动物营养学报    2021, Vol. 33 Issue (1): 46-55    PDF    
奶牛刻板行为的成因及机制研究进展
孙福昱1,2 , 赵卿尧1 , 赵广永2 , 顾宪红1     
1. 中国农业科学院北京畜牧兽医研究所, 动物营养学国家重点实验室, 北京 100193;
2. 中国农业大学动物科学技术学院, 北京 100193
摘要: 奶牛刻板行为是一系列重复的、没有明显功能的行为活动,可以看作是自然行为无法正常表达或受到应激时出现的替代活动,是福利水平低的表现。刻板行为的发生与动物机体稳态失衡、情感状况消极低下或自身疾病息息相关。本文综述了奶牛刻板行为的特征、发生的原因及其机理,为相关领域研究和生产应用提供参考。
关键词: 奶牛    刻板行为    特征    成因    机制    
Research Progress on Causes and Mechanism of Stereotyped Behaviors in Dairy Cows
SUN Fuyu1,2 , ZHAO Qingyao1 , ZHAO Guangyong2 , GU Xianhong1     
1. State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
2. College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
Abstract: The stereotyped behavior of dairy cows is a series of repetitive and obviously non-functional behavioral activities, regarded as alternative activities when they can not be expressed by natural behavior or stressed. It's a sign of low welfare on the farm. The occurrence of stereotyped behavior is closely related to the imbalance of animal homeostasis, negative emotional status or disease. This paper summarizes the characteristics and the causes and mechanism of cow-expressing stereotyped behaviors, in order to provide reference for related field research and production application.
Key words: dairy cows    stereotyped behavior    characteristics    causes    mechanism    

近年来,为增加奶产量和牛场效益,节约土地资源,我国奶牛养殖规模化、集约化程度不断提高,在有限的空间中饲养的奶牛越来越多,牛舍环境越来越拥挤,限制了奶牛的自然活动,导致奶牛常常表达刻板行为,降低奶牛的健康和福利水平[1],进而对牛奶产量和品质、牛场经济效益和持续发展产生负面影响。本文对奶牛刻板行为的相关研究进行归纳总结,综述了奶牛刻板行为的成因及相关生理机制,为改善奶牛养殖条件、优化奶牛生产管理以减少刻板行为的表达提供依据,并为进一步深入研究刻板行为提供突破口。

1 奶牛自然行为

奶牛的野生祖先可追溯到波兰,最后1头野生奶牛于1627年被人类捕获[2]。在此之后,奶牛被人类完全圈养或部分圈养,其行为也受到人类管理和环境限制的影响。牛的自然行为主要有觅食、饮水、反刍、求偶、护犊、寻母、打斗、仿效、警告、避险、群居等,这些行为都与遗传和环境变化相关[3]。狭义上自然行为是野生奶牛或其祖先野生状态下在自然界的先天动作表现,自然行为正常表达能够改善动物的情感状态[4],提升自身福利水平,但完全的自然环境对驯化动物并非是最适合的。奶牛是经过对产奶性能长期培育、专门用于产奶的驯化牛,因此其遗传基础、生活环境甚至形体外貌均不可能与野生奶牛或其祖先完全一致[5]。与此同时,现代集约化为主的养殖方式也会引起奶牛自然行为的显著变化,并产生一些独有的行为,也许是奶牛适应养殖环境的表现。因此,不可简单地将圈养奶牛与自然放牧奶牛放在同一标准下进行研究。

2 奶牛刻板行为特征

刻板行为是指一系列长时间的节律性重复动作表现,没有明显的功能[6],在某种程度上可看作是自然行为无法表达或受到应激时出现的替代活动。判定动物是否表达刻板行为有以下4个原则:1)与动物正常表现不同,其行为指向不适当的对象;2)在行为的性质或发生频率上不同于该动物的特定自然行为范围;3)没有功能;4)对自身机体有害[7-8]。部分研究者认为,刻板行为主要是因为动物生活在不适当的圈养环境中[8],因活动自由被剥夺而发生[9],它们可能是精神痛苦和自身福利减少的严重表象[10]。Blokhuis等[11]认为,刻板行为的产生是在不符合其需要的非自然环境中进行饲养的结果,即奶牛刻板行为既不是自然选择的产物(野外不存在),也不是人工繁殖选择的结果(对于驯化动物而言不是唯一的)。奶牛的刻板行为可能属于一种生理病态或心理不适表现,表现为卷舌、咬栏杆、晃头、长时间自我梳理、互相吮吸等(表 1)。研究奶牛刻板行为发生情况可及时提醒饲养者奶牛是否健康或其福利水平是否低下[12],是否需要作出改变。

表 1 奶牛刻板行为类别和判定标准 Table 1 Categories and judgment criteria of stereotype behavior of dairy cows[16]

然而,在某些方面,刻板行为的模式与正常、健康、自由生活的动物行为模式相似[7],这意味着尽管刻板行为可能是病态表现,但在诊断时不能仅考虑异常行为。刻板行为有3个方面的特点类似于正常的行为模式:第一,刻板行为与动物本身固有的行为相关,体现在行为持续性和抵抗环境变化的能力,例如奶牛梳理行为在正常行为和刻板行为中均有表现,仅持续时间不同[13-14]。第二,刻板行为具有独立性。一旦刻板行为习得和持续发展,就可能独立于刺激源,同正常行为一样,在不同环境下均可表达[15]。第三,刻板行没有明显的目标或功能,部分正常的行为也可以在明显缺乏功能的情况下持续存在。屠焰等[16]认为,部分刻板行为与正常行为的差异只是“量”的差异,而非“质”的差异,在限制的环境中,正常行为无法表达出来,而刻板行为的出现是对自然条件下正常行为的替代表达,只是发生频次增加。

3 刻板行为成因

当动物的正常行为表现受到环境等物理条件的限制或阻碍,无法在圈养环境中满足舍外行为需求时,可能会表现出刻板行为。通常,研究者以动物发生刻板行为来认定动物所处的环境或饲养管理不够适宜[17],动物正遭受精神应激等福利问题[18];圈养环境越贫瘠(丰富度差),空间越小,动物的刻板行为就越容易发生。该理论大部分内容都是推测的,缺乏系统的、基础的研究来探索刻板行为发生的原因[11]

目前为止,研究发现的刻板行为和各种引发因素之间的关系尚缺乏一致性,这主要与刻板行为发展的多源性、动物感知环境的不同方式以及神经内分泌系统的复杂控制有关。因而发生某类刻板行为往往是多种因素共同作用的结果[7],例如,非适宜环境牛舍中的断奶犊牛发生卷舌行为可能由缺乏粗饲料、突然断奶等多因素引起。具体而言,刻板行为的发生源于以下几种原因。

3.1 行为意向受阻

动物反复或长期无法实现意欲表达的某种行为(如采食行为或吮吸)时,会产生沮丧感[19],从而导致动物逃离该环境或产生替代性行为,即表达刻板行为[17, 20-21],如犊牛和青年牛的非营养性吸吮行为。研究指出,这是犊牛在与母牛分离后无法满足自身的吸吮需求所出现的一种刻板行为,通常在采食后会有较高的发生频率[22]。Broom等[23]指出,挫折感是动物表达所有刻板行为的共同因素。因而,那些积极主动的动物在圈养环境下反而更容易受挫,它们可能更倾向于发生刻板行为。

3.2 环境应激

环境应激会影响奶牛福利。当奶牛受到应激时,往往会由于内环境稳态变化表现出一定的刻板行为。个体对应激的反应可以通过2个方面来讨论:1)动物对应激的敏感度;2)一旦达到临界阈值,动物如何将应激最小化[24]。应激敏感度和阈值通常被认为是影响刻板行为发生的原因之一。然而,研究发现,在相同饲养条件下表达和不表达刻板行为的动物下丘脑-垂体-肾上腺(hypothalamic-pituitary-adrenal axis,HPA)活动和心率基础水平相似[25-26],这意味着应激敏感度的差异也许不能充分解释刻板行为。Koolhaas等[27]认为,应激敏感度调节了需求应对反应的阈值,一旦达到这个阈值,就会促使动物进行应对反应。因而我们认为刻板行为反映了机体对应激的一种主动应对反应,但在消极型个体中,还有一种对等而相反的反应,即情绪抑郁。当然,并不是所有的动物个体都会表现出刻板行为或情绪抑郁,因为并不是所有的个体都会感受到相关的应激并达到应激阈值。此外,在表达这2种应对反应之前,应激阈值大的动物个体将需要更大的应激原,但从理论上讲,应激足够大时,所有动物都会表现出这2种反应的一种。

3.3 环境约束和单一

研究发现,刻板行为的发生也与环境贫瘠或限制有关,这种环境也是非适宜环境[28]。由于动物感官缺乏必要刺激[29]、没有达到行为唤醒范围[30]、运动受到限制[29]或缺少特定的环境因素[31],使得行为动机受挫,导致刻板行为发生。在奶牛的相关研究中发现,奶牛在此类非适宜环境下会发生刻板行为,如非自然断奶[32-33]、单独饲养[34]、空间拥挤[35]、栓系和限制饲喂[7, 36]等。研究人员在许多物种中观察到,相比在复杂环境,个体在贫瘠环境中刻板行为发生得更明显[20, 37-38]。在贫瘠环境中所形成的刻板行为类似于自闭症、精神分裂症、精神发育迟缓和器质性脑损伤等一系列临床疾病表现[39];这种刻板行为持久存在,则影响中枢神经系统,并可能不可逆转[40]

3.4 营养缺乏和疾病

当奶牛缺乏粗饲料和某些矿物质时可能会发生刻板行为。Le Neindre[41]发现,犊牛对粗饲料有强烈的先天需求,这种需求没有满足时会发生口部刻板行为。与提供低品质粗饲料(秸秆颗粒或玉米青贮)时相比,提供优质粗饲料干草时犊牛的卷舌行为较少;同时,研究还发现,当犊牛仅被喂食代乳粉时卷舌行为发生率最高,接受额外的干草饲料后,犊牛卷舌等行为发生率显著降低。饲粮中矿物元素钠的缺乏会使牛发生过度梳理行为,行为表现与栓系或单独圈养等环境约束的牛类似[42]。异食癖是代谢紊乱、味觉异常的一种复杂综合征,多为动物机体内矿物元素不足,如钙、钠、铁、钴、硫缺乏等引起[43],部分异食癖表现属于刻板行为。

此外,本课题组在牛场调研中发现,当奶牛体内有寄生虫时也会表现出口部刻板行为。绦虫、蠕虫、线虫等寄生虫存在于奶牛消化道中,在虫体及其毒素的作用下,胃肠蠕动和内分泌异常,神经递质紊乱,出现卷舌和异食癖等行为,同时在临床上伴随有贫血、黄疸、腹痛等症状。动物刻板行为也可能是脑损伤或精神疾病造成的[40],还有一些是由安非他明等药物引起[44]

3.5 遗传因素

遗传因素可能使某些动物个体倾向于发展刻板行为[45-46]。研究发现,Gabrb3纯合位点、多巴胺转运蛋白及多巴胺受体D3基因位点被敲除的大鼠会表现出刻板行为,多巴胺受体D1基因位点变异的大鼠也会出现刻板行为[47]。因而,奶牛的部分刻板行为也可能受到遗传因素的影响,有待进一步的拓展研究。

3.6 模仿与学习

本课题组在多家大型牛场调研发现,当牛舍中1头牛发生刻板行为后,临近的牛可能会表达同样的行为,如卷舌行为、自我梳理行为等,因此刻板行为可能存在邻近奶牛间的行为模仿与学习[48],待进一步试验论证。

4 刻板行为产生的生理机制

刻板行为是如何发生的?由相关因素触发后,动物机体通过什么途径来调节刻板行为的表达?现将刻板行为发生的可能机制总结如下。

4.1 多巴胺和5-羟色胺调控途径

奶牛是群居动物,群体内个体有着不同的等级地位和性格类型,奶牛性格分为积极型(proactive)和消极型(reactive)2类。在应激条件下,群体中部分积极型个体可发展成刻板型个体,产生刻板行为,部分消极型个体易出现情绪抑郁状态。积极型个体与刻板型个体具有多种共同的行为和生理特征(表 2)。积极型个体的行为模式很大程度上与实际外部刺激无关[49],并呈高度常规表达[50]。刻板型个体同积极型个体类似,也会针对应激迅速采取应对行为[51]。一旦这种应对策略建立起来,它们将表现出有限的探索行为[51]和较差的反向学习能力[52],并形成固定的习惯。神经递质多巴胺能够增加信号传递从结果反应转变为刺激反应的速度[53-55],积极型动物体内常表现为多巴胺水平较高[56-57]。研究发现在发生刻板行为的个体中也存在较高水平的多巴胺[58],因而多巴胺可能是启动刻板行为的关键神经递质。

表 2 积极型个体和刻板型个体之间的特征异同 Table 2 Similarities and differences in characteristics between proactive and stereotypic traits[67]

有学者认为,基底神经节的神经化学改变是行为发生变化的基础[59],动物刻板行为可能是神经对慢性应激的反应[60]。基底神经节通路(basal ganglia circuitry,BGC)可分为直接通路和间接通路,基底神经节通过调节运动的直接通路和间接通路的竞争来调控行为的发生,直接通路启动行为,间接通路抑制行为,2条通路之间的平衡是维持个体正常行为模式的关键,当直接通路被过度激活或间接通路被抑制就会导致刻板行为发生[61]。多巴胺的内源性释放及其激动剂会通过刺激直接途径和抑制间接途径增加基底神经节的敏感性[62]。同时,有研究者认为,积极型动物都有高水平的神经递质来触发刻板行为[57, 60],其体内较高水平的多巴胺可能会导致对行为欲望的敏感度和渴求度增加,导致刻板行为发生。因此,积极型动物更容易受挫,它们也很可能更容易出现刻板行为。

与多巴胺相比,5-羟色胺能抑制基底神经节活性[63-64],降低积极型个体的冲动性,因而5-羟色胺水平与刻板行为发生呈负相关[65]。Lebelt等[66]检测到发生刻板行为的个体具有较低的5-羟色胺水平,因此部分消极型个体的高水平5-羟色胺可能是阻止发生刻板行为的因素之一。

多巴胺和5-羟色胺水平介导不同类型个体行为发生机制如图 1所示。以采食过程为例,通常情况下,最初食欲引起采食行为的正反馈,当达到饱足感时目的达成,负反馈性抑制了进一步的采食行为[68-69],采食结束。而当采食行为受阻时,图 1-a左侧正常采食循环通路无法完成,不会产生负反馈,此时机体进入到由多巴胺等神经递质驱动的正反馈环路中。升高的多巴胺水平进一步增加了基底神经节对食物原刺激的敏感度,感知增加,采食欲望增强,导致了食欲行为更强的表现,并沿虚线循环不断增强。在这个过程中,环境障碍和多巴胺水平的不断上升将部分积极型个体的采食行为转换至卷舌、不断蹭痒等与采食无关的刻板行为[70],同时由于上述刻板行为持续反复,降低了自身的环境感知,进而导致多巴胺水平趋于稳定,脱离了原有的正反馈回路[66]。因此,无论是采食负反馈回路(图 1-a左侧)还是刻板行为替代,都会降低机体的应激水平,使多巴胺持续稳定在某一水平。

刻板行为和抑郁都能使动物不再兴奋,并将多巴胺、5-羟色胺引起是应激反应降至最低。(a):积极型个体发生刻板行为的途径。采食受阻后动机欲望将沿虚线不断循环,直到达到应激阈值、替代性发生刻板行为为止,这里用点划线表示。(b):消极型个体采食抑郁的循环途径。抑郁状态对采食过程产生负面影响,但对其应激缓解产生积极影响。图中“+”代表正反馈促进作用, “-”表示负反馈抑制作用。 Both stereotypy and depression serve to de-arouse the animal and minimize the effects of stress by dopamine and serotonin. (a): pathways leading to stereotypy in proactive individuals. The appetitive loop will continue until the individual is aroused enough to redirect to stereotypy, represented here by the switch point. (b): outlining the loop leading to depression in reactive individuals. Depression will act negatively on motivation and appetitive behaviour but positively on itself. "+" represents positive promotion and "-" represents negative inhibition。 图 1 环境障碍下不同个体类型行为发生机制 Fig. 1 Mechanisms of different types of individual behaviors under environmental barriers[68]

消极型个体中多巴胺水平较低,对食物的动机较弱,表现出较少的食欲行为(图 1-b)。较高水平的5-羟色胺会抑制这种食欲行为,使动物不会达到触发刻板行为所需的多巴胺阈值,从而使得机体没有机会进入正反馈或刻板行为通路,无法减轻应激原的影响。此时机体中多巴胺水平发生紊乱,进而产生无助和抑郁感[71]。与此同时,机体对外界刺激感知度进一步降低,抑制了从感知到动机正反馈回路和接下来采食行为的进行,这条正反馈回路同时也可能被5-羟色胺能系统的超敏反应减弱[72]

综上所述,应激敏感度和阈值相近的动物,其行为反应可能同时发生但表现形式不同。对于相同的环境应激,消极型动物可以通过情绪转变来应对,即情绪抑郁,而积极型动物则表现出刻板行为以提高非适宜环境的适应性。这种积极型个体和消极型个体应对应激方式的差异对衡量动物福利具有重要意义。除此之外,研究发现积极型动物在受到应激时表现出明显的应激行为迹象,但通过HPA轴反应测得的应激较小;而消极型动物以被动的方式应对,看起来似乎表现出低应激,但对HPA轴的反应却很强[73-74]。如果上述的积极型个体与刻板行为之间的关系是正确的,那么我们推断相同环境下未发生刻板行为的个体可能因非适宜环境而承受更大的应激。对奶牛而言,这可能导致消极型奶牛相比刻板行为或正常奶牛来说,其福利状况更差,进而表现出繁殖力下降[75]、产奶量降低[76]、肉品质变差[77]、学习能力[78]和免疫功能降低[79]。因此,需探索出识别不同类型个体的方法,并采取不同的调控策略提升其福利。

4.2 微生物-脑肠轴途径

肠道微生物可能通过脑肠轴影响神经功能来引起动物刻板行为或抑郁发生。机体微生物-脑肠轴由中枢神经系统(central nervous system,CNS)、自主神经系统(autonomic nervous system,ANS)、HPA轴、肠道内神经系统(enteric nervous system,ENS)等组成,通过免疫、内分泌、神经等途径双向调节,各部分功能相互协调[80]。肠道细菌在维持免疫和代谢稳态方面发挥重要作用,并且与许多炎症性疾病和神经精神疾病的发病机制相关[81]。已知肠道菌群可自身分泌或诱导肠道细胞产生神经递质进入肝肠循环,刺激迷走神经,调节中枢神经系统等,进而通过脑肠轴的变化影响个体的情绪和行为[82-84]。已知肠道菌群可产生γ-氨基丁酸、多巴胺、5-羟色胺、乙酰胆碱等神经递质[85-86],菌群紊乱可导致相应的神经递质紊乱,而上述神经递质已发现与刻板行为和抑郁症的发生密切相关。针对人类抑郁症患者的研究发现,抑郁症患者与健康人群肠道微生态菌群结构存在显著差异,患者肠道菌群α多样性指数显著增加,肠道菌群门的水平中拟杆菌门、变形菌门、放线菌门比例显著升高,厚壁菌门细菌比例显著降低,粪杆菌属细菌丰度与抑郁程度呈负相关[87]。杜向禹[88]在无菌小鼠上探究了肠道微生物对其行为及神经生化的影响,发现肠道菌群可以调节宿主行为,缺乏正常菌群的小鼠表现出运动能力提高、焦虑及抑郁样行为增加的行为学特征,而移植抑郁症模型个体菌群到无菌小鼠体内会使后者产生同样的抑郁和焦虑样行为。在奶牛上,蒋涛[89]通过对围产后期奶牛移植泌乳高峰期奶牛瘤胃液进行瘤胃微生物重塑,发现瘤胃液的移植有效的改善了围产后期奶牛瘤胃和直肠微生物群落结构,奶牛的干物质采食量和采食频率与瘤胃中部分细菌操作分类单元(operational taxonomic unit,OTU)的变化呈现线性关系,部分细菌OTU的增多显著增强了奶牛的食欲和采食行为。奶牛胃肠道中有着大量共生的微生物菌群,其对机体的营养获取及发育有着不可或缺的作用,因此奶牛尤其是断奶前犊牛的某些刻板行为或抑郁症的发生可能与胃肠道菌群紊乱有关。目前鲜有关于奶牛胃肠道微生物-脑肠轴的相关研究,其与刻板行为的关联影响值得通过多组学等手段来进一步探索。

5 小结

刻板行为作为奶牛福利研究的重要方面之一,值得行业关注和深入探讨。引起奶牛刻板行为的原因和机制复杂,可能是多种因素共同作用的结果。奶牛刻板行为的发生与个体的性格特点的关联性仍需进一步研究发掘。未来的研究方向可能更应着重于奶牛性格辨识和应激阈值区间,并凭此探索针对性的改善策略,提高农场动物福利水平的同时服务于畜牧业的生产。

参考文献
[1]
聂炼, 张爱忠, 姜宁, 等. 基于系统化思维的北方规模化奶牛场设计[J]. 黑龙江畜牧兽医, 2018(12): 66-69.
NIE L, ZHANG A Z, JIANG N, et al. Design of large-scale dairy farm in the north based on systematic thinking[J]. Heilongjiang Animal Science and Veterinary Medicine, 2018(12): 66-69 (in Chinese).
[2]
SHAHHOSSEINI Y.Cattle behaviour: appearance of behaviour in wild and confinement[D].Ph.D.Thesis.Uppsala: Swedish University of Agricultural Sciences, 2013.
[3]
杨了寒, 熊家军, 张淑君.奶牛福利中的行为学应用[C]//中国畜牧兽医学会动物福利与健康养殖分会成立大会暨首届规模化健康与福利养猪高峰学术论坛论文集.泰安: 中国畜牧兽医学会, 2015: 15-22.
YANG L H, XIONG J J, ZHANG S J.Behavioral applications in dairy cow welfare[C]//Proceedings of the Founding Conference of the Animal Welfare and Healthy Breeding Branch of the Chinese Society of Animal Husbandry and Veterinary Medicine and the first large-scale health and welfare pig raising summit academic forum.Taian: Chinese Society of Animal Husbandry and Veterinary Medicine, 2015: 15-22. (in Chinese)
[4]
DAWKINS M S. Behavioural deprivation:a central problem in animal welfare[J]. Applied Animal Behaviour Science, 1988, 20(3/4): 209-225.
[5]
陆承平. 动物保护概论[M]. 3版. 北京: 高等教育出版社, 2009.
LU C P. An introduction to animal protection[M]. 3rd ed. Beijing: Higher Education Press, 2009 (in Chinese).
[6]
DÜPJAN S, PUPPE B. Abnormal behaviour with a focus on stereotypies- indicators of suffering and impaired welfare?[J]. Berliner Und Munchener Tierarztliche Wochenschrift, 2016, 129(3/4): 93-102.
[7]
MASON G J. Stereotypies:a critical review[J]. Animal Behaviour, 1991, 41(6): 1015-1037. DOI:10.1016/S0003-3472(05)80640-2
[8]
GARNER J P. Stereotypies and other abnormal repetitive behaviors:potential impact on validity, reliability, and replicability of scientific outcomes[J]. ILAR Journal, 2005, 46(2): 106-107. DOI:10.1093/ilar.46.2.106
[9]
VEISSIER I, DE LA FE A R R, PRADEL P. Nonnutritive oral activities and stress responses of veal calves in relation to feeding and housing conditions[J]. Applied Animal Behaviour Science, 1998, 57(1/2): 35-49.
[10]
DONALD B, ANDREW F.Abnormal behaviour 2: self-directed and environment-directed[M]//BROOM D M, FRASER A F.Domestic animal behaviour and welfare.Wallingford: CABI, 2015: 235.
[11]
BLOKHUIS H. Stereotypic animal behavior:fundamentals and applications to welfare[J]. Livestock Production Science, 1994, 40(3): 359-360. DOI:10.1016/0301-6226(94)90115-5
[12]
WEBB L E, VAN REENEN C G, ENGEL B, et al. Understanding oral stereotypies in calves:alternative strategies, hypothalamic-pituitary-adrenal axis (re)activity and gene by environment interactions[J]. Animal, 2017, 11(6): 1054-1062. DOI:10.1017/S1751731116002226
[13]
GROOTHUIS T. On the ontogeny of display behavior in the black-headed gull.1.The gradual emergence of the adult forms[J]. Behaviour, 1989, 109: 76-124. DOI:10.1163/156853989X00178
[14]
FENTRESS J C. The tonic hypothesis and the patterning of behavior[J]. Annals of the New York Academy of Sciences, 1977, 290(11): 370-395.
[15]
DANTZER R, MORMEDE P, HENRY J P.Physiological assessment of adaptation in farm animals[M]//BAXTER S H, BAXTER M R, MAC CORMACK J A C.Farm animal housing and welfare.The Hague: Martinus Nijhoff, 1983: 8-19.
[16]
屠焰, 许先查, 刁其玉. 犊牛行为及其与饲养方式的关系[J]. 中国乳业, 2018(8): 51-57.
TU Y, XU X C, DIAO Q Y. Calf behavior and its relationship with feeding methods[J]. China Dairy, 2018(8): 51-57 (in Chinese).
[17]
BROOM D M.Stereotypies as animal welfare indicators[C]//SMIDT D.Indicators relevant to farm animal welfare.Dordrecht: Springer, 1983: 81-87.
[18]
WIEPKEMA P R.On the significance of ethological criteria for the assessment of animal welfare[M]//SMIDT D.Indicators relevant to farm animal welfare.Dordrecht: Springer, 1983: 71-79.
[19]
DUNCAN I J H, HUGHES B O. Free and operant feeding in domestic fowls[J]. Animal Behaviour, 1972, 20(4): 775-777. DOI:10.1016/S0003-3472(72)80150-7
[20]
DUNCAN I J H, WOOD-GUSH D G M. Thwarting of feeding behaviour in the domestic fowl[J]. Animal Behaviour, 1972, 20(3): 444-451. DOI:10.1016/S0003-3472(72)80007-1
[21]
SALZEN E A. Emotion, empathy, and suffering[J]. Behavioral and Brain Sciences, 1990, 13(1): 34-35. DOI:10.1017/S0140525X00077402
[22]
REDBO I, JACOBSSON K G, VAN DOORN C, et al. A note on relations between oral stereotypies in dairy cows and milk production, health and age[J]. AnimalScience, 1992, 54(1): 166-168.
[23]
BROOM D M, FRASER A F.Abnormal behaviour 1: stereotypies[M]//BROOM D M, FRASER A F.Domestic animal behaviour and welfare.Wallingford: CABI, 2007: 226-234.
[24]
KOOLHAAS J M, DE BOER S F, COPPENS C M, et al. Neuroendocrinology of coping styles:towards understanding the biology of individual variation[J]. Frontiers in Neuroendocrinology, 2010, 31(3): 307-321. DOI:10.1016/j.yfrne.2010.04.001
[25]
ENGEL A K J, GROSS A N, RICHTER S H, et al. Variation in stress reactivity affects cage-induced stereotypies in female CD-1(ICR) mice[J]. Applied Animal Behaviour Science, 2011, 133(1/2): 101-108.
[26]
MCBRIDE S, CUDDEFORD D. The putative welfare-reducing effects of preventing equine stereotypic behaviour[J]. Animal Welfare, 2001, 10(2): 173-189.
[27]
KOOLHAAS J M, KORTE S M, DE BOER S F, et al. Coping styles in animals:current status in behavior and stress-physiology[J]. Neuroscience & Biobehavioral Reviews, 1999, 23(7): 925-935.
[28]
STOLBA A, WOOD-GUSH D G M, BAKER N. The characterisation of stereotyped behaviour in stalled sows by informational redundancy[J]. Behaviour, 1983, 87(3/4): 157-182.
[29]
DELLMEIER G R. Motivation in relation to the welfare of enclosed livestock[J]. Applied Animal Behaviour Science, 1989, 22(2): 129-138. DOI:10.1016/0168-1591(89)90049-X
[30]
EWBANK R. Use and abuse of the term "stress" in husbandry and welfare[J]. Veterinary Record, 1973, 92(26): 709-710. DOI:10.1136/vr.92.26.709
[31]
KEIPER R R. Causal factors of stereotypies in caged birds[J]. Animal Behaviour, 1969, 17: 114-119. DOI:10.1016/0003-3472(69)90119-5
[32]
WÜRBEL H, STAUFFACHER M. Age and weight at weaning affect corticosterone level and development of stereotypies in ICR-mice[J]. Animal Behaviour, 1997, 53(5): 891-900. DOI:10.1006/anbe.1996.0424
[33]
WÜRBEL H, STAUFFACHER M. Physical condition at weaning affects exploratory behaviour and stereotypy development in laboratory mice[J]. Behavioural Processes, 1998, 43(1): 61-69. DOI:10.1016/S0376-6357(97)00086-7
[34]
JEPPESEN L L, HELLER K E, DALSGAARD T. Effects of early weaning and housing conditions on the development of stereotypies in farmed mink[J]. Applied Animal Behaviour Science, 2000, 68(1): 85-92. DOI:10.1016/S0168-1591(00)00099-X
[35]
PHILLIPS C J C. The effects of forage provision and group size on the behavior of calves[J]. Journal of Dairy Science, 2004, 87(5): 1380-1388. DOI:10.3168/jds.S0022-0302(04)73287-7
[36]
BILDSØE M, HELLER K E, JEPPESEN L L. Effects of immobility stress and food restriction on stereotypies in low and high stereotyping female ranch mink[J]. Behavioural Processes, 1991, 25(2/3): 179-189.
[37]
BRYANT C E, RUPNIAK N M J, IVERSEN S D. Effects of different environmental enrichment devices on cage stereotypies and autoaggression in captive cynomolgus monkeys[J]. Journal of Medical Primatology, 1988, 17(5): 257-269. DOI:10.1111/j.1600-0684.1988.tb00388.x
[38]
BROOM D M, FRASER A F, BROOM D M, et al. Abnormal behaviour 1:stereotypes[J]. Domestic Animal Behaviour and Welfare, 2015(5): 246-253.
[39]
WINDER C, KITCHEN I. Lead neurotoxicity:a review of the biochemical, neurochemical and drug induced behavioural evidence[J]. Progress in Neurobiology, 1984, 22(1): 59-87. DOI:10.1016/0301-0082(84)90018-2
[40]
RIDLEY R M, BAKER H F. Stereotypy in monkeys and humans[J]. Psychological Medicine, 1982, 12(1): 61-72. DOI:10.1017/S0033291700043294
[41]
LE NEINDRE P. Evaluating housing systems for veal calves[J]. Journal of Animal Science, 1993, 71(5): 1345-1354. DOI:10.2527/1993.7151345x
[42]
PHILLIPS C J C, YOUSSEF M Y I, CHIY P C, et al. Sodium chloride supplements increase the salt appetite and reduce stereotypies in confined cattle[J]. Animal Science, 1999, 68(4): 741-747. DOI:10.1017/S1357729800050773
[43]
李振清. 奶牛的恶癖及其预防[J]. 中国奶牛, 2007(5): 60.
LI Z Q. Cow habit and its prevention[J]. China Dairy Cattle, 2007(5): 60 (in Chinese). DOI:10.3969/j.issn.1004-4264.2007.05.025
[44]
ROBBINS T W. Relationship between reward-enhancing and stereotypical effects of psychomotor stimulant drugs[J]. Nature, 1976, 264(5581): 57-59. DOI:10.1038/264057a0
[45]
SCHOENECKER B, HELLER K E. Indication of a genetic basis of stereotypies in laboratory-bred bank voles (Clethrionomys glareolus)[J]. Applied Animal Behaviour Science, 2000, 68(4): 339-347. DOI:10.1016/S0168-1591(00)00114-3
[46]
SCHWAIBOLD U, PILLAY N. Stereotypic behaviour is genetically transmitted in the African striped mouse Rhabdomys pumilio[J]. Applied Animal Behaviour Science, 2001, 74(4): 273-280. DOI:10.1016/S0168-1591(01)00169-1
[47]
JOEL D, DOLJANSKY J. Selective alleviation of compulsive lever-pressing in rats by D1, but not D2, blockade:possible implications for the involvement of D1 receptors in obsessive-compulsive disorder[J]. Neuropsychopharmacology, 2003, 28(1): 77-85. DOI:10.1038/sj.npp.1300010
[48]
尚玉昌. 动物的模仿和玩耍学习行为[J]. 生物学通报, 2005, 40(11): 14-15.
SHANG Y C. Animal imitation and play learning behavior[J]. Bulletin of Biology, 2005, 40(11): 14-15 (in Chinese). DOI:10.3969/j.issn.0006-3193.2005.11.007
[49]
BENUS R F, KOOLHAAS J M, VAN OORTMERSSEN G A. Aggression and adaptation to the light-dark cycle:role of intrinsic and extrinsic control[J]. Physiology & Behavior, 1988, 43(2): 131-137.
[50]
BOLHUIS J E, SCHOUTEN W G P, SCHRAMA J W, et al. Behavioural development of pigs with different coping characteristics in barren and substrate-enriched housing conditions[J]. Applied Animal Behaviour Science, 2005, 93(3/4): 213-228.
[51]
PARKER M, MCBRIDE S D, REDHEAD E S, et al. Differential place and response learning in horses displaying an oral stereotypy[J]. Behavioural Brain Research, 2009, 200(1): 100-105. DOI:10.1016/j.bbr.2008.12.033
[52]
PARKER M, REDHEAD E S, GOODWIN D, et al. Impaired instrumental choice in crib-biting horses (Equus caballus)[J]. Behavioural Brain Research, 2008, 191(1): 137-140. DOI:10.1016/j.bbr.2008.03.009
[53]
CANALES J J. Stimulant-induced adaptations in neostriatal matrix and striosome systems:transiting from instrumental responding to habitual behavior in drug addiction[J]. Neurobiology of Learning and Memory, 2005, 83(2): 93-103. DOI:10.1016/j.nlm.2004.10.006
[54]
NELSON A, KILLCROSS S. Amphetamine exposure enhances habit formation[J]. Journal of Neuroscience, 2006, 26(14): 3805-3812. DOI:10.1523/JNEUROSCI.4305-05.2006
[55]
ROBBINS T W, EVERITT B J. A role for mesencephalic dopamine in activation:commentary on Berridge (2006)[J]. Psychopharmacology, 2007, 191(3): 433-437. DOI:10.1007/s00213-006-0528-7
[56]
NAKAYAMA S, SASAKI K, MATSUMURA K, et al. Dopaminergic system as the mechanism underlying personality in a beetle[J]. Journal of Insect Physiology, 2012, 58(5): 750-755. DOI:10.1016/j.jinsphys.2012.02.011
[57]
GIORGI O, PIRAS G, CORDA M G. The psychogenetically selected Roman high- and low-avoidance rat lines:a model to study the individual vulnerability to drug addiction[J]. Neuroscience & Biobehavioral Reviews, 2007, 31(1): 148-163.
[58]
NURNBERG H G, KEITH S J, PAXTON D M. Consideration of the relevance of ethological animal models for human repetitive behavioral spectrum disorders[J]. Biological Psychiatry, 1997, 41(2): 226-229. DOI:10.1016/S0006-3223(96)00100-X
[59]
SAKA E, GOODRICH C, HARLAN P, et al. Repetitive behaviors in monkeys are linked to specific striatal activation patterns[J]. Journal of Neuroscience, 2004, 24(34): 7557-7565. DOI:10.1523/JNEUROSCI.1072-04.2004
[60]
MCBRIDE S D, HEMMINGS A. Altered mesoaccumbens and nigro-striatal dopamine physiology is associated with stereotypy development in a non-rodent species[J]. Behavioural Brain Research, 2005, 159(1): 113-118. DOI:10.1016/j.bbr.2004.10.014
[61]
SCHNEIDER T, TURCZAK J, PRZEWŁOCKI R. Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid:issues for a therapeutic approach in autism[J]. Neuropsychopharmacology, 2006, 31(1): 36-46. DOI:10.1038/sj.npp.1300767
[62]
NATARAJAN R, YAMAMOTO B K. The basal ganglia as a substrate for the multiple actions of amphetamines[J]. Basal Ganglia, 2011, 1(2): 49-57.
[63]
FAIRBANKS L A, MELEGA W P, JORGENSEN M J, et al. Social impulsivity inversely associated with CSF 5-HIAA and fluoxetine exposure in vervet monkeys[J]. Neuropsychopharmacology, 2001, 24(4): 370-378. DOI:10.1016/S0893-133X(00)00211-6
[64]
CARAMASCHI D, DE BOER S F, KOOLHAAS J M. Differential role of the 5-HT1A receptor in aggressive and non-aggressive mice:an across-strain comparison[J]. Physiology & Behavior, 2007, 90(4): 590-601.
[65]
ABDALLAH L, BONASERA S J, HOPF F W, et al. Impact of serotonin 2C receptor null mutation on physiology and behavior associated with nigrostriatal dopamine pathway function[J]. Journal of Neuroscience, 2009, 29(25): 8156-8165. DOI:10.1523/JNEUROSCI.3905-08.2009
[66]
LEBELT D, ZANELLA A J, UNSHELM J. Physiological correlates associated with cribbing behaviour in horses:changes in thermal threshold, heart rate, plasma β-endorphin and serotonin[J]. Equine Veterinary Journal, 2010, 30(S27): 21-27.
[67]
IJICHI C L, COLLINS L M, ELWOOD R W. Evidence for the role of personality in stereotypy predisposition[J]. Animal Behaviour, 2013, 85(6): 1145-1151. DOI:10.1016/j.anbehav.2013.03.033
[68]
HUGHES B O, DUNCAN I J H. The notion of ethological 'need', models of motivation and animal welfare[J]. Animal Behaviour, 1988, 36(6): 1696-1707. DOI:10.1016/S0003-3472(88)80110-6
[69]
DAVID J T, CERVANTES M C, TROSKY K A, et al. A neural network underlying individual differences in emotion and aggression in male golden hamsters[J]. Neuroscience, 2004, 126(3): 567-578. DOI:10.1016/j.neuroscience.2004.04.031
[70]
TERLOUW E M C, LAWRENCE A B. Long-term effects of food allowance and housing on development of stereotypies in pigs[J]. Applied Animal Behaviour Science, 1993, 38(2): 103-126. DOI:10.1016/0168-1591(93)90060-3
[71]
CABIB S, PUGLISI-ALLEGRA S. The mesoaccumbens dopamine in coping with stress[J]. Neuroscience & Biobehavioral Reviews, 2012, 36(1): 79-89.
[72]
KORTE S M, BOUWS G A H, BOHUS B. Adrenal hormones in rats before and after stress-experience:effects of ipsapirone[J]. Physiology & Behavior, 1992, 51(6): 1129-1133.
[73]
KORTE S M, BEUVING G, RUESINK W, et al. Plasma catecholamine and corticosterone levels during manual restraint in chicks from a high and low feather pecking line of laying hens[J]. Physiology & Behavior, 1997, 62(3): 437-441.
[74]
RUIS M A W, TE BRAKE J H A, VAN DE BURGWAL J A, et al. Personalities in female domesticated pigs:behavioural and physiological indications[J]. Applied Animal Behaviour Science, 2000, 66(1/2): 31-47.
[75]
DOBSON H, SMITH R F. What is stress, and how does it affect reproduction?[J]. Animal Reproduction Science, 2000, 60-61: 743-752. DOI:10.1016/S0378-4320(00)00080-4
[76]
SILANIKOVE N, SHAMAY A, SHINDER D, et al. Stress down regulates milk yield in cows by plasmin induced β-casein product that blocks K+ channels on the apical membranes[J]. Life Sciences, 2000, 67(18): 2201-2212. DOI:10.1016/S0024-3205(00)00808-0
[77]
GRANDIN T. The effect of stress on livestock and meat quality prior to and during slaughter[J]. International Journal for the Study of Animal Problems, 1980, 1(5): 313-337.
[78]
CHRISTENSEN J W, AHRENDT L P, LINTRUP R, et al. Does learning performance in horses relate to fearfulness, baseline stress hormone, and social rank?[J]. Applied Animal Behaviour Science, 2012, 140(1/2): 44-52.
[79]
ROBLES T F, GLASER R, KIECOLT-GLASER J K. Out of balance:a new look at chronic stress, depression, and immunity[J]. Current Directions in Psychological Science, 2005, 14(2): 111-115. DOI:10.1111/j.0963-7214.2005.00345.x
[80]
SCOTT L V, CLARKE G, DINAN T G.The brain-gut axis: a target for treating stress-related disorders[M]//HALARIS A, LEONARD B E.Inflammation in psychiatry.Mod trends pharmacopsychiatry.Basel: Karger, 2013.
[81]
THURSBY E, JUGE N. Introduction to the human gut microbiota[J]. Biochemical Journal, 2017, 474(11): 1823-1836. DOI:10.1042/BCJ20160510
[82]
COX L M, WEINER H L. Microbiota signaling pathways that influence neurologic disease[J]. Neurotherapeutics, 2018, 15(1): 135-145. DOI:10.1007/s13311-017-0598-8
[83]
COLLINS S M, SURETTE M, BERCIK P. The interplay between the intestinal microbiota and the brain[J]. Nature Reviews Microbiology, 2012, 10(11): 735-742. DOI:10.1038/nrmicro2876
[84]
BUSH V L, MIDDLEMISS D N, MARSDEN C A, et al. Implantation of a slow release corticosterone pellet induces long-term alterations in serotonergic neurochemistry in the rat brain[J]. Journal of Neuroendocrinology, 2003, 15(6): 607-613. DOI:10.1046/j.1365-2826.2003.01034.x
[85]
BHATTARAI Y, WILLIAMS B B, BATTAGLIOLI E J, et al. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion[J]. Cell Host & Microbe, 2018, 23(6): 775-785.
[86]
陈凤.口服抗生素改变大鼠肠道菌群和大脑海马脑源性神经营养因子的表达及其恢复[D].硕士学位论文.大连: 大连医科大学, 2015.
CHEN F.Oral antibiotic treatment altered the composition of intestinal microbiota and the expression of hippocampal brain-derived neurotropic factor in rats and recovered after antibiotic removal[D].Master's Thesis.Dalian: Dalian Medical University, 2015. (in Chinese)
[87]
蒋海寅.人类肠道微生物群落菌群多样性变化与抑郁症的相关性研究[D].博士学位论文.杭州: 浙江大学, 2015.
JIANG H Y.Diversity of gut microbiota associated with patients with major depressive disorder[D].Ph.D.Thesis.Hangzhou: Zhejiang University, 2015. (in Chinese)
[88]
杜向禹.基于无菌小鼠研究肠道微生物对抑郁行为的作用[D].硕士学位论文.重庆: 重庆医科大学, 2016.
DU X Y.Study of intestinal microbiota effects on depressive behaviour based on germ-free[D].Master's Thesis.Chongqing: Chongqing Medical University, 2016. (in Chinese)
[89]
蒋涛.瘤胃微生物重塑对围产后期奶牛采食量和采食行为的影响[D].博士学位论文.北京: 中国农业大学, 2018.
JIANG T.Influence of rumen microbial reshaping on feed intake and feeding behavior of holstein cows during the late perinatal period[D].Ph.D.Thesis.Beijing: China Agricultural University, 2018. (in Chinese)