动物营养学报    2020, Vol. 32 Issue (8): 3560-3567    PDF    
骨骼肌生长发育及再生过程中Wnt信号网络的作用机制
叶茂 , 宋志文 , 金成龙 , 王修启     
华南农业大学动物科学学院, 广东省动物营养调控重点实验室, 国家生猪种业工程技术研究中心, 广州 510642
摘要: Wnt信号网络是由Wnt配体介导的经典和非经典信号通路协同参与,调控机体生长发育等过程所形成的复杂信号网络。骨骼肌组织结构精密、功能复杂且具有高度可塑性,其生长发育受到多种信号通路的严格调控,其中Wnt信号网络尤为重要。前期研究表明,Wnt信号网络主要参与胚胎期骨骼肌生成和介导卫星细胞调控骨骼肌的生长发育及再生等过程。近年来,有关Wnt信号网络调控骨骼肌的研究愈加深入,探索经典和非经典Wnt信号通路之间的协同作用也成为了研究热点。本文旨在综述Wnt信号网络参与调控骨骼肌生长发育及再生过程,并对经典和非经典Wnt信号通路之间的相互作用进行探讨,期望通过Wnt信号网络对骨骼肌的生长发育及再生的调控机制,为畜牧生产及基础研究提供理论依据,从而通过营养精准调控肌肉生长及肉品质改善。
关键词: Wnt信号网络    骨骼肌    卫星细胞    生长发育    相互作用    
Mechanism of Wnt Signaling Network in Skeletal Muscle Growth, Development and Regeneration
YE Mao , SONG Zhiwen , JIN Chenglong , WANG Xiuqi     
National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
Abstract: Wnt signaling network is a complex signal network formed by the canonical and noncanonical signaling pathways mediated by Wnt ligands, which regulates the growth and development of the body. Skeletal muscle tissue has a precise structure, complex functions, and high plasticity. Its growth and development are strictly regulated by a variety of signaling pathways, of which the Wnt signaling network is particularly important. Previous studies have shown that the Wnt signaling network is mainly involved in embryonic skeletal muscle generation and mediates satellite cells to regulate skeletal muscle growth, development and regeneration. In recent years, research on the regulation of skeletal muscle by Wnt signaling network has become more in-depth, and exploring the synergy between canonical and noncanonical Wnt signaling pathways has also become a research hotspot. This article aims to review the involvement of Wnt signaling network in the regulation of skeletal muscle growth, development and regeneration, and to explore the interactions between canonical and noncanonical Wnt signaling pathways. It is expected that the regulation mechanism of skeletal muscle growth, development and regeneration through the Wnt signaling network will provide theoretical basis for livestock production and basic research, so as to precisely regulate muscle growth and improve meat quality through nutrition.
Key words: Wnt signaling network    skeletal muscle    satellite cells    growth and development    interaction    

骨骼肌约占动物体重的40%,且包含机体50%~75%的蛋白质,其不仅是猪机体的重要组成成分,也是主要的产肉器官[1-2]。Wnt信号网络因广泛参与包括胚胎骨骼肌生成和成体骨骼肌再生等过程而备受关注,其中经典Wnt信号通路主要调控胚胎期骨骼肌的形成以及骨骼肌再生过程中卫星细胞的分化,而非经典Wnt信号通路在维持骨骼肌卫星细胞池及促进肌纤维肥大等方面发挥重要作用[3-4]。Wnt信号网络失调则会导致胚胎期骨骼肌发育受阻或成体骨骼肌功能紊乱[5]。一直以来,人们对Wnt信号网络的探索相对独立,经典和非经典Wnt信号通路之间的联系尚未得到足够重视。但Wnt信号网络作为调控骨骼肌生长发育及再生的一个有机作用整体,不可分割。因此,本文对Wnt信号网络调控骨骼肌生长发育及再生方面的研究进展进行综述,并对经典和非经典Wnt信号通路在调控骨骼肌方面的联系进行探讨,以期为后续营养干预工作提供理论依据,达到改善畜禽肉品质乃至治疗肌肉疾病的目的。

1 Wnt信号网络概述

Wnt基因作为研究Wnt信号网络的基础,其起源于编码同源蛋白质的wg基因和Int1基因[6]。由该基因编码翻译的Wnt配体以旁分泌或自分泌形式激活胞内通路,构成复杂作用网络参与到机体各项生命活动,包括胚胎器官的形成、个体组织的发育和成体干细胞稳态的维持等。现哺乳动物中已发现19种Wnt配体,其表达方式和功能各异[7],但所激活的通路依据胞浆信号传递成分中有无β-连环蛋白(β-catenin)的参与,可被划分为经典和非经典Wnt信号通路。

1.1 经典Wnt信号通路

经典Wnt信号(Wnt/β-catenin)通路的激活始于Wnt配体与受体卷曲蛋白(frizzled,Fzd)1~10及共受体低密度脂蛋白相关受体5/6(low density lipoprotein receptor related protein 5/6,LRP5/6)的结合[8],这种结合会影响胞质中信号转运分子β-catenin的水平,进而影响靶基因的表达。

未激活状态下,β-catenin被轴蛋白(axin scaffolding protein,Axin)、结肠腺瘤性息肉蛋白(adenomatous polyposis coli,APC)、酪蛋白激酶1(casein kinase 1,CK1)和糖原合成酶激酶3β(glycogen synthase kinase3β,GSK3β)所形成的复合物降解。激活状态下,Axin与LRP5/6磷酸化尾部结合,导致复合物的解离,使得胞质中β-catenin得以累积并转运入核,与T细胞因子/淋巴增强因子(T-cell factor/lymphoid enhancer factor,TCF/LEF)结合,最终激活经典Wnt信号通路中靶基因的表达。经典Wnt信号通路如图 1所示。

OFF-state:未激活状态;ON-state:激活状态;Cytomembrane:细胞膜;Cytoplasm:细胞质;Nucleus:细胞核;ub:泛素化ubiquitination;Proteasomal degradation:蛋白酶体降解;Target gene:靶基因;LRP5/6:低密度脂蛋白相关受体5/6 low density lipoprotein receptor related protein 5/6;Frizzled:受体卷曲蛋白;Axin:轴蛋白axin scaffolding protein;APC:结肠腺瘤性息肉蛋白adenomatous polyposis coli;β-catenin:β-连环蛋白;CK1:酪蛋白激酶1 casein kinase 1;GSK3β:糖原合成酶激酶3β glycogen synthase kinase 3β;β-Trcp:阻遏蛋白β beta-transducin repeat-containing protein;TCF/LEF:T细胞因子/淋巴增强因子T-cell factor/lymphoid enhancer factor。 图 1 经典Wnt信号通路 Fig. 1 Canonical Wnt signaling pathway[9]
1.2 非经典Wnt信号通路

非经典Wnt信号通路可分为细胞平面极性(planarcell polarity,PCP)(Wnt/PCP)通路和钙离子(Ca2+)依赖(Wnt/Ca2+)通路,与Wnt/β-catenin通路相比,非经典Wnt信号通路下游组分较为复杂,不依赖β-catenin的转运,但涉及多种转录因子。

Wnt/PCP通路中,Rho GTP酶或Rac蛋白的激活分别引起Rho相关激酶(Rho associated kinase,ROCK)和Jun N末端激酶(Jun N-terminal kinase,JNK)发生磷酸化级联,最终导致细胞骨架重组或靶基因激活。而Wnt/Ca2+通路中,由磷脂酰肌醇二磷酸(phosphatidylinositol-4, 5-bisphosphate,PIP2)分解而来的肌醇三磷酸(inositol triphosphate,IP3)累积触发胞内Ca2+的释放,进而激活蛋白激酶C(protein kinase C,PKC)、钙调蛋白激酶Ⅱ(calmodulin-dependent protein kinase Ⅱ,CaMKⅡ)或钙调神经磷酸酶(calcineurin,CN),最终CN通过调控T细胞核因子(nuclear factor of activated T cell,NFAT)实现对细胞的调控作用[9-10]。非经典Wnt信号通路如图 2所示。

Cytoskeleton:细胞骨架;G:G蛋白偶联受体G protein-coupled receptors;ER:内质网Endoplasmic reticulum;Vangl:Vang样蛋白Vang like protein;Rho:Rho GTP酶Rho GTPases;ROCK:Rho相关激酶Rho associated kinase;Rac:Rac蛋白Rac protein;JNK:Jun N末端激酶Jun N-terminal kinase;PLC:磷脂酶C phospholipase C;PIP2:磷脂酰肌醇二磷酸phosphatidylinositol-4, 5-bisphosphate;DAG:甘油二酯diacylglycerol;IP3:肌醇三磷酸inositol triphosphate;PKC:蛋白激酶C protein kinase C;CaMKⅡ:钙调蛋白激酶Ⅱ calmodulin-dependent protein kinase Ⅱ;CN:钙调神经磷酸酶calcineurin;NFAT:T细胞核因子nuclear factor of activated T cell。 图 2 非经典Wnt信号通路 Fig. 2 Noncanonical Wnt signaling pathway[9]
2 骨骼肌的生长发育及再生

脊椎动物骨骼肌的形成主要起源于轴旁中胚层(paraxial mesoderm)[11-12]。首先,轴旁中胚层细胞成熟形成体节(somite),除某些头部肌肉外,大部分骨骼肌都由体节发育而来[12-13];其次,体节背侧部分发育形成生皮肌节(dermomyotome),继而分层形成第1个骨骼肌组织——生肌节(myotome),与此同时,肌肉祖细胞自生皮肌节中进一步脱落并与生肌节融合形成骨骼肌,部分肌肉祖细胞迁移到四肢形成肢体骨骼肌,卫星细胞也在此阶段生成[14-15]

骨骼肌的生长、维持和再生主要归功于一种位于肌膜(sarcolemma)和基底膜(basel lamina)之间的成体干细胞——卫星细胞[15-17]。再生过程中,卫星细胞激活、增殖并分化形成新的肌纤维或融入受损肌纤维[18-19]。骨骼肌再生是一个高度协调的过程,取决于配对盒转录因子3/7(paired-box transcription factor 3/7,Pax3/Pax7)和肌源性调节因子(myogenic regulatory factors,MRFs)的正确表达[20]。Pax3和Pax7是肌生成的2个关键调节因子,Pax3和Pax7阳性细胞分别在胚胎期和成体期对骨骼肌的生物学进程产生重要影响[21]MRFs家族成员包含生肌因子5(myogenic factor 5,Myf5)、成肌决定因子(myoblast determination protein,MyoD)、肌肉特异调节因子4(muscle-specific regulatory factor 4,MRF4)和肌细胞生成素(myogenin)4种基因,其中Myf5和MyoD在卫星细胞增殖过程中发挥作用,而MRF4和myogenin在分化过程中被上调,从而触发肌源分化特异基因的表达[22-23]。胚胎肌生成及肌肉再生过程如图 3所示。

Embroyo:胚胎期;Adult:成体期;Ectoderm:外胚层;Neural tube:神经管;Myogenic progenitors:肌源祖细胞;Satellite cell:卫星细胞;Myoblasts:成肌细胞;Myocytes:肌细胞;Newly formed myofiber:新形成肌纤维;Myosins:肌球蛋白;Activation:激活;Diifferentiation:分化;Fusion:融合;Regeneration:再生;Pax3:配对盒转录因子3 paired-box transcription factor 3;Pax7:配对盒转录因子7 paired-box transcription factor 7;Myf5:生肌因子5 myogenic factor 5;MyoD:成肌决定因子myoblast determination protein;MRF4:肌肉特异调节因子4 muscle-specific regulatory factor 4;myogenin:肌细胞生成素。 图 3 胚胎肌生成及肌肉再生示意图 Fig. 3 Schematic representation of embryonic myogenesis and muscle regeneration[10]
3 经典Wnt信号通路与骨骼肌生长发育及再生

早期研究表明,阻断β-catenin表达会导致大鼠胚胎的死亡[24],而这与肌细胞发生障碍密不可分[25]。生皮肌节形成过程中,有研究发现Wnt1信号优先激活Myf5来诱导骨骼肌的形成[26],后续研究证实Wnt1依赖性表达是由Wnt/β-catenin通路介导的[27]。生皮肌节向生肌节过渡过程中,由Wnt6信号介导的经典Wnt信号通路能维持生皮肌节上皮组织的稳定,Wnt6信号缺失会导致生皮肌节去上皮化并因此分层[28]。近期研究发现经典Wnt信号通路通过淋巴增强因子1(lymphoid enhancer factor 1,LEF1)与垂体同型框2(pituitary homeobox 2,Pitx2)基因的结合调控肌节的大小,从而影响胚胎骨骼肌生成[29]

动物出生后,经典Wnt信号通路主要调控骨骼肌卫星细胞的增殖和分化过程[9]。早期研究发现Notch信号向Wnt/β-catenin通路转变会促使卫星细胞进入肌源性分化[30-31]。近期有研究表明,适当的Wnt/β-catenin信号水平是调控骨骼肌再生时卫星细胞功能的基础[32],β-catenin缺失时,卫星细胞分化被抑制;β-catenin过表达时,卫星细胞分化提前。此外,敲除APC基因诱导β-catenin过表达会导致卫星细胞无法进入增殖期且发生程序性死亡[33]。还有研究发现抑制Axin1基因表达限制了经典Wnt信号通路,导致体外卫星细胞增殖减少和早熟肌管的形成[34]。相反,Wnt3a外源激活经典Wnt信号通路会直接上调卵泡抑素(follistatin)水平,从而促进卫星细胞的提前分化[22]。添加Wnt/β-catenin通路激动剂的相关研究也支持了经典Wnt信号通路促进卫星细胞分化这一结论[31, 35]。但有趣的是,也有研究表明Wnt/β-catenin通路可促进卫星细胞的增殖和自我更新,从而防止肌源性分化[36]。关于经典Wnt信号调控骨骼肌生长发育及再生,已有文献[7]做过详细描述,本文不再赘述。

4 非经典Wnt信号通路与骨骼肌生长发育及再生

非经典Wnt信号通路也参与到早期胚胎肌生成过程中,并介导卫星细胞的自我更新及迁移融合过程。早期的研究发现,由外胚层分泌的Wnt7a会优先激活MyoD的表达,有趣的是这种表达可以独立于上述由经典Wnt信号通路调控的Myf5发生[26]。继而在小鼠的胚胎外植体培养中添加PKC抑制剂会导致靶基因MyoD的表达下调,进一步证明了Wnt7a通过PKC依赖的非经典途径促进了Myf5的表达[28]。上述研究结果说明在Myf5表达不足或缺失时,由Wnt7a介导的非经典Wnt信号通路可激活Myf5的表达,从而诱导早期胚胎骨骼肌的生成。此外,有研究表明Wnt11信号对胚胎期肌细胞的定向伸长生长极为重要[5]。Gros等[5]发现抑制体节中Wnt11功能会导致胚胎期肌纤维生长的紊乱,继而证实了Wnt11是通过PCP途径介导这一效应;然后又通过局部异位表达Wnt11能显著改变肌细胞的定向,证明由Wnt11介导的PCP途径能直接影响早期肌细胞的定向生长。

骨骼肌生长及损伤修复过程中,非经典Wnt信号通路主要介导卫星细胞的增殖及其迁移融合过程。有研究报道,在再生早期Wnt7a与Fzd7结合,在Vangl2的协助下激活Wnt/PCP通路调控卫星细胞的对称扩增,扩大卫星细胞池,从而增强骨骼肌生肌潜力及再生能力[37]。与此一致的是,在小鼠模型中,Wnt7a处理后能显著促进卫星细胞的扩增并使营养不良性肌纤维肥大[38]。Wnt7a不仅作用于卫星细胞的增殖过程,还在其迁移融合过程中发挥着重要作用。有研究发现,Wnt7a可激活Dvl2和Rac1来增强小鼠和人卫星细胞的极性及定向迁移[39],更为重要的是,该研究发现短时间的Wnt7a处理能显著促进肌肉组织中成肌细胞的分散和植入。此外,Floriane等[40]还发现Wnt/Fzd7/Rac1通路的上调能促进成肌细胞融合,提高多核肌纤维比例,表明Wnt7/Fzd7在肌源细胞移植到肌营养不良纤维中能易化卫星细胞的扩散,促进成肌细胞的融合,为肌肉疾病的治疗提供新思路。

非经典Wnt信号通路还受到其他因子的调控,如:缺氧诱导因子-1α(hypoxia-inducible factor-1α, HIF-1α)通过非经典Wnt信号通路上调卫星细胞中MyoD的表达及增加细胞融合比例,最终导致肌管的肥大[41];环状RNA miR-744能通过激活Wnt5a/Ca2+通路显著促进体外牛卫星细胞的分化[42],此外,该研究还发现Wnt5a/Ca2+通路的上调还对卫星细胞的增殖具有抑制作用。C2C12小鼠成肌细胞的分化试验也证明Wnt5a促进了卫星细胞分化这一观点[43],不同的是,后者采用成年C2C12小鼠为模型,发现Wnt5a显著提高了小鼠平均肌纤维截面积,但Wnt5a的过表达是否影响在体卫星细胞的增殖以及幼龄小鼠的生长发育还需要进一步试验来佐证。Wnt5a还具有调控细胞黏附和迁移的功能[44],但具体机制尚未明确且缺乏调控卫星细胞的研究。

总之,Wnt7a和Wnt5a在非经典Wnt信号通路中发挥重要作用,使其成为治疗肌肉疾病的研究热点之一,但非经典Wnt信号通路中其他Wnt蛋白的作用还有待挖掘。此外,非经典Wnt信号通路响应营养调控的相关研究仍相对匮乏,尚需进一步研究。

5 经典和非经典Wnt信号通路之间的联系

尽管经典和非经典Wnt信号通路在骨骼肌的生长发育及损伤修复过程中的作用各有侧重,但两者对骨骼肌的调控并非完全独立进行,为探索Wnt信号网络对生命活动的精准调控,阐明Wnt配体之间和经典与非经典Wnt信号通路之间的联系极为重要。

Wnt配体中部分激活经典Wnt信号通路,如Wnt1、Wnt3a,部分激活非经典Wnt信号通路,如Wnt5a、Wnt11等[45]。与这些配体不同,Wnt7a可结合Fzd5激活肿瘤细胞中经典Wnt信号通路[46-47],也可如上述般结合Fzd7激活卫星细胞中的非经典Wnt信号通路来调控骨骼肌的再生过程,Wnt7a行使多种功能的基础在于机体对Wnt7a表达的适时调控。此外,胚胎期非经典的Wnt11信号具有指导骨骼肌定向生长的作用[5],但其分泌却是由于经典的Wnt1和Wnt3信号的诱导作用[48-49],这也表明Wnt配体的分泌具有一定的时序性。

在骨骼肌再生过程中,非经典Wnt信号通路介导卫星细胞的增殖,而经典Wnt信号通路的激活促使增殖的卫星细胞提前进入分化状态,最终引起卫星细胞池的耗竭,甚至导致骨骼肌再生失败[31]。因此,适时激活Wnt信号通路是平衡卫星细胞增殖和分化的关键因素。在经典Wnt信号通路中,Wnt3a是通过磷酸化糖原合成酶激酶3β(glycogen synthase kinase 3β,GSK3β)抑制β-catenin的降解,使得β-catenin累积并转运入核激活靶基因的表达,但最近有文献表明Wnt3a是通过激活PCP途径中的Rho/ROCK来促进GSK3β的磷酸化[50],这表明可能存在某种机制协调经典和非经典Wnt信号通路在不同阶段的表达。在R-spondin1 (RSPO1)基因敲除小鼠中,Bentzinger等[39]发现卫星细胞在应对肌肉损伤刺激时表现出分化延迟和融合增加,该结果是由于经典Wnt信号通路的下调和非经典Wnt信号通路的上调所导致的,说明两者之间存在代偿机制来保障骨骼肌的正常再生。

综上所述,经典和非经典Wnt信号通路的之间具有重要联系,两者之间的协调作用保障了骨骼肌各项生物学进程的正常进行,但相关研究仍相对匮乏。此外,关于两者之间的动态平衡及相互作用仍需进一步探索。

6 展望

Wnt信号网络研究至今已有近40年历史,由早期肿瘤和胚胎方面扩展到近些年来骨骼肌方向的探索,但迄今为止,对Wnt信号网络调控骨骼肌生长发育及再生的研究大多集中在经典Wnt信号通路上,部分关于非经典Wnt信号通路的探索也仅停留在纵向方向。此外,由于非经典Wnt信号通路中组分复杂,其中部分组分也是其他通路中重要的调控因子,因此对于其中诸多组分在非经典Wnt信号通路中所行使的功能仍需进一步探究。Wnt信号网络的动态平衡和非经典Wnt信号通路组分的具体功能,将会成为相关科研工作者取得重大突破的重点关注领域。对Wnt信号网络进一步全面解析将为后期营养调控改善畜禽肉品质工作提供理论依据,也为相关肌肉疾病的治疗提供新的思路及方向。

参考文献
[1]
MAYEUF-LOUCHART A, STAELS B, DUEZ H. Skeletal muscle functions around the clock[J]. Diabetes, Obesity and Metabolism, 2015, 17(Suppl.1): 39-46.
[2]
李伯江, 李平华, 吴望军, 等. 骨骼肌肌纤维形成机制的研究进展[J]. 中国农业科学, 2014, 47(6): 1200-1207. DOI:10.3864/j.issn.0578-1752.2014.06.017
[3]
RUDNICKI M A, WILLIAMS B O. Wnt signaling in bone and muscle[J]. Bone, 2015, 80: 60-66. DOI:10.1016/j.bone.2015.02.009
[4]
HABID S J, CHEN B C, TSAI F C, et al. A localized Wnt signal orients asymmetric stem cell division in vitro[J]. Science, 2013, 339(6126): 1445-1448. DOI:10.1126/science.1231077
[5]
GROS J, SERRALBO O, MARCELLE C. WNT11 acts as a directional cue to organize the elongation of early muscle fibres[J]. Nature, 2009, 457(7229): 589-593. DOI:10.1038/nature07564
[6]
CROCE J C, MCCLAY D R.Evolution of the Wnt pathways[M]//CROCE J C, MCCLAY D R.Wnt signaling.Totowa, NJ: Humana Press, 2008: 3-18.
[7]
张宗明, 金成龙, 严会超, 等. Wnt信号调控骨骼肌生长、发育与再生的机制[J]. 动物营养学报, 2019, 31(2): 560-566. DOI:10.3969/j.issn.1006-267x.2019.02.010
[8]
MACDONALAD B T, TAMAI K, HE X. Wnt/β-catenin signaling:components, mechanisms, and diseases[J]. Developmental Cell, 2009, 17(1): 9-26. DOI:10.1016/j.devcel.2009.06.016
[9]
VON MALTZAHN J, CHANG N C, BENTZINGER C F, et al. Wnt signaling in myogenesis[J]. Trends in Cell Biology, 2012, 22(11): 602-609. DOI:10.1016/j.tcb.2012.07.008
[10]
GIRARDI F, LE GRAND F.Wnt signaling in skeletal muscle development and regeneration[M]//LARRAÍN J, OLIVARES G.Progress in molecular biology and translational science.Amsterdam: Elsevier, 2018, 153: 157-179.
[11]
BUCKINGHAM M, VINCENT S D. Distinct and dynamic myogenic populations in the vertebrate embryo[J]. Current Opinion in Genetics & Development, 2009, 19(5): 444-453.
[12]
BRYSON-RICHARDSON R J, CURRIE P D. The genetics of vertebrate myogenesis[J]. Nature Reviews Genetices, 2008, 9(8): 632-646. DOI:10.1038/nrg2369
[13]
GROS J, MANCEAU M, THOMÉ V, et al. A common somitic origin for embryonic muscle progenitors and satellite cells[J]. Nature, 2005, 435(7044): 954-958. DOI:10.1038/nature03572
[14]
PARKER M H, SEALE P, RUDNICKI M A. Looking back to the embryo:defining transcriptional networks in adult myogenesis[J]. Nature Reviews Genetics, 2003, 4(7): 497-507. DOI:10.1038/nrg1109
[15]
JENSEN P B, PEDERSON L, KRISHNA S, et al. A Wnt oscillator model for somitogenesis[J]. Biophysical Journal, 2010, 98(6): 943-950. DOI:10.1016/j.bpj.2009.11.039
[16]
BLAKE J A, ZIMAN M R. Pax genes:regulators of lineage specification and progenitor cell maintenance[J]. Development, 2014, 141(4): 737-751.
[17]
BUCKINGHAM M, RIGBY P W J. Gene regulatory networks and transcriptional mechanisms that control myogenesis[J]. Developmental Cell, 2014, 28(3): 225-238. DOI:10.1016/j.devcel.2013.12.020
[18]
LEPPER C, PARTRIDGE T A, FAN C M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration[J]. Development, 2011, 138(17): 3639-3646. DOI:10.1242/dev.067595
[19]
BENTZINGER C F, VON MALTZAHN J, RUDNICKI M A. Extrinsic regulation of satellite cell specification[J]. Stem Cell Research & Therapy, 2010, 1(3): 27.
[20]
CHARGÉ S B P, RUDNICKI M A. Cellular and molecular regulation of muscle regeneration[J]. Physiological Reviews, 2004, 84(1): 209-238.
[21]
BUCKINGHAM M, RELAIX F. PAX3 and PAX7 as upstream regulators of myogenesis[J]. Seminars in Cell & Developmental Biology, 2015, 44: 115-125.
[22]
JONE A E, PRICE F D, LE GRAND F, et al. Wnt/β-catenin controls follistatin signalling to regulate satellite cell myogenic potential[J]. Skeletal Muscle, 2015, 5: 14. DOI:10.1186/s13395-015-0038-6
[23]
DAYANIDHI S, LIEBER R L. Skeletal muscle satellite cell:mediators of muscle growth during development and implications for developmental disorders[J]. Muscle & Nerve, 2014, 50(5): 723-732.
[24]
HUTCHESON D A, ZHAO J, MERRELL A, et al. Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirement for beta-catenin[J]. Genes & Devlelopment, 2009, 23(8): 997-1013.
[25]
WANG Q W, ZHANG Y, YANG K M, et al. Wnt/β-catenin signaling pathway is active in pancreatic development of rat embryo[J]. World Journal of Gastroenterology, 2006, 12(16): 2615-2619. DOI:10.3748/wjg.v12.i16.2615
[26]
TAJBAKHSH S, BORELLO U, VIVARELLI E, et al. Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5[J]. Development, 1998, 125(21): 4155-4162.
[27]
BORELLO U, BERARDUCCI B, MURPHY P, et al. The Wnt/β-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis[J]. Development, 2006, 133(18): 3723-3732. DOI:10.1242/dev.02517
[28]
LINKER C, LESBROS C, GROS J, et al. β-catenin-dependent Wnt signaling controls the epithelial organization of somites through the activation of paraxis[J]. Development, 2005, 132(17): 3895-3905. DOI:10.1242/dev.01961
[29]
ABU-ELMAGD M, ROBSON L, SWEETMAN D, et al. Wnt/Lef1 signaling acts via Pitx2 to regulate somite myogenesis[J]. Developmental Biology, 2010, 337(2): 211-219. DOI:10.1016/j.ydbio.2009.10.023
[30]
BRACK A S, CONBOY I M, CONBOY M J, et al. A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis[J]. Cell Stem Cell, 2008, 2(1): 50-59.
[31]
POLESSKAYA A, SEALE P, RUDNICKI M A. Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration[J]. Cell, 2003, 113(7): 841-852. DOI:10.1016/S0092-8674(03)00437-9
[32]
RUDOLF A, SCHIRWIS E, GIORDANI L, et al. β-catenin activation in muscle progenitor cells regulates tissue repair[J]. Cell Reports, 2016, 15(6): 1277-1290. DOI:10.1016/j.celrep.2016.04.022
[33]
PARISI A, LACOUR F, GIORDANI L, et al. APC is required for muscle stem cell proliferation and skeletal muscle tissue repair[J]. The Journal of Cell Biology, 2015, 210(5): 717-726. DOI:10.1083/jcb.201501053
[34]
FIGEAC N, ZAMMIT P S. Coordinated action of Axin1 and Axin2 suppresses β-catenin to regulate muscle stem cell function[J]. Cellular Signalling, 2015, 27(8): 1652-1665. DOI:10.1016/j.cellsig.2015.03.025
[35]
ROCHAT A, FERNANDEZ A, VANDROMME M, et al. Insulin and Wnt1 pathways cooperate to induce reserve cell activation in differentiation and myotube hypertrophy[J]. Molecular Biology of the Cell, 2004, 15(10): 4544-4555. DOI:10.1091/mbc.e03-11-0816
[36]
OTTO A, SCHMIDT C, LUKE G, et al. Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration[J]. Journal of Cell Science, 2008, 121(17): 2939-2950. DOI:10.1242/jcs.026534
[37]
LE GRAND F, JONES A E, SEALE V, et al. Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells[J]. Cell Stem Cell, 2009, 4(6): 535-547. DOI:10.1016/j.stem.2009.03.013
[38]
VON MALTZAHN J, RENAUD J M, PARISE G, et al. Wnt7a treatment ameliorates muscular dystrophy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(50): 20614-20619. DOI:10.1073/pnas.1215765109
[39]
BENTZINGER C F, VON MALTZAHN J, DUMONT N A, et al. Wnt7a stimulates myogenic stem cell motility and engraftment resulting in improved muscle strength[J]. The Journal of Cell Biology, 2014, 205(1): 97-111. DOI:10.1083/jcb.201310035
[40]
LACOUR F, VEZIN E, BENTZINGER C F, et al. R-spondin1 controls muscle cell fusion through dual regulation of antagonistic Wnt signaling pathways[J]. Cell Reports, 2017, 18(10): 2320-2330. DOI:10.1016/j.celrep.2017.02.036
[41]
CIRILLO F, RESMINI G, GHIROLDI A, et al. Activation of the hypoxia-inducible factor 1a promotes myogenesis through the noncanonical Wnt pathway, leading to hypertrophic myotubes[J]. The FASEB Journal, 2017, 31(5): 2146-2156. DOI:10.1096/fj.201600878R
[42]
PENG S J, SONG C C, Li H, et al. Circular RNA SNX29 sponges miR-744 to regulate proliferation and differentiation of myoblasts by activating the Wnt5a/Ca2+ signaling pathway[J]. Molecular Therapy-Nucleic Acids, 2019, 16: 481-493. DOI:10.1016/j.omtn.2019.03.009
[43]
ZHANG Z K, LI J, GUAN D G, et al. A newly identified lncRNA MAR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration[J]. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9(3): 613-626. DOI:10.1002/jcsm.12281
[44]
KIKUCHI A, YAMAMOTO H, SATO A, et al. Wnt5a:its signalling, functions and implication in diseases[J]. Acta Physiologica, 2012, 204(1): 17-33. DOI:10.1111/j.1748-1716.2011.02294.x
[45]
LAN L H, WANG W, HUANG Y, et al. Roles of Wnt7a in embryo development, tissue homeostasis, and human diseases[J]. Journal of Cellular Biochemistry, 2019, 120(11): 18588-18598. DOI:10.1002/jcb.29217
[46]
YOSHIOKA S, KING M L, RAN S, et al. WNT7A regulates tumor growth and progression in ovarian cancer through the WNT/β-catenin pathway[J]. Molecular Cancer Research, 2012, 10(3): 469-482. DOI:10.1158/1541-7786.MCR-11-0177
[47]
CARMON K S, LOSSE D S. Secreted frizzled-related protein 4 regulates two Wnt7a signaling pathways and inhibits proliferation in endometrial cancer cells[J]. Molecular Cancer Research, 2008, 6(6): 1017-1028. DOI:10.1158/1541-7786.MCR-08-0039
[48]
IKEYA M, TAKADA S. Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome[J]. Development, 1998, 125(24): 4969-4976.
[49]
MARCELLE C, STARK M R, BRONNER-FRASE M. Coordinate actions of BMPs, Wnts, Shh and noggin mediate patterning of the dorsal somite[J]. Development, 1997, 124(20): 3955-3963.
[50]
KIM J G, KIM M J, CHOI W J, et al. Wnt3A induces GSK-3β phosphorylation and β-catenin accumulation through RhoA/ROCK[J]. Journal of Cellular Physiology, 2017, 232(5): 1104-1113. DOI:10.1002/jcp.25572