω-3 PUFA content in yolk and egg quality during storage are generally damaged by negative effect what call into question the primary aim of the fortification. This article reviews the storage stability of ω-3 PUFA and antioxidant substance on the basis of the ω-3 PUFA fortified-egg.
Key words: egg    egg quality    ω-3 PUFA    storage    antioxidant substance    

随着我国人民生活水平的提高和保健意识的增强,对膳食ω-3多不饱和脂肪酸(ω-3 polyunsaturated fatty acid,ω-3 PUFA)的摄入越来越关注。ω-3 PUFA主要包括α-亚麻酸(α-linolenic acid,ALA,C18 : 3 ω-3)、二十碳五烯酸(eicosapen taenoic acid,EPA,C20 : 5 ω-3)和二十二碳六烯酸(docasahexaenoic acid,DHA,C22 : 6 ω-3)(图 1)。ω-3 PUFA不仅是人体必需的脂肪酸,也是视网膜和脑神经系统形成的关键脂肪酸,并具有降脂、抗炎、抗癌、预防糖尿病、促进认知、缓解记忆衰退等功能[1-4]。中国居民膳食营养素参考摄入量(2017)推荐,成年人的ω-3 PUFA适宜摄入量为0.6%(能量百分比),联合国粮农组织(2010)推荐成年人EPA+DHA的摄入量为0.25 g/d[5-6],而根据《柳叶刀》最新发表的饮食调查显示,我国ω-3 PUFA平均摄入可能不足0.4%(能量百分比)[7]。因此,增加膳食ω-3 PUFA摄入对我国居民健康具有重要意义。鸡蛋作为常见食物,其蛋黄脂肪酸组成极易受饲粮脂肪酸组成的影响,在产蛋鸡饲粮中添加适量亚麻籽(或亚麻油)、鱼油、海洋微藻等,均可使每100 g鸡蛋中ω-3 PUFA含量达400 mg[8-9]。同时,鸡蛋中DHA主要以磷脂型存在,吸收率大于90%[10],表明鸡蛋是富集ω-3 PUFA的优良食物载体。目前,通过营养调控手段生产ω-3 PUFA营养强化鸡蛋的技术已相当成熟,但因ω-3 PUFA的不饱和键易发生脂质氧化,会加速储存期鸡蛋的变质和ω-3 PUFA损失,影响其营养价值和经济价值。所以鸡蛋储存期品质及ω-3 PUFA含量稳定性仍是生产者和消费者重点关注的问题。因此,本文在简述ω-3 PUFA营养强化鸡蛋脂肪酸特点的基础上,围绕储存期ω-3 PUFA营养强化鸡蛋的蛋品质和脂质变化规律,以及提高储存期ω-3 PUFA稳定性的措施进行综述,以期为解决ω-3 PUFA营养强化鸡蛋的储存问题提供借鉴。

图 1 ALA(A)、EPA(B)和DHA(C)的结构式 Fig. 1 Structural formulas of ALA (A), EPA (B) and DHA (C)
1 ω-3 PUFA营养强化鸡蛋的脂肪酸特点

蛋黄脂质占其干物质的60%,主要包括甘油三酯(TG, 67%)、磷脂(27%)和胆固醇(2%),TG和磷脂中脂肪酸的60%以上是不饱和脂肪酸,其中多不饱和脂肪酸约占20%[10-11],这也是鸡蛋易于富集ω-3 PUFA的基础之一。鸡蛋富集ω-3 PUFA后主要改变鸡蛋PUFA的组成,对蛋黄总脂肪含量并无显著影响(34.7% vs. 33.7%)[12]。普通鸡蛋ω-3 PUFA约占总脂肪酸的0.6%,ω-6 PUFA/ω-3 PUFA为(10~15) : 1;蛋鸡饲粮添加亚麻籽、鱼油或微藻,均可提高鸡蛋中ω-3 PUFA含量,使鸡蛋中ω-6 PUFA/ω-3 PUFA降至(2~ 5) : 1[12-13]。除ω-3与ω-6比例变化之外,饲粮ω-3 PUFA源也会影响鸡蛋ω-3 PUFA中ALA、EPA、DHA含量、比例及ω-3 PUFA在蛋黄脂质中的分布。

1.1 饲粮ω-3 PUFA源对鸡蛋ω-3 PUFA组成的影响

蛋黄ω-3 PUFA组成与饲粮ω-3 PUFA原料关系密切,50%以上的ALA和80%以上的EPA、DHA直接受饲粮ω-3 PUFA调控[10, 14-16]。不同ω-3 PUFA原料会使鸡蛋ω-3 PUFA的组成差异显著(表 1)[17]。当饲粮中添加亚麻籽、菜籽或亚麻油等富含ALA的饲料原料时,鸡蛋中主要富集的ω-3 PUFA是ALA,次要富集的是DHA[12, 18-19];当饲粮中添加鱼油或微藻等富含EPA和DHA原料时,鸡蛋中主要富集的ω-3 PUFA则是EPA和DHA,对ALA含量无显著影响[9, 13, 20-21]。Neijat等[12]为了比较亚麻油和微藻DHA在鸡蛋中的富集差异,在产蛋鸡饲粮中添加提供等量ω-3 PUFA(0.60%)的亚麻油或DHA微藻。结果显示:与对照组相比,亚麻油可使鸡蛋中ALA含量提高近10倍,同时DHA含量提高近3倍;而DHA微藻可使鸡蛋中DHA含量提高7倍以上,ALA含量增加了不到1倍(表 2)。

表 1 饲粮原料的ω-3 PUFA组成(占总脂肪酸比例) Table 1 Composition of dietary sources of ω-3 PUFA (percentage of total fatty acids)[17]  
表 2 鸡蛋蛋黄中ω-3 PUFA的含量 Table 2 ω-3 PUFA content in egg yolk[12]  
1.2 ω-3 PUFA在蛋黄脂质中的分布

ω-3 PUFA以TG、磷脂[主要包括磷脂酰胆碱(phosphatidylcholine,PC)和磷脂酰乙醇胺(phosphatidyl ethanolamine,PE)]形式存在于鸡蛋黄中,ω-3 PUFA组成的不同也会影响鸡蛋中ω-3 PUFA的存在形式。饲粮中添加亚麻籽或亚麻油时,鸡蛋中主要富集的ALA会与TG结合形成ALA-TG,此时鸡蛋中的ω-3 PUFA主要是TG形式;饲粮添加微藻时,鸡蛋中主要富集的DHA则会与磷脂中磷脂酰胆碱和磷脂酰乙醇胺结合形成DHA-PC和DHA-PE(表 3)[12]。也有研究表明,蛋黄中超过90% DHA以磷脂(DHA-PC和DHA-PE)形式存在[14-15]。此外,ALA和DHA更易结合在TG和磷脂的sn-2位上,以增加ω-3 PUFA的稳定性。通过脂质组分析可知,DHA鸡蛋中DHA占sn-2位脂肪酸组成的18.84%,占sn-1位脂肪酸组成的1.91%[22]。但ω-3 PUFA的增加对蛋黄中TG和磷脂含量无显著影响[12]

表 3 鸡蛋蛋黄中ω-3 PUFA的分布 Table 3 ω-3 PUFA distribution in egg yolk[12]  
2 ω-3 PUFA营养强化鸡蛋在储存期的变化

鸡蛋储存期的失水率、蛋黄比例、干物质含量以及哈氏单位等鸡蛋内部品质指标,是衡量其新鲜度的基础指标,通常与储存的时间和温度相关。ω-3 PUFA营养强化鸡蛋在提高营养价值的同时,因ω-3 PUFA多不饱和键易发生脂质氧化的特点,会导致鸡蛋储存期品质更快下降[18, 23]。其中,氧化产生的二氧化碳则会加速蛋清pH变化,使维持蛋白凝胶性的卵黏蛋白更易降解,导致蛋白高度和哈氏单位降低,但对其他内部品质影响较小[24-25]。研究表明,4 ℃储存条件下,普通鸡蛋蛋白高度和哈氏单位会在储存期30 d后下降较快,ω-3 PUFA营养强化鸡蛋蛋白高度和哈氏单位在储存期10 d后便出现较快下降[22]。由于鸡蛋中ω-3 PUFA含量也是衡量ω-3 PUFA营养强化鸡蛋的关键指标,因此,除关注储存期鸡蛋品质之外,还要重点关注ω-3 PUFA稳定性和脂质氧化产物的产生。

2.1 ω-3 PUFA营养强化鸡蛋在储存期脂肪酸的变化

储存期蛋黄脂质变化主要包括水解和氧化2部分,水解是通过特异性或非特异性脂肪酶,将含脂肪酸的TG和磷脂分解为甘油二酯、甘油一酯、溶血磷脂和游离脂肪酸[26-27]。脂质中脂肪酸水解的顺序通常为多不饱和脂肪酸>单不饱和脂肪酸>饱和脂肪酸[28]。因此,富含ω-3 PUFA的蛋黄脂质会优先发生水解,产生的游离PUFA经β氧化,由不饱和脂肪酸逐渐变成饱和脂肪酸,由长链脂肪酸逐渐变成中链脂肪酸。导致储存期蛋黄脂肪酸中PUFA降低,C16 : 0和C18 : 0含量升高[29]。相对于ω-6 PUFA含量较多的普通蛋黄,富含ω-3 PUFA的蛋黄也更易发生β氧化反应[18],而ω-3 PUFA中EPA和DHA更易氧化,ALA相对稳定[17],DHA氧化占ω-3 PUFA含量降低的主要贡献率[24, 30]。4 ℃条件下储存60 d,鱼油鸡蛋中DHA含量降低29%[31];相同储存温度下,鸡蛋ALA含量不受储存时间影响[17-18]。而在室温储存28 d,ω-3 PUFA营养强化鸡蛋中的ALA、EPA和DHA含量均显著降低,其中DHA含量降低比例最高[32]。ω-3 PUFA中脂肪酸氧化稳定性依次为ALA>DHA≈EPA。这表明相对于ALA,EPA和DHA更多的不饱和键是诱发生脂质氧化的关键因素[10, 33]

2.2 ω-3 PUFA营养强化鸡蛋在储存期氧化产物的变化

除β氧化外,ω-3 PUFA中双键也容易受到自由基的攻击,发生链式自由基反应。通常以过氧化物值(peroxide value,PV)和生成的醛、酮和醇等[如丙二醛(malondialdehyde,MDA)或硫代巴比妥酸反应物(thiobarbituric acid reactive substances,TBARS)]次级脂质氧化产物衡量。鱼油、藻油等ω-3 PUFA源常以过氧化物值(PV)、硫代巴比妥酸反应物(TBARS)结合EPA+DHA含量显示其稳定性,PV在1~5 meq/kg表示处于较低的脂质氧化水平[34-35]。在蛋黄中脂质氧化产物则以MDA或TBARS为主,其含量随储存时间延长而增加。与普通鸡蛋相比,ω-3 PUFA营养强化鸡蛋在储存期会产生更多的MDA或TBARS[18]。储存28 d的普通鸡蛋MDA含量约为1 mg/kg[36],而ω-3 PUFA营养强化鸡蛋MDA含量在3.8 mg/kg以上[37]。不同储存时间,蛋黄DHA的氧化特点也存在差异。在储存初期,DHA降低的同时会出现其他脂肪酸的小幅增加,表明此阶段主要是脂肪酸的β氧化;随储存时间延长,蛋黄中自由基逐渐积累,则会加速脂质的过氧化反应,导致储存20~30 d的蛋黄MDA产生和DHA降低的速率增加[22, 38]。此外,EPA和DHA氧化产生特定的氧化产物:4-羟基-2-己烯醛(4-HHE)、4-羟基-2-壬醛(4-HNE)和各种异丙醇等也可作为EPA和DHA氧化的判定依据[39-40]。Meynier等[39]认为,储存期内ω-3 PUFA氧化过程不会产生胆固醇氧化物,通过抗氧化途径可有效抑制脂质氧化初、次级产物的产生。

3 ω-3 PUFA营养强化鸡蛋储存期的ω-3 PUFA稳定性研究

为延长鸡蛋储存期,通常采用低温储存、清洗涂膜、气调包装等方法,增加鸡蛋品质的稳定性[36]。对于ω-3 PUFA营养强化鸡蛋,维持鸡蛋品质稳定的前提下,保持储存期内ω-3 PUFA含量同样重要。加之ω-3 PUFA更易发生脂质氧化,因此在物理保护的基础上,需增加鸡蛋内的抗氧化物质保护ω-3 PUFA[41]。增加鸡蛋抗氧化物质的方式主要通过饲粮添加抗氧化剂,使抗氧化物质和ω-3 PUFA在鸡蛋中双重富集,保护鸡蛋中的ω-3 PUFA[17, 42]。抗氧化剂分为合成型和天然型,出于有效性和安全性考虑,通常会选择脂溶性的天然抗氧化剂(如维生素E、类胡萝卜素等)与ω-3 PUFA共同富集于蛋黄中,减少ω-3 PUFA氧化[10, 24]

当前关于饲粮添加抗氧化剂延缓ω-3 PUFA营养强化鸡蛋储存期的研究,主要集中在生育酚(或维生素E)上。其脂溶性和抗氧化性可将蛋黄中氧化反应阻断在氧化链的传播阶段,维持储存期鸡蛋的ω-3 PUFA稳定性,同时也会降低蛋黄TBARS和其他脂质氧化物产生[43-44]。研究证实,生育酚可使4 ℃储存6周的ω-3 PUFA营养强化鸡蛋ALA和DHA含量与鲜蛋无显著差异[45]。鸡蛋中α-生育酚是通过自身氧化的方式保护ω-3 PUFA不受氧化损伤。ω-3 PUFA营养强化鸡蛋中生育酚的降解速度是普通鸡蛋的3倍[24]。当储存时间超过40 d时,鸡蛋中α-生育酚开始显著降低[18, 31];储存时间延长至60 d,鸡蛋中维生素E含量降低40%[46]。鸡蛋黄中α-生育酚含量低于50 μg/g时表现出抗氧化效果,含量超过75 μg/g则表现出促氧化效果[47]。此外,叶黄素、虾青素等脂溶性类胡萝卜素同样具有良好的抗氧化性,也可用于保护鸡蛋中EPA和DHA[10, 48]

4 小结

目前,国内ω-3 PUFA市场占有率远低于加拿大、美国等发达国家,随着ω-3 PUFA营养强化鸡蛋的推广及冷链基础设施的建设,会一定程度地改善ω-3 PUFA营养强化鸡蛋储存稳定性。但从ω-3 PUFA营养强化鸡蛋生产技术角度分析,相比于ω-3 PUFA在鸡蛋中的富集,鸡蛋中ω-3 PUFA的稳定性,尤其是鸡蛋中的DHA的稳定储存及营养保真问题仍亟待解决。而对于此部分的研究主要针对储存条件和抗氧化剂调控,对于储存期鸡蛋脂质变化的关键节点尚不清晰,抗氧化剂提高储存期脂肪酸稳定性的机理还有待深入。随着脂质组学等新技术的引入,有助于揭示脂质氧化和抗氧化物质间的关系。对于形成高效稳定的ω-3 PUFA营养强化鸡蛋的储存、保真技术提供了有力保障。

参考文献
[1]
STONEHOUSE W, CONLON C A, PODD J, et al. DHA supplementation improved both memory and reaction time in healthy young adults:a randomized controlled trial[J]. The American Journal of Clinical Nutrition, 2013, 97(5): 1134-1143. DOI:10.3945/ajcn.112.053371
[2]
PENG W, VILLAMOR E, MORA-PLAZAS M, et al. Alpha-linolenic acid (ALA) is inversely related to development of adiposity in school-age children[J]. European Journal of Clinical Nutrition, 2015, 69(2): 167-172. DOI:10.1038/ejcn.2014.210
[3]
DING L, ZHANG L Y, WEN M, et al. Eicosapentaenoic acid-enriched phospholipids improve atherosclerosis by mediating cholesterol metabolism[J]. Journal of Functional Foods, 2017, 32(1): 90-97.
[4]
SUGASINI D, YALAGALA P C R, GOGGIN A, et al. Enrichment of brain docosahexaenoic acid (DHA) is highly dependent upon the molecular carrier of dietary DHA:lysophosphatidylcholine is more efficient than either phosphatidylcholine or triacylglycerol[J]. The Journal of Nutritional Biochemistry, 2019, 74: 108231. DOI:10.1016/j.jnutbio.2019.108231
[5]
国家卫生和计划生育委员会.WS/T 578.1—2017中国居民膳食营养素参考摄入量第1部分: 宏量营养素[S].北京: 中国标准出版社, 2017.
[6]
Food and Agriculture Organization of the United Nations.Fats and fatty acids in human nutrition[R]. Rome: Publishing Policy and Support Branch, 2010.
[7]
GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990-2017:a systematic analysis for the Global Burden of Disease Study 2017[J]. The Lancet, 2019, 393(10184): 1958-1972. DOI:10.1016/S0140-6736(19)30041-8
[8]
GAKHAR N, GOLDBERG E, JING M, et al. Effect of feeding hemp seed and hemp seed oil on laying hen performance and egg yolk fatty acid content:evidence of their safety and efficacy for laying hen diets[J]. Poultry Science, 2012, 91(3): 701-711. DOI:10.3382/ps.2011-01825
[9]
COOREY R, NOVINDA A, WILLIAMS H, et al. Omega-3 fatty acid profile of eggs from laying hens fed diets supplemented with chia, fish oil, and flaxseed[J]. Journal of Food Science, 2015, 80(1): S180-S187. DOI:10.1111/1750-3841.12735
[10]
KASSIS N M, GIGLIOTTI J C, BEAMER S K, et al. Characterization of lipids and antioxidant capacity of novel nutraceutical egg products developed with omega-3-rich oils[J]. Journal Science of Food Agricultural, 2012, 92(1): 66-73. DOI:10.1002/jsfa.4542
[11]
COTTERILL O J, GLAUERT J L. Nutrient values for shell, liquid/frozen, and dehydrated eggs derived by linear regression analysis and conversion factors[J]. Poultry Science, 1979, 58(1): 131-134. DOI:10.3382/ps.0580131
[12]
NEIJAT M, ECK P, HOUSE J D. Impact of dietary precursor ALA versus preformed DHA on fatty acid profiles of eggs, liver and adipose tissue and expression of genes associated with hepatic lipid metabolism in laying hens[J]. Prostaglandins, Leukotrienes and Essential Fatty Acid, 2017, 119(1): 1-17.
[13]
WANG H, ZHANG H J, WANG X C, et al. Dietary choline and phospholipid supplementation enhanced docosahexaenoic acid enrichment in egg yolk of laying hens fed a 2% Schizochytrium powder-added diet[J]. Poultry Science, 2017, 96(8): 2786-2794. DOI:10.3382/ps/pex095
[14]
GŁADKOWSKI W, KIEŁBOWICZ G, CHOJNACKA A, et al. Fatty acid composition of egg yolk phospholipid fractions following feed supplementation of Lohmann brown hens with humic-fat preparations[J]. Food Chemistry, 2011, 126(3): 1013-1018. DOI:10.1016/j.foodchem.2010.11.112
[15]
BRUNEEL C, LEMAHIEU C, FRAEYE I, et al. Impact of microalgal feed supplementation on omega-3 fatty acid enrichment of hen eggs[J]. Journal of Functional Foods, 2013, 5(2): 897-904. DOI:10.1016/j.jff.2013.01.039
[16]
BAUCELLS M D, CRESPO N, BARROETA A C, et al. Incorporation of different polyunsaturated fatty acids into eggs[J]. Poultry Science, 2000, 79(1): 51-59. DOI:10.1093/ps/79.1.51
[17]
REN Y.Oxidative stability of omega-3 polyunsaturated fatty acids enriched eggs[D]. Master Thesis.Edmonton: University of Alberta, 2009.
[18]
HAYAT Z, CHERIAN G, PASHA T N, et al. Oxidative stability and lipid components of eggs from flax-fed hens:effect of dietary antioxidants and storage[J]. Poultry Science, 2010, 89(6): 1285-1292. DOI:10.3382/ps.2009-00256
[19]
GOLDBERG E M, RYLAND D, ALIANI M, et al. Interactions between canola meal and flaxseed oil in the diets of white Lohmann hens on fatty acid profile and sensory characteristics of table eggs[J]. Poultry Science, 2016, 95(8): 1805-1812. DOI:10.3382/ps/pew025
[20]
吴永保, 闫海洁, 蔡辉益, 等. 富含n-3多不饱和脂肪酸功能性原料在家禽生产中的应用研究进展[J]. 中国家禽, 2015, 37(24): 37-43.
[21]
龙烁, 武书庚, 齐广海, 等. 微藻油和鱼油对鸡蛋品质和蛋黄脂肪酸沉积的影响[J]. 动物营养学报, 2018, 30(5): 1713-1725. DOI:10.3969/j.issn.1006-267x.2018.05.014
[22]
王浩.胆碱和裂殖壶菌油对鸡蛋中二十二碳六烯酸富集的影响[D].博士学位论文.哈尔滨: 东北农业大学, 2018.
[23]
MIYASHITA K. Paradox of omega-3 PUFA oxidation[J]. European Journal of Lipid Science and Technology, 2014, 116(10): 1268-1279. DOI:10.1002/ejlt.201400114
[24]
KLENSPORF-PAWLIK D, ALADEDUNYE F, PRZYBYLSKI R. Storage stability of DHA in enriched liquid eggs[J]. European Journal of Lipid Science and Technology, 2018, 120(5): 1700164. DOI:10.1002/ejlt.201700164
[25]
WANG J P, OMANA D A, WU J P. Effect of shell eggs storage on ovomucin extraction[J]. Food and Bioprocess Technology, 2012, 5(6): 2280-2284. DOI:10.1007/s11947-011-0558-y
[26]
GUO Z, VIKBJERG A F, XU X B. Enzymatic modification of phospholipids for functional applications and human nutrition[J]. Biotechnology Advances, 2005, 23(3): 203-259. DOI:10.1016/j.biotechadv.2005.02.001
[27]
VIKBJERG A F, PENG L F, MU H L, et al. Continuous production of structured phospholipids in a packed bed reactor with lipase from Thermomyces lanuginosa[J]. Journal of the American Oil Chemists Society, 2005, 82(4): 237-242. DOI:10.1007/s11746-005-1061-x
[28]
王庆玲.禽蛋脂质分析及鸡蛋贮藏过程中脂质变化规律的研究[D].博士学位论文.武汉: 华中农业大学, 2015.
[29]
BOTSOGLOU E, GOVARIS A, FLETOURIS D, et al. Olive leaves (Olea europea L.) and α-tocopheryl acetate as feed antioxidants for improving the oxidative stability of α-linolenic acid-enriched eggs[J]. Journal of Animal Physiology and Animal Nutrition, 2013, 97(4): 740-753. DOI:10.1111/j.1439-0396.2012.01316.x
[30]
BOTSOGLOU E, GOVARIS A, PEXARA A, et al. Effect of processing and storage on the fatty acid composition of n-3 or n-6 fatty acid-enriched eggs[J]. International Journal of Food Science and Technology, 2012, 47(11): 2388-2396. DOI:10.1111/j.1365-2621.2012.03114.x
[31]
CHERIAN G, TRABER M G, GOEGER M P, et al. Conjugated linoleic acid and fish oil in laying hen diets:effects on egg fatty acids, thiobarbituric acid reactive substances, and tocopherols during storage[J]. Poultry Science, 2007, 86(5): 953-958. DOI:10.1093/ps/86.5.953
[32]
MELUZZI A, SIRRI F, MANFREDA G, et al. Effects of dietary vitamin E on the quality of table eggs enriched with n-3 long-chain fatty acids[J]. Poultry Science, 2000, 79(4): 539-545. DOI:10.1093/ps/79.4.539
[33]
CHERIAN G. Metabolic and cardiovascular diseases in poultry:role of dietary lipids[J]. Poultry Science, 2007, 86(5): 1012-1016. DOI:10.1093/ps/86.5.1012
[34]
NEILSEN S S.Food analysis[M]. 3rd ed.New York: Kluwer Academic/Plenum Publishers, 2003: 556-557.
[35]
LV J W, YANG X Q, MA H X, et al. The oxidative stability of microalgae oil (Schizochytrium aggregatum) and its antioxidant activity after simulated gastrointestinal digestion:relationship with constituents[J]. European Journal of Lipid Science and Technology, 2015, 117(12): 1928-1939. DOI:10.1002/ejlt.201400588
[36]
AKTER Y, KASIM A, OMAR H, et al. Effect of storage time and temperature on the quality characteristics of chicken egg[J]. Journal of Food Agriculture and Environment, 2014, 1212(3/4): 87-92.
[37]
SIMTH E, BEAMER S K, MATAK K E, et al. Storage stability of egg sticks fortified with omega-3 fatty acids[J]. Journal of Science and Food Agricultural, 2018, 98(9): 3452-3461. DOI:10.1002/jsfa.8858
[38]
BOTSOGLOU E, GOVARIS A, FLETOURIS D, et al. Lipid oxidation of stored eggs enriched with very long chain n-3 fatty acids, as affected by dietary olive leaves (Olea europea L.) or α-tocopheryl acetate supplementation[[J]. Food Chemistry, 2012, 134(2): 1059-1068. DOI:10.1016/j.foodchem.2012.03.014
[39]
MEYNIER A, LEBORGNE C, VIAU M, et al. N-3 fatty acid enriched eggs and production of egg yolk powders:an increased risk of lipid oxidation?[J]. Food Chemistry, 2014, 153: 94-100. DOI:10.1016/j.foodchem.2013.12.028
[40]
ISMAIL A, BANNENBERG G, RICE H B, et al. Oxidation in EPA- and DHA-rich oils:an overview[J]. Lipid Technology, 2016, 28(3/4): 55-59.
[41]
WEECH M, VAFEIADOU K, HASAJ M, et al. Development of a food-exchange model to replace saturated fat with MUFAs and n-6 PUFAs in adults at moderate cardiovascular risk[J]. The Journal of Nutrition, 2014, 144(6): 846-855. DOI:10.3945/jn.114.190645
[42]
SHAHIDI F, ZHONG Y. Novel antioxidants in food quality preservation and health promotion[J]. European Journal of Lipid Science and Technology, 2010, 112(9): 930-940. DOI:10.1002/ejlt.201000044
[43]
CHERIAN G, WOLFE F H, SIM J S. Feeding dietary oils with tocopherols:effects on internal qualities of eggs during storage[J]. Journal of Food Science, 1996, 61(1): 15-18. DOI:10.1111/j.1365-2621.1996.tb14716.x
[44]
POPRAC P, JOMOVA K, SIMUNKOVA M, et al. Targeting free radicals in oxidative stress-related human diseases[J]. Trends in Pharmacological Sciences, 2017, 38(7): 592-607. DOI:10.1016/j.tips.2017.04.005
[45]
DOUNY C, EL KHOURY R, DELMELLE J, et al. Effect of storage and cooking on the fatty acid profile of omega-3 enriched eggs and pork meat marketed in Belgium[J]. Food Science & Nutrition, 2015, 3(2): 140-152.
[46]
FRANCHINI A, SIRRI F, TALLARICO N, et al. Oxidative stability and sensory and functional properties of eggs from laying hens fed supranutritional doses of vitamins E and C[J]. Poultry Science, 2002, 81(11): 1744-1750. DOI:10.1093/ps/81.11.1744
[47]
CHEN J Y, LATSHAW J D, LEE H O, et al. α-Tocopherol content and oxidative stability of egg yolk as related to dietary α-tocopherol[J]. Journal of Food Science, 1998, 63(5): 919-922. DOI:10.1111/j.1365-2621.1998.tb17927.x
[48]
GRUNE T, KRÄMER K, HOPPE P H, et al. Enrichment of eggs with n-3 polyunsaturated fatty acids:effects of vitamin E supplementation[J]. Lipids, 2001, 36(8): 833-838. DOI:10.1007/s11745-001-0792-7