动物营养学报    2020, Vol. 32 Issue (8): 3543-3551    PDF    
生姜提取物的生理功能及其在畜禽生产中的应用
王玉洁 , 张富群 , 刘霜莉 , 陈清华     
湖南农业大学动物科学技术学院, 长沙 410128
摘要: 生姜提取物作为食药两用的天然植物提取物,具有来源广泛、绿色无残留等特点,并且具有抗氧化、抗炎、调节脂质代谢、促免疫、抗癌和抑菌等多重生理作用。本文对生姜提取物的主要活性成分、作用机制以及在畜禽生产中的应用进行了总结,为畜禽行业开发新型有效的饲料添加剂提供理论基础。
关键词: 生姜提取物    抗氧化    抗炎    降脂    免疫调节    畜禽生产    
Physiological Function of Ginger Extract and Its Application in Livestock and Poultry Production
WANG Yujie , ZHANG Fuqun , LIU Shuangli , CHEN Qinghua     
College of Animal Science, Hunan Agricultural University, Changsha 410128, China
Abstract: Ginger extract, as a natural plant extract for both food and medicine, has the characteristics of wide source, no residue and so on, and has many physiological effects such as antioxidant, anti-inflammatory, regulating lipid metabolism, promoting immunity, anti-cancer and bacteriostasis. In this paper, the main active components, action mechanism and application in livestock and poultry production of ginger extract are summarized, which provides a theoretical basis for the development of new and effective feed additives in livestock and poultry industry.
Key words: ginger extract    antioxidant    anti-inflammatory    lipid-lowering    immunoregulation    livestock and poultry production    

生姜是姜科姜属的多年生草本植物的新鲜根茎,可作为一种药用植物,被广泛用于疾病治疗[1-2]。生姜提取物(ginger extract,GE)是生姜中提取出的一种植物提取物,具有抗氧化[3]、抗炎[4]、调节脂质代谢[5]、促免疫[6]、抗癌[7]和抑菌[8]等生理功能。随着饲料资源短缺、抗生素滥用和食品安全等问题日趋严重,寻找使用安全且功能有效的新型植物源饲料迫在眉睫。生姜提取物凭借其天然无害且具有多重生理功能的特点,成为一类绿色、安全饲料添加剂的良好选择。本文将对生姜提取物的主要活性成分、生理功能及在畜禽生产上的应用进行综述,为其进一步开发利用提供理论基础。

1 生姜提取物的主要活性成分

生姜提取物是一种混合物,其含有多种活性成分,而其中成分含量根据产地、品种与新鲜程度的不同而有所不同。生姜提取物中成分复杂,已分离鉴定出400多种化学成分[4],包括挥发油、姜辣素、二苯基庚烷类等[9],具体情况见表 1

表 1 生姜提取物的主要活性成分 Table 1 Main active components of ginger extract
图 1 姜酚、姜烯酚和姜酮酚的结构 Fig. 1 Structures of gingerol, shogaol and paradol[4]
图 2 1, 7-二取代苯基加庚烷骨架 Fig. 2 1, 7-disubstituted phenyl plus heptane skeleton
2 生姜提取物的生理功能 2.1 抗氧化作用

许多研究表明,生姜提取物具有强抗氧化性[26-27],这与其结构关系密切。其组分中姜辣素和二苯基庚烷类化合物抗氧化性能较强,因为它们均含有酚基、羟基等极好的氢电子供体官能团,在遇到氧化底物如活性氧(reactive oxygen species,ROS)时,能轻易地脱掉氢离子与其结合,降低机体氧化损伤,同时,形成的新酚类游离基没有适合氧进攻的位点,故而化学性质极稳定,不会变成新的自由基参与氧化反应。Sueishi等[28]采用多种自由基清除方法,测定了生姜对5种ROS(羟基自由基、超氧化物、烷氧基、过氧自由基和单线态氧)的清除能力,发现生姜善于清除羟基自由基和单线态氧;还发现生姜在80 ℃加热2 h后,对过氧自由基和单线态氧的清除能力下降了近50%。相反,热处理后清除超氧化物能力提高了56%左右。以上结果表明,生姜在高温处理下的抗氧化活性取决于ROS种类。

生姜提取物还可以通过激活抗氧化系统,提高抗氧化酶基因表达与酶活性。机体内会代谢产生ROS,它会引起体内脂质过氧化,产生丙二醛(malondialdehyde,MDA),破坏细胞结构,引发机体损伤。动物机体内存在抗氧化系统,受到自由基刺激时,抗氧化系统会自动将其清除,保持内环境稳态。Hosseinzadeh等[29]用5和25 μg/mL 2种不同浓度的生姜提取物处理软骨细胞24 h,之后用浓度为10 ng/mL的白细胞介素-1β(interleukin-1β,IL-1β)孵育24 h,观察生姜提取物对IL-1β诱导的细胞内ROS产生和脂质过氧化的影响。研究结果表明,生姜提取物能降低IL-1β诱导的C28I2细胞ROS和MDA生成,且增加了抗氧化酶基因包括超氧化物歧化酶(superoxide dismutase,SOD)、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)和过氧化氢酶(catalase,CAT)的mRNA表达。Mohamed等[3]研究了姜提取物对醋酸铅致氧化性肝毒性小鼠的改善作用,结果发现姜提取物能够非常有效地改善铅的毒性作用,并增加了GSH-Px和CAT活性及谷胱甘肽(glutathione,GSH)含量,降低了脂质过氧化反应和肝脏内MDA含量。以上的体外和体内试验都证明了生姜提取物能够提高抗氧化酶表达水平。

综上所述,生姜提取物发挥抗氧化作用主要是通过2个途径来实现:一方面,生姜提取物利用自身结构,直接清除机体过量自由基;另一方面,生姜提取物可以激活机体抗氧化系统,促进抗氧化酶基因和蛋白的表达,提高抗氧化酶的产生(图 3)。但其抗氧化功能机制与起作用的具体成分仍有待进一步研究。

Nrf2:核因子红细胞2相关因子2 nuclear factor erythroid 2-related factor 2;Keap1:Kelch样ECH相关蛋白1 Kelch-like ECH-associated protein 1;ARE:抗氧化反应元件antioxidant responsive element;GSH-Px:谷胱甘肽过氧化物酶glutathione peroxidase;ROS:活性氧reactive oxygen species;SOD:超氧化物歧化酶superoxide dismutase;GE:生姜提取物ginger extract。 图 3 生姜提取物抗氧化作用机制图 Fig. 3 Diagram of antioxidant mechanism of ginger extract
2.2 抗炎作用

生姜提取物可以通过抑制产生炎性介质的酶类活性,减少炎性介质产生,从而抑制炎性反应[30-31]。前列腺素(prostaglandin,PG)和白三烯(leukotrienes,LTs)是机体炎症反应过程中产生的炎性介质,它们分别是通过环氧化酶(cyclooxygenase,COX)和5-脂氧合酶(5-lipoxygenase,5-LOX)催化花生四烯酸(arachidonic acid,ARA)代谢产生。而生姜提取物可以同时抑制COX、5-LOX 2条途径,从而减少炎性介质产生。Flynn等[32]研究发现,生姜提取物中包括6-姜酚等一系列具有4-羟基-3-乙氧基苯基(4-hydroxy-3-ethoxy phenyl)的化合物都是花生四烯酸代谢的双重抑制剂,它们可以在小范围内减少人体中性粒细胞产生PG和LTs。非甾体抗炎药(nonsteroidal anti-inflammatory,NSAIDs)只能抑制PG合成,不能抑制花生四烯酸生成LTs。当一端被抑制,花生四烯酸会通过5-LOX途径产生大量LTs。相比于NSAIDs,生姜提取物具有双重作用,且更少副作用,它极具潜力成为新一类抗炎药。

研究表明,生姜提取物可以抑制炎性因子表达[33]。炎症组织中由于COX-2基因的诱导,COX-2表达会上调,其蛋白水平大大增加,而生姜提取物不仅可以抑制COX的活性,还可以在转录水平上抑制COX-2表达[4]。核转录因子-κB(nuclear factor kappa B,NF-κB)信号通路是调节炎症的重要信号通路,正常情况时NF-κB与抑制蛋白-κB(inhibitor-κB, IκB)结合。而肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)是激活NF-κB通路的重要炎性介质,当此类炎性介质过多时,会激活NF-κB与IκB脱离,NF-κB进入细胞核并激活炎性介质基因大量表达,加重炎症反应。Phan等[33]研究发现,生姜提取物可以抑制由TNF-α激活的滑膜细胞中TNF-α和IL-1β的mRNA表达水平。Frondoza等[34]研究发现,生姜提取物可以抑制多种TNF-α激活途径。但是,生姜提取物中的哪个组分是有效成分及具体机制还有待进一步研究。

综上所述,生姜提取物主要通过2个途径发挥抗炎作用:一方面是通过抑制产生炎性介质的酶类活性,减少炎性介质产生;另一方面通过抑制TNF-α等炎性介质,阻止其激活NF-κB信号通路,进而减少炎性因子表达,从而抑制炎症反应(图 4)。

GE:生姜提取物ginger extract;COX:环氧化酶cyclooxygenase;PG:前列腺素prostaglandin;LTs:白三烯leukotrienes;5-LOX:5-脂氧合酶5-lipoxygenase;TNF-α:肿瘤坏死因子-α tumor necrosis factor-α;NF-κB:核转录因子-κB nuclear factor kappa B。 图 4 生姜提取物抗炎作用机制图 Fig. 4 Mechanism of anti-inflammatory action of ginger extract
2.3 降脂作用

畜禽养殖过程中,母畜的妊娠期常常容易过肥,影响生产性能。研究发现生姜提取物可以通过不同的机制调节脂质代谢,如增加脂类分解[35]、抑制脂肪生成[36]、抑制肠道吸收膳食脂肪[37]等。

一方面,研究表明生姜提取物可以从多种方面促进脂类分解,不仅可以通过增加骨骼肌脂肪分解代谢和能量消耗来减弱高脂饮食诱导的肥胖[38],也可以增加糖酵解酶的活性促使葡萄糖代谢降解形成丙酮酸[39],还可以通过激活交感神经系统,增加激素敏感性脂肪酶的活性,从而增加脂肪组织的降解[40]。另一方面,研究表明,生姜提取物还可以抑制脂肪生成。脂肪分化可以将前脂肪细胞变成脂肪细胞,而生姜提取物能有效抑制前脂肪细胞向脂肪细胞分化,防止脂肪沉积[38, 41]。生姜提取物可以降低一些参与脂肪生成的酶,如脂肪酸合成酶(fatty acid synthase,FAS)和乙酰辅酶A羧化酶(acetyl CoA carboxylase,ACC)[42]的基因表达,从而减少脂肪生成。生姜提取物对碳水化合物水解酶,如α-葡萄糖苷酶和α-淀粉酶有显著的抑制作用[43],有助于减少肠道对碳水化合物的吸收,降低血糖。并且,生姜提取物可以抑制胰脂肪酶活性,降低肠道对膳食脂肪的吸收。

2.4 促免疫作用

生姜提取物可以通过促进机体免疫细胞分泌和提高其活性来增强免疫力。Rahmat等[44]发现生姜提取物通过引起淋巴细胞增殖来提高杀菌活性。熊平源等[45]研究表明,生姜能增强自然杀伤(NK)细胞活性,增加小鼠腹腔巨噬细胞吞噬活性及细胞毒性。Puri等[46]发现喂食生姜后老鼠的巨噬细胞迁移指数提高,增强了体液免疫功能。总而言之,生姜提取物可以增强淋巴细胞和NK细胞活性,活化巨噬细胞和B细胞,让它们作为主要抗原呈递细胞,增加免疫球蛋白的产生或者调节细胞因子的分泌[47]。近期研究发现,生姜提取物还可以提高溶菌酶活性[48],下调一氧化氮浓度[49],从而增强机体杀菌效果[50]

3 生姜提取物在畜禽生产中的应用 3.1 在家禽生产中的应用

研究表明,饲粮中添加生姜提取物,可以提高家禽的生产性能和免疫力[51-52](表 2)。蒋慧等[53]在饲粮中添加10 g/kg的生姜粉,土杂鸡的采食量和饲料转化率提高。Ademola等[54]发现,饲粮中添加20 g/kg生姜粉时,肉鸡前4周的增重有所增加。生姜提取物可以提升肉鸡生产性能可能与其肠道保护作用有关。研究发现,6-姜酚对大鼠肠缺血再灌注损伤具有保护作用[55],生姜提取物的6-姜酚等活性成分可以清除ROS,提高抗氧化酶活性和总抗氧化能力,降低氧化应激对肠道结构破坏作用,保障肠道功能。也有研究表明,生姜提取物可以通过抑制结肠运动来缓解腹泻[56]。胃肠蠕动异常是腹泻的原因之一,Ghayur等[57]发现,生姜提取物对高钾诱导的豚鼠结肠收缩具有抑制作用,它可以通过抑制肠内神经兴奋性传递和体外平滑肌机械活性来抑制大鼠肠道运动[58]。生姜提取物还可缓解禽类免疫防御应激,影响微生物菌群的分布,增强肠道营养物质吸收效用,从而拥有更好的促生长作用[59]。生姜提取物通过避免在生产过程中因应激、免疫损伤等原因造成肠道结构受损,提高肠道消化速率和营养物质吸收率,从而提高采食量并促进生长。Elmowalid等[48]研究表明,饲粮中添加15 g/kg生姜提取物,可增强肉仔鸡的免疫性能,相比对照组,试验组仔鸡免疫吞噬作用增强、杀菌活性增强。生姜提取物能够增加体内粒细胞和中间细胞数量从而增强机体免疫力[47]。粒细胞是免疫细胞之一,中间细胞是机体免疫防御的重要组成部分,具有吞噬、趋化作用。生姜提取物还可以激活淋巴细胞或增强细胞因子调节吞噬细胞作用,刺激免疫球蛋白的分泌[60],具有明显的免疫促进作用。

表 2 生姜提取物在畜禽生产上的应用 Table 2 Application of ginger extract in animal production
3.2 在猪生产中的应用

研究发现,在饲粮中添加生姜提取物能够提高妊娠母猪和哺乳仔猪免疫性能[61],还可以提高生长育肥猪的瘦肉率和肉系水力[62]。Lee等[61]研究发现,在妊娠母猪饲粮中添加5 g/kg生姜提取物后,母猪初乳和母、仔猪血浆中免疫球蛋白G(immunoglobulin G,IgG)含量显著升高;且对比生姜提取物组和对照组的仔猪出生重发现,生姜提取物组仔猪体重高于对照组。以上结果表明,生姜提取物不仅可以提高母猪体内的IgG含量,且通过血液循环,提高了血液向乳腺供应IgG的含量,进而增加了仔猪从初乳中吸收得到的IgG含量,仔猪免疫性能得到提高。李雪艳等[63]发现,饲粮中添加10 g/kg生姜能显著降低莱芜黑猪的肌肉滴水损失,提高其瘦肉率。滴水损失下降可能与生姜提取物的抗氧化功能有关,通过清除细胞中的自由基,降低MDA含量,提高细胞中SOD和GSH-Px的活性,减少细胞膜脂肪酸氧化,保持膜结构与功能的完整性,从而降低了肌肉的液体流失。而瘦肉率增加可能是因为生姜提取物会减少膳食脂肪的吸收,降低脂质沉积。

3.3 在反刍动物生产中的应用

生姜提取物应用于反刍动物上的研究鲜有报道,目前仅限于对营养物质消化吸收和血清抗氧化性能影响的研究。刘明杰等[64]在肉牛饲粮中添加1.5 g/kg姜粉显著提高了肉牛瘤胃对中性洗涤纤维和酸性洗涤纤维的消化率,并且增加了其血清GSH-Px活性,减少了MDA含量,提高了肉牛的总抗氧化能力。粗纤维的降解过程中,瘤胃微生物发挥着重要作用,生姜提取物中含有的游离氨基酸可能为瘤胃中分解粗纤维的菌群提供营养物质[65],导致其生长、繁殖大量增加,提高了中性洗涤纤维和酸性洗涤纤维的分解速率。而生姜提取物能够提高动物抗氧化性能,是因为它在体内能清除MDA,提高抗氧化酶活性,降低机体氧化应激损伤,发挥抗氧化作用[66]

4 小结

生姜提取物作为食药两用的天然的植物提取物,价格低廉、来源广泛,结合其生理功能,合理利用这类资源,不但可以开发新型非常规饲料资源,且为畜禽养殖行业面临的抗生素替代、健康养殖问题提供了解决措施。有关生姜提取物的研究还不多,若要广泛应用于畜禽生产,仍存在一些问题:1)单个成分的结构及生理功能尚不明确,其作用机制也有待进一步研究。2)在畜禽生产应用方面较为匮乏,实际应用效果及最适添加量仍需要进一步试验。

参考文献
[1]
CHRUBASIK S, PITTLER M H, ROUFOGALIS B D. Zingiberis rhizoma:a comprehensive review on the ginger effect and efficacy profiles[J]. Phytomedicine, 2005, 12(9): 684-701. DOI:10.1016/j.phymed.2004.07.009
[2]
TAPSELL L C, HEMPHILL I, COBIAC L, et al. Health benefits of herbs and spices:the past, the present, the future[J]. The Medical Journal of Australia, 2006, 185(Suppl.4): S1-S24.
[3]
MOHAMED O I, EL-NAHAS A F, EL-SAYED Y S, et al. Ginger extract modulates Pb-induced hepatic oxidative stress and expression of antioxidant gene transcripts in rat liver[J]. Pharmaceutical Biology, 2016, 54(7): 1164-1172.
[4]
GRZANNA R, LINDMARK L, FRONDOZA C G. Ginger-an herbal medicinal product with broad anti-inflammatory actions[J]. Journal of Medicinal Food, 2005, 8(2): 125-132. DOI:10.1089/jmf.2005.8.125
[5]
LI Y M, TRAN V H, DUKE C C, et al. Preventive and protective properties of Zingiber officinale (Ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders:a brief review[J]. Evidence-Based Complementary and Alternative Medicine, 2012, 2012: 516870.
[6]
JAFARZADEH A, NEMATI M. Therapeutic potentials of ginger for treatment of multiple sclerosis:a review with emphasis on its immunomodulatory, anti-inflammatory and anti-oxidative properties[J]. Journal of Neuroimmunology, 2018, 324: 54-75. DOI:10.1016/j.jneuroim.2018.09.003
[7]
HABIB S H M, MAKPOL S, HAMID N A A, et al. Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats[J]. Clinics, 2008, 63(6): 807-813.
[8]
SINGH G, KAPOOR I P S, SINGH P, et al. Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale[J]. Food and Chemical Toxicology, 2008, 46(10): 3295-3302. DOI:10.1016/j.fct.2008.07.017
[9]
黄洲.不同剂量姜辣素对辐射损伤小鼠的抗氧化保护作用的研究[D].硕士学位论文.雅安: 四川农业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10626-2010244341.htm
[10]
ALI B H, BLUNDEN G, TANIRA M O, et al. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe):a review of recent research[J]. Food and Chemical Toxicology, 2008, 46(2): 409-420.
[11]
刘丹, 张程慧, 安容慧, 等. 生姜主要生物活性成分提取及应用研究进展[J]. 食品工业科技, 2016, 37(20): 391-395, 400.
[12]
WANG L X, QIAN J, ZHAO L N, et al. Effects of volatile oil from ginger on the murine B16 melanoma cells and its mechanism[J]. Food & Function, 2018, 9(2): 1058-1069.
[13]
RASHIDIAN A, MEHRZADI S, GHANNAdi A R, et al. Protective effect of ginger volatile oil against acetic acid-induced colitis in rats:a light microscopic evaluation[J]. Journal of Integrative Medicine, 2014, 12(2): 115-120.
[14]
LAI Y S, LEE W C, LIN Y E, et al. Ginger essential oil ameliorates hepatic injury and lipid accumulation in high fat diet-induced nonalcoholic fatty liver disease[J]. Journal of Agricultural and Food Chemistry, 2016, 64(10): 2062-2071. DOI:10.1021/acs.jafc.5b06159
[15]
CAMERO M, LANAVE G, CATELLA C, et al. Virucidal activity of ginger essential oil against caprine alphaherpesvirus-1[J]. Veterinary Microbiology, 2019, 230: 150-155. DOI:10.1016/j.vetmic.2019.02.001
[16]
LEI H, WEI Q N, WANG Q, et al. Characterization of ginger essential oil/palygorskite composite (GEO-PGS) and its anti-bacteria activity[J]. Materials Science and Engineering:C, 2017, 73: 381-387. DOI:10.1016/j.msec.2016.12.093
[17]
吴嘉斓, 王笑园, 王坤立, 等. 生姜营养价值及药理作用研究进展[J]. 食品工业, 2019, 40(2): 237-240.
[18]
LI J X, WANG S, YAO L, et al. 6-gingerol ameliorates age-related hepatic steatosis:association with regulating lipogenesis, fatty acid oxidation, oxidative stress and mitochondrial dysfunction[J]. Toxicology and Applied Pharmacology, 2019, 362: 125-135. DOI:10.1016/j.taap.2018.11.001
[19]
ZHANG F, ZHANG J G, YANG W, et al. 6-gingerol attenuates LPS-induced neuroinflammation and cognitive impairment partially via suppressing astrocyte overactivation[J]. Biomedicine & Pharmacotherapy, 2018, 107: 1523-1529.
[20]
SAMAD M B, MOHSIN M N A B, RAZU B A, et al. [6] -gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Leprdb/db type 2 diabetic mice[J]. BMC Complementary and Alternative Medicine, 2017, 17: 395. DOI:10.1186/s12906-017-1903-0
[21]
LEE J H, KIM Y G, CHOI P, et al. Antibiofilm and antivirulence activities of 6-gingerol and 6-shogaol against Candida albicans due to hyphal inhibition[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8: 299. DOI:10.3389/fcimb.2018.00299
[22]
KIKUZAKI H, NAKATANI N. Antioxidant effects of some ginger constituents[J]. Journal of Food Science, 1993, 58(6): 1407-1410. DOI:10.1111/j.1365-2621.1993.tb06194.x
[23]
ZHAO Y, TAO Q F, ZHANG R P, et al. Two new compounds from Zingiber officinale[J]. Chinese Chemical Letters, 2007, 18(10): 1247-1249. DOI:10.1016/j.cclet.2007.08.002
[24]
ISHIDA J, KOZUKA M, TOKUDA H, et al. Chemopreventive potential of cyclic diarylheptanoids[J]. Bioorganic & Medicinal Chemistry, 2002, 10(10): 3361-3365.
[25]
YAMAZAKI R, HATANO H, AIYAMA R, et al. Diarylheptanoids suppress expression of leukocyte adhesion molecules on human vascular endothelial cells[J]. European Journal of Pharmacology, 2000, 404(3): 375-385. DOI:10.1016/S0014-2999(00)00620-8
[26]
EL-SHARAKY A S, NEWAIRY A A, KAMEL M A, et al. Protective effect of ginger extract against bromobenzene-induced hepatotoxicity in male rats[J]. Food and Chemical Toxicology, 2009, 47(7): 1584-1590. DOI:10.1016/j.fct.2009.04.005
[27]
HABSAH M, AMRAN M, MACKEEN M M, et al. Screening of Zingiberaceae extracts for antimicrobial and antioxidant activities[J]. Journal of Ethnopharmacology, 2000, 72(3): 403-410. DOI:10.1016/S0378-8741(00)00223-3
[28]
SUEISHI Y, MASAMOTO H, KOTAKE Y. Heat treatments of ginger root modify but not diminish its antioxidant activity as measured with multiple free radical scavenging (MULTIS) method[J]. Journal of Clinical Biochemistry and Nutrition, 2019, 64(2): 143-147.
[29]
HOSSEINZADEH A, JUYBARI K B, FATEMI M J, et al. Protective effect of ginger (Zingiber officinale roscoe) extract against oxidative stress and mitochondrial apoptosis induced by interleukin-1β in cultured chondrocytes[J]. Cells Tissues Organs, 2017, 204(5/6): 241-250.
[30]
CHARLIER C, MICHAUX C. Dual inhibition of cyclooxygenase-2(COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs[J]. European Journal of Medicinal Chemistry, 2003, 38(7/8): 645-659.
[31]
MARTEL-PELLETIER J, LAJEUNESSE D, REBOUL P, et al. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs[J]. Annals of the Rheumatic Diseases, 2003, 62(6): 501-509. DOI:10.1136/ard.62.6.501
[32]
FLYNN D L, RAFFERTY M F, BOCTOR A M. Inhibition of human neutrophil 5-lipoxygenase activity by gingerdione, shogaol, capsaicin and related pungent compounds[J]. Prostaglandins, Leukotrienes and Medicine, 1986, 24(2/3): 195-198.
[33]
PHAN P V, SOHRABI A, POLOTSKY A, et al. Ginger extract components suppress induction of chemokine expression in human synoviocytes[J]. The Journal of Alternative and Complementary Medicine, 2005, 11(1): 149-154.
[34]
FRONDOZA C G, SOHRABI A, POLOTSKY A, et al. An in vitro screening assay for inhibitors of proinflammatory mediators in herbal extracts using human synoviocyte cultures[J]. In Vitro Cellular & Developmental Biology-Animal, 2004, 40(3/4): 95-101.
[35]
ATTARI V E, JAFARABADI M A, ZEMESTANI M, et al. Effect of Zingiber officinale supplementation on obesity management with respect to the uncoupling protein 1-3826A> G and B3-adrenergic receptor Trp64Arg polymorphism[J]. Phytotherapy Research, 2015, 29(7): 1032-1039. DOI:10.1002/ptr.5343
[36]
ISA Y, MIYAKAWA Y, YANAGISAWA M, et al. 6-shogaol and 6-gingerol, the pungent of ginger, inhibit TNF-α mediated downregulation of adiponectin expression via different mechanisms in 3T3-L1 adipocytes[J]. Biochemical and Biophysical Research Communications, 2008, 373(3): 429-434. DOI:10.1016/j.bbrc.2008.06.046
[37]
MAHMOUD R H, ELNOUR W A. Comparative evaluation of the efficacy of ginger and orlistat on obesity management, pancreatic lipase and liver peroxisomal catalase enzyme in male albino rats[J]. European Review for Medical and Pharmacological Sciences, 2013, 17(1): 75-83.
[38]
NAMMI S, SREEMANTULA S, ROUFOGALIS B D. Protective effects of ethanolic extract of Zingiber officinale rhizome on the development of metabolic syndrome in high-fat diet-fed rats[J]. Basic & Clinical Pharmacology & Toxicology, 2009, 104(5): 366-373.
[39]
ABDULRAZAQ N B, CHO M M, WIN N N, et al. Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats[J]. British Journal of Nutrition, 2012, 108(7): 1194-1201. DOI:10.1017/S0007114511006635
[40]
AHN E K, OH J S. Inhibitory effect of galanolactone isolated from Zingiber officinale roscoe extract on adipogenesis in 3T3-L1 cells[J]. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55(1): 63-68. DOI:10.1007/s13765-012-0011-6
[41]
BRAHMA N P, UDDANDRAO V V, RAVINDAR N R, et al. Ameliorative potential of gingerol:promising modulation of inflammatory factors and lipid marker enzymes expressions in HFD induced obesity in rats[J]. Molecular and Cellular Endocrinology, 2015, 419(15): 139-147.
[42]
OKAMOTO M, IRII H, TAHARA Y, et al. Synthesis of a new [6] -gingerol analogue and its protective effect with respect to the development of metabolic syndrome in mice fed a high-fat diet[J]. Journal of Medicinal Chemistry, 2011, 54(18): 6295-6304. DOI:10.1021/jm200662c
[43]
RANI M P, PADMAKUMARI K P, SANKARIKUTTY B, et al. Inhibitory potential of ginger extracts against enzymes linked to type 2 diabetes, inflammation and induced oxidative stress[J]. International Journal of Food Sciences and Nutrition, 2011, 62(2): 106-110. DOI:10.3109/09637486.2010.515565
[44]
RAHMAT A, MOJANI M S, AKHAVAN H S M, et al. Metabolic and immunologic alterations of ginger rhizome among streptozotocin-nicotinamide induced diabetic rats[J]. Malaysian Journal of Nutrition, 2016, 22(3): 421-432.
[45]
熊平源, 马丙娜, 郭明雄. 生姜对小鼠免疫功能影响的实验研究[J]. 数理医药学杂志, 2006(3): 243-244. DOI:10.3969/j.issn.1004-4337.2006.03.008
[46]
PURI A, SAHAI R, SINGH K L, et al. Immunostimulant activity of dry fruits and plant materials used in Indian traditional medical system for mothers after child birth and invalids[J]. Journal of Ethnopharmacology, 2000, 71(1/2): 89-92.
[47]
LI G L, MA X D, DENG L S, et al. Fresh garlic extract enhances the antimicrobial activities of antibiotics on resistant strains in vitro[J]. Jundishapur Journal of Microbiology, 2015, 8(5): e14814.
[48]
ELMOWALID G A, EL-HAMID M I A, EL-WAHAB A M A, et al. Garlic and ginger extracts modulated broiler chicks innate immune responses and enhanced multidrug resistant Escherichia coli O78 clearance[J]. Comparative Immunology, Microbiology and Infectious Diseases, 2019, 66: 101334. DOI:10.1016/j.cimid.2019.101334
[49]
AMIRGHOFRAN Z, MALEK-HOSSEINI S, GOLMOGHADDAM H, et al. Inhibition of nitric oxide production and proinflammatory cytokines by several medicinal plants[J]. Iranian Journal of Immunology, 2011, 8(3): 159-169.
[50]
RAGLAND S A, CRISS A K. From bacterial killing to immune modulation:recent insights into the functions of lysozyme[J]. PLoS Pathogens, 2017, 13(9): e1006512. DOI:10.1371/journal.ppat.1006512
[51]
安胜英, 刘观忠, 王顺, 等. 生姜提取物对蛋鸡生产性能和蛋品质的影响[J]. 动物营养学报, 2018, 30(1): 321-325. DOI:10.3969/j.issn.1006-267x.2018.01.038
[52]
张桂凤.生姜对肉鸡生产性能、抗氧化性能及肉品质影响的研究[D].硕士学位论文.泰安: 山东农业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10434-1011019284.htm
[53]
蒋慧, 许宗运, 应璐, 等. 生姜对鸡生长性能及血液生化指标的影响[J]. 中国家禽, 2003, 25(22): 16-17. DOI:10.3969/j.issn.1004-6364.2003.22.005
[54]
ADEMOLA S G, FARINU G O, BABATUNDE G M. Serum lipid, growth and haematological parameters of broilers fed garlic, ginger and their mixtures[J]. World Journal of Agricultural Sciences, 2009, 1(5): 99-104.
[55]
LI Y L, XU B, XU M, et al. 6-gingerol protects intestinal barrier from ischemia/reperfusion-induced damage via inhibition of p38 MAPK to NF-κB signalling[J]. Pharmacological Research, 2017, 119: 137-148. DOI:10.1016/j.phrs.2017.01.026
[56]
IWAMI M, SHIINA T, HIRAYAMA H, et al. Intraluminal administration of zingerol, a non-pungent analogue of zingerone, inhibits colonic motility in rats[J]. Biomedical Research, 2011, 32(2): 181-185. DOI:10.2220/biomedres.32.181
[57]
GHAYUR M N, GILANI A H. Pharmacological basis for the medicinal use of ginger in gastrointestinal disorders[J]. Digestive Diseases and Sciences, 2005, 50(10): 1889-1897. DOI:10.1007/s10620-005-2957-2
[58]
BORRELLI F, CAPASSO R, PINTO A, et al. Inhibitory effect of ginger (Zingiber officinale) on rat ileal motility in vitro[J]. Life Sciences, 2004, 74(23): 2889-2896. DOI:10.1016/j.lfs.2003.10.023
[59]
SUDARSHAN S, FAIROZE N, RUBAN S W, et al. Effect of aqueous extract and essential oils of ginger and garlic as decontaminat in chicken meat[J]. Research Journal of Poultry Sciences, 2010, 3(3): 58-61. DOI:10.3923/rjpscience.2010.58.61
[60]
SALEH N, ALLAM T, EL-LATIF A A, et al. The effects of dietary supplementation of different levels of thyme (Thymus vulgaris) and ginger (Zingiber officinale) essential oils on performance, hematological, biochemical and immunological parameters of broiler chickens[J]. Global Veterinaria, 2014, 12(6): 736-744.
[61]
LEE S D, KIM J H, JUNG H J, et al. The effect of ginger extracts on the antioxidant capacity and IgG concentrations in the colostrum and plasma of neo-born piglets and sows[J]. Livestock Science, 2013, 154(1/2/3): 117-122.
[62]
李炳霞, 杨在宾, 李瑞成, 等. 日粮中添加微生态制剂和姜粉对生长育肥猪生产和免疫性能的影响[J]. 山东农业大学学报(自然科学版), 2015, 46(1): 28-32. DOI:10.3969/j.issn.1000-2324.2015.01.006
[63]
李雪艳.生姜、八角和丹参对莱芜黑猪生产性能、胴体品质和抗氧化性能的影响[D].硕士学位论文.泰安: 山东农业大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10434-1015308768.htm
[64]
刘明杰, 万发春, 杨维仁, 等. 饲粮添加姜粉对肉牛营养物质消化吸收的影响[J]. 动物营养学报, 2011, 23(9): 1569-1576. DOI:10.3969/j.issn.1006-267x.2011.09.016
[65]
栾玉静.不同赖氨酸水平下肉牛营养物质代谢及赖氨酸供应模式的研究[D].硕士学位论文.泰安: 山东农业大学, 2004. http://cdmd.cnki.com.cn/Article/CDMD-10434-2004120952.htm
[66]
DANWILAI K, KONMUN J, SRIPANIDKULCHAI B, et al. Antioxidant activity of ginger extract as a daily supplement in cancer patients receiving adjuvant chemotherapy:a pilot study[J]. Cancer Management and Research, 2017, 9: 11-18. DOI:10.2147/CMAR.S124016