动物营养学报    2021, Vol. 33 Issue (1): 68-76    PDF    
硒与茶多酚的协同生物学效应及其在动物生产中的应用
杨凯丽1,2 , 卓锐文1,2 , 肖圆圆1,2 , 方热军1,2     
1. 湖南农业大学动物科技学院, 长沙 410128;
2. 湖南畜禽安全生产协同创新中心, 长沙 410128
摘要: 硒是动物体的必需微量元素,茶多酚是茶叶中具有生物活性的主要物质之一,二者具有多种相似的生物学功能,如抗氧化、提高免疫力、抗肿瘤等,可通过调节多条信号通路进而发挥其功能,在促进动物生产性能、增强抗氧化功能等方面具有协同作用。本文就硒与茶多酚的生物学功能、对细胞内的信号调节机制及在动物生产中的应用进行综述,为进一步研究硒与茶多酚的协同作用并对其在动物生产中的应用提供新的方向和视野,为微量元素的精准营养及绿色饲料添加剂的研发提供思路。
关键词:     茶多酚    动物    抗氧化    免疫    抗肿瘤    
Synergistic Biological Function of Selenium and Tea Polyphenols and Its Application in Animal Production
YANG Kaili1,2 , ZHUO Ruiwen1,2 , XIAO Yuanyuan1,2 , FANG Rejun1,2     
1. College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
2. Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
Abstract: Selenium is an essential trace element in animals, tea polyphenols are one of the main biologically active substances in tea. The two perform a variety of similar biological functions through regulating multiple signal pathway, such as, anti-oxidant, immune and anti-tumor functions. It has a synergistic effect in promoting animal production, antioxidant and other properties between selenium and tea polyphenols. This article reviews the biological functions, the regulation mechanism of intracellular signals and the application on animals of selenium and tea polyphenols, and provides not only directions for selenium and tea polyphenols with their interaction for further research and their application in animal production, but also ideas for the precise nutrition of trace elements and the development of green feed additives.
Key words: selenium    tea polyphenols    animals    antioxidant    immune    anti-tumor    

硒(selenium)元素主要以硒蛋白的形式在动物体内发挥重要的生理功能[1],已发现的硒蛋白有谷胱甘肽过氧化物酶(GSH-Px)、硫氧蛋白还原酶(TrxR)、甲状腺素脱碘酶(DIOs)和硒蛋白P(SelP)等25种,在动物体内参与抗氧化、免疫及激素的运输和调节等[2]。在动物生产中,常需要在饲粮中添加硒以满足机体对硒的需要[3],硒可提高动物生产性能,改善机体抗氧化、免疫等性能[4-5]。茶多酚(tea polyphenols)是茶叶中提取多酚物质的总称,包括黄烷醇类、黄酮类、酚酸类等,具有多种生物性能,如抗氧化、免疫、抑菌等,广泛用于食品药品等行业[6-7]。我国茶资源丰富,具有一系列的茶叶产业链,每年产生大量的茶叶副产物,具有提取茶多酚的大量资源,随着我国“全面禁抗”的到来,“替抗”饲料添加剂的开发逐渐成为研究热点,茶多酚作为绿色“替抗”饲料添加剂可提高动物的生产性能、产品品质、抗氧化性能等[8-9]

茶多酚的性能可被其他物质影响,如蛋白质、多糖、矿物元素等[10],而硒是动物体必需矿物元素,对机体生长发育、抗氧化等方面具有十分重要的意义。硒与茶多酚具有多种相似的生物学供能,有研究显示,二者联用效应强于其单一物质[11]。对于硒与茶多酚的研究多见于富硒茶,其多酚类化合物多于常规茶,具有更强的抗氧化性能[12-13]。本文就硒与茶多酚的生物学功能、细胞信号转导调控机制及其在畜禽上的应用进行综述,为微量元素的精准营养、绿色饲料添加剂的研发及资源节约提供思路。

1 硒与茶多酚的生物学功能 1.1 抗氧化功能

自由基是体内物质发生氧化还原产生的高活性分子,可破坏蛋白质、DNA,造成脂质过氧化。体内自由基过多可影响动物生产,甚至诱发疾病,造成死亡[14]

硒主要通过GSH-Px、TrxR、DIOs等含硒酶发挥抗氧化作用。GSH-Px可催化过氧化氢(H2O2)及有机过氧化物与还原型谷胱甘肽(GSH)的反应,进而清除自由基[15],是主要的抗氧化酶;DIOs通过参与调节甲状腺激素的活性,调节机体抗氧化等功能;TrxR通过对底物硫氧还蛋白(thioredoxin,Trx)的催化还原参与过氧化氢清除、DNA合成以及氧化还原信号传导等过程,进一步发挥在氧化还原中的重要性能[16]。茶多酚可通过以下几种方式发挥抗氧化作用:1)络合金属离子以阻止金属离子催化自由基的形成,减少产生自由基[9];2)直接还原氢氧自由基(·OH)、超氧阴离子(O2-)、一氧化氮(NO)等自由基[17];3)调节抗氧化酶的活性,通过相应信号通路激活和保护含硒酶GSH-Px等体内抗氧化酶活性。研究发现,茶多酚中的没食子酸酯(epigallocatechin-3-gallate,EGCG)在硒充足的小鼠体内可诱导TrxR1基因的表达[18]。体外研究表明,茶多酚与硒的联用可发挥更佳的抗氧化功能[11]

1.2 免疫功能

硒与茶多酚均能介导免疫反应[19-20]。硒可刺激血液中白细胞的活化,增加抗体的合成,提高免疫细胞的活性,增强机体非特异性免疫、细胞免疫及体液免疫。当体内缺硒或硒蛋白表达被抑制时,多种组织炎症细胞因子的含量会受到影响,如缺硒会降低机体血清白细胞介素-1(IL-1)以及升高肿瘤坏死因子-α(TNF-α)含量[21],其中增加的TNF-α可以诱导核转录因子-κB(nuclear factor-κB,NF-κB)的活化并增加肝细胞中C反应蛋白(C-reactive protein,CRP)的分泌[19, 22]。茶多酚可结合免疫细胞上相应的受体,调节免疫细胞的黏附和炎症过程,调节免疫因子的分泌。研究发现,EGCG的免疫细胞受体有3类,67 ku层黏连蛋白受体(67 ku laminin receptor,67LR)、zeta链结合70 ku蛋白(zeta chain associated protein kinase 70 ku,ZAP-70)以及维甲酸诱导基因Ⅰ(retinoic acid induction gene Ⅰ,RIG-Ⅰ)[23]。Kuo等[24]研究表明,儿茶素可增强T细胞亚群的活性,提高白细胞介素-2(IL-2)等的分泌;增强免疫细胞活性;于娟等[25]研究表明,红茶多酚可以增强小鼠的T细胞、B细胞、自然杀伤细胞以及巨噬细胞的活性,增加抗体水平及免疫球蛋白含量[26]。硒与茶多酚促进细胞因子分泌,提高抗体水平,提高动物体免疫能力,但二者的互作及机理需要深入探究。

1.3 抗肿瘤功能

硒和茶多酚可扰乱肿瘤细胞代谢、诱导细胞凋亡和抑制血管生成等,表现出抗肿瘤作用。硒可以通过抗氧化功能发挥抗肿瘤作用,此外,TrxR可调节细胞增殖和生存以及刺激肿瘤细胞,硒化合物可抑制肿瘤细胞端粒酶活性以及调控转录因子NF-κB的激活和失活,抑制肿瘤细胞[27]。茶多酚通过调节相关酶,如谷胱甘肽-S-转移酶(glutathione S-transferase,GST)抑制多种癌细胞生长,同时,硒也可以调节GST活性。硒与茶多酚对肿瘤细胞周期的抑制作用机理基本相同。茶多酚可以通过抑制B淋巴细胞瘤-2(B-cell lymphoma-2,bcl-2)基因的表达,诱导bcl-2相关蛋白(bcl-2 associated x protein,bax)基因的表达,从而诱导癌细胞发生编程性死亡,通过调控细胞周期蛋白依赖性激酶(cyclin-dependent kinases,CDK)、细胞周期蛋白E、CDK相互作用蛋白(CDK interacting proteins,CIPs)、激酶抑制蛋白(kinase inhibitory proteins,KIPs,如p27KIP1、P57KIP2)等细胞周期调控蛋白,诱导肿瘤细胞周期停滞在G1期进而抑制其生长[28-29]。硒与茶多酚均可以通过调节某些信号通路进而发挥抗肿瘤作用,通过活化丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)信号通路,抑制蛋白质丝氨酸-苏氨酸激酶(protein-serine-threonine kinase,AKT)细胞信号通路,激活线粒体凋亡通路,降低连环蛋白(catenin)水平,激活半胱氨酸-天冬氨酸蛋白酶(cystein-asparate protease,Caspase)-9、Caspase-3,上调视黄酸受体(retinoic acid receptors,RXR)表达,通过影响细胞间隙连接蛋白以及通讯功能,抑制肿瘤细胞生长,加快其凋亡,也可通过抑制肿瘤组织血管的形成产生抗肿瘤作用[30-31]

2 硒与茶多酚对细胞内信号通路的调节 2.1 核因子E2相关因子2(nuclear factor erythroid 2-related factor 2,Nrf2)/抗氧化反应元件(antioxidant response element,ARE)信号通路

硒与茶多酚可通过调节多种信号通路发挥作用。Nrf2/ARE通路是调节抗氧化机制的重要通路,在未被激活时,Nrf2与Kelch样环氧氯丙烷相关蛋白-1(Kelch-like ECH-associated protein 1,Keap1)结合,激活的Nrf2与Keap1解离,结合ARE,进而启动抗氧化等基因的转录,如GSH-Px、超氧化物歧化酶(SOD)、还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)脱氢酶1等抗氧化酶等[32],研究发现,EGCG能诱导增加Nrf2的转录活性,提高与ARE的结合能力,继而上调含硒酶GSH-PxTrxR的表达[33],当体内硒含量充足时,EGCG可直接诱导TrxR1基因的表达,而使Nrf2不被激活,当硒缺乏时,Nrf2被EGCG激活[18],同时,硒也可激活Nrf2信号通路[26]

2.2 MAPK信号通路

MAPK信号通路参与细胞的炎症、应激等过程,可被应激、炎性细胞等激活,调节细胞因子的产出。MAPK通路通过MAPK、MAPK激酶和MAPK激酶激酶三级级联调控。MAPK信号通路主要有3条途径:细胞外信号调节激酶(extracellular signal-regulated kinases,ERK)、p38丝裂原激活蛋白激酶(p38 mitogen-activated protein kinases,p38)、Jun氨基末端激酶(jun N-terminal kinases,JNK)[34]。硒可通过调控MAPK信号通路,下调TNF-α、白细胞介素-1β(IL-1β)和白细胞介素-6(IL-6)基因的表达,发挥抗炎作用[35]。Ma等[36]研究表明,茶多酚通过激活MAPK磷酸化缓解氧化应激对牛乳腺上皮细胞的损伤;Siddiqui等[37]发现,EGCG可通过激活ERK1/2,抑制人前列腺癌细胞活性。

2.3 NF-κB信号通路

NF-κB通路可调控免疫和炎症反应,NF-κB蛋白家族通过与顺式调控区的DNA位点结合,形成异型和同型二聚体,未被激活的NF-κB二聚体通过与NF-κB抑制蛋白(inhibitor of NF-κB,IκB)结合在细胞中,当有刺激源时,IκB激酶复合物通过激活IκB进而激活NF-κB,进行靶基因的转录[38]。研究显示,硒与茶多酚能激活NF-κB通路,进而上调前列腺素E2(prostaglandin E2,PGE2)及血栓素2(thromboxane 2,TXA2)的表达,PGE2和TXA2是活化巨噬细胞的物质,以此调节免疫功能[22, 39]

2.4 磷脂酰肌醇-3激酶(phosphatidylinositide 3-kinase,PI3K)-AKT信号通路

胞内PI3K-AKT参与细胞营养物质的摄取等功能,PI3K是特殊的胞内脂质激酶,其活化可磷酸化质膜上的磷脂酰肌醇环,产生的3,4,5-三磷酸磷脂酰肌醇与AKT结合使其激活,继而磷酸化多种酶和转录因子对相应功能进行调节,如激活细胞色素C(cytochrome C,Cyt C),激活Caspase-3,致使细胞凋亡,也可以调节血管内皮细胞的生长[40-41]。硒和茶多酚可诱导PI3K-AKT,降低氧化应激对细胞的损伤以及抑制癌细胞生长[38, 42]

茶多酚与硒通过调控多条信号通路参与机体的生长代谢发育。研究证实Nrf2是AKT的靶蛋白之一,MAPK也可激活Nrf2,硒与茶多酚可调控PI3K-AKT及MAPK信号通路,也可通过这2条信号通路进一步激活Nrf2[43-44],二者通过多条信号通路及通路间的相互作用,协同发挥抗氧化、免疫、抗肿瘤等功能,但硒与茶多酚发挥协同作用的机制研究尚需深入探究。

3 硒与茶多酚在动物生产中的应用 3.1 硒在动物生产中的应用

硒作为饲料添加剂添加到饲粮中,可提高动物的生产性能、产品品质、抗氧化以及免疫功能,有机硒的效果通常大于无机硒。表 1为硒在动物生产中的部分研究成果[45-51]

表 1 硒在动物生产中的部分研究成果 Table 1 Some research results of selenium on animal production
3.2 茶多酚在动物生产中的应用

茶多酚可促进动物的生产性能,提高产品品质,如改善肉品质和蛋品质,提高抗氧化能力,调节动物体脂质代谢。茶多酚在动物生产中的部分研究成果见表 2[52-56]

表 2 茶多酚在动物生产中的部分研究成果 Table 2 Some research results of tea polyphenols on animal production
3.3 硒与茶多酚在动物生产中的联合应用

目前,硒与茶多酚的联合应用已有的研究显示,二者具有协同作用,配伍效果优于单一物质,但目前关于两者的协同作用机制探讨相对较少。李卫春[57]指出,硒与茶多酚组合可降低肉鸡胸肌红度(a*)、亮度(L*)值,提高黄度(b*)值,提高肉品质以及血浆中抗氧化酶(GSH-Px、SOD等)活性,降低氧化物黄嘌呤氧化酶(XOD)活性,且二者具有交互作用,饲粮中硒和茶多酚添加水平分别为0.15、200 mg/kg可提高鸡肉的抗氧化能力,延长鸡肉的货架期。Long等[58]研究酵母硒与茶多酚对于武昌鱼的影响发现,饲料中酵母硒与茶多酚添加水平分别为0.5、50 mg/kg可促进武昌鱼的生长、抗氧化性能及组织的恢复能力,且效果优于添加单一的酵母硒或茶多酚。龙萌等[59]研究显示,在饲料中添加酵母硒和茶多酚的影响下,团头鲂鱼的生长性能以及鱼体抗病原菌的感染力均显著提高,饵料系数显著下降,且二者联用具有互作效应,同时,两者均具有抗氧化作用,可诱导相关抗氧化基因表达,当两者联用时,对抗氧化功能具有协同作用,可提高铜锌超氧化物歧化酶(Cu/Zn- SOD)和过氧化氢酶(CAT)的基因表达,综合分析,对于团头鲂幼鱼,饲料中酵母硒和茶多酚适宜添加水平分别为0.5和50 mg/kg。

4 小结

硒与茶多酚均具有抗氧化、免疫、抗肿瘤等作用,共同调节多条信号通路,其联合应用可改善动物体的生长性能、抗氧化功能、免疫功能等,在大部分的研究中,二者的联合应用效果优于单一物质,但关于硒与茶多酚联合发挥功能的许多机制尚未清晰,如二者发挥抗氧化功能与免疫功能的机制尚未完全清楚,其联合应用对动物肠道健康的影响尚未明了,对不同动物的配伍剂量尚需进一步研究。鉴于目前二者联用的良好效果,并随着研究的不断深入,硒与茶多酚的联合应用在动物生产中拥有广阔的前景。

参考文献
[1]
PAPP L V, HOLMGREN A, KHANNA K K. Selenium and selenoproteins in health and disease[J]. Antioxidants & Redox Signaling, 2010, 12(7): 793-795.
[2]
方热军, 杨凯丽. 硒的抗氧化和免疫作用及其代谢调控途径[J]. 饲料工业, 2018, 39(23): 1-7.
FANG R J, YANG K L. The antioxidant and immune effects of selenium and its metabolic regulation pathway[J]. Feed Industry, 2018, 39(23): 6-12 (in Chinese).
[3]
DELEZIE E, ROVERS M, VAN DER AA A, et al. Comparing responses to different selenium sources and dosages in laying hens[J]. Poultry Science, 2014, 93(12): 3083-3090. DOI:10.3382/ps.2014-04301
[4]
KHOSO P A, ZHANG Y M, YIN H, et al. Selenium deficiency affects immune function by influencing selenoprotein and cytokine expression in chicken spleen[J]. Biological Trace Element Research, 2019, 187(2): 506-516. DOI:10.1007/s12011-018-1396-9
[5]
LIU R H, JIA T T, CUI Y, et al. The protective effect of selenium on the chicken pancreas against cadmium toxicity via alleviating oxidative stress and autophagy[J]. Biological Trace Element Research, 2018, 184(1): 240-246. DOI:10.1007/s12011-017-1186-9
[6]
MAMATI G E, LIANG Y R, LU J L. Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of catechins and total tea polyphenols[J]. Journal of the Science of Food and Agriculture, 2006, 86(3): 459-464. DOI:10.1002/jsfa.2368
[7]
闫昭明, 郭秋平, 仲银召, 等. 茶多酚的生物学特性及其在畜牧生产中的应用[J]. 动物营养学报, 2019, 31(4): 1525-1532.
YAN Z M, GUO Q P, ZHONG Y Z, et al. Tea polyphenols functions and their application in animal production[J]. Chinese Journal of Animal Nutrition, 2019, 31(4): 1525-1532 (in Chinese).
[8]
YUAN Z H, ZHANG K Y, DING X M, et al. Effect of tea polyphenols on production performance, egg quality, and hepatic antioxidant status of laying hens in vanadium-containing diets[J]. Poultry Science, 2016, 95(7): 1709-1717. DOI:10.3382/ps/pew097
[9]
KOECH K R, WACHIRA F N, NGURE R M, et al. Antioxidant, antimicrobial and synergistic activities of tea polyphenols[J]. African Crop Science Journal, 2014, 22(S): 837-846.
[10]
WU Z, MING J, GAO R P, et al. Characterization and antioxidant activity of the complex of tea polyphenols and oat β-glucan[J]. Journal of Agricultural and Food Chemistry, 2011, 59(19): 10737-10746. DOI:10.1021/jf202722w
[11]
SENTKOWSKA A, PYRZYŃSKA K. Investigation of antioxidant activity of selenium compounds and their mixtures with tea polyphenols[J]. Molecular biology Reports, 2019, 46(3): 3019-3024. DOI:10.1007/s11033-019-04738-2
[12]
YU F, SHENG J C, XU J, et al. Antioxidant activities of crude tea polyphenols, polysaccharides and proteins of selenium-enriched tea and regular green tea[J]. European Food Research and Technology, 2007, 225(5/6): 843-848. DOI:10.1007/s00217-006-0490-y
[13]
SIES H. Polyphenols and health:update and perspectives[J]. Archives of Biochemistry and Biophysics, 2010, 501(1): 2-5. DOI:10.1016/j.abb.2010.04.006
[14]
SCHIEBER M, CHANDEL N S. ROS function in redox signaling and oxidative stress[J]. Current Biology, 2014, 24(10): R453-R462. DOI:10.1016/j.cub.2014.03.034
[15]
GROMER S, EUBEL J K, LEE B L, et al. Human selenoproteins at a glance[J]. Cellular and Molecular Life Sciences CMLS, 2005, 62(21): 2414-2437. DOI:10.1007/s00018-005-5143-y
[16]
ARNÉR E S J. Focus on mammalian thioredoxin reductases-important selenoproteins with versatile functions[J]. Biochimica et Biophysica Acta:General Subjects, 2009, 1790(6): 495-526. DOI:10.1016/j.bbagen.2009.01.014
[17]
YOKOZAWA T, NOH J S, PARK C H. Green tea polyphenols for the protection against renal damage caused by oxidative stress[J]. Evidence-Based Complementary and Alternative Medicine, 2012, 2012: 845917.
[18]
DONG R X, WANG D X, WANG X X, et al. Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice[J]. Redox Biology, 2016, 10: 221-232. DOI:10.1016/j.redox.2016.10.009
[19]
LIU G, YANG G, GUAN G P, et al. Effect of dietary selenium yeast supplementation on porcine circovirus type 2(PCV2) infections in mice[J]. PLoS One, 2015, 10(2): e0115833. DOI:10.1371/journal.pone.0115833
[20]
OHISHI T, GOTO S, MONIRA P, et al. Anti-inflammatory action of green tea[J]. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Inflammatory and Anti-Allergy Agents), 2016, 15(2): 74-90.
[21]
AVERY J C, HOFFMANN P R. Selenium, selenoproteins, and immunity[J]. Nutrients, 2018, 10(9): 1203. DOI:10.3390/nu10091203
[22]
SUN Z P, LIU C, PAN T R, et al. Selenium accelerates chicken dendritic cells differentiation and affects selenoproteins expression[J]. Developmental & Comparative Immunology, 2017, 77: 30-37.
[23]
DING S J, JIANG H M, FANG J. Regulation of immune function by polyphenols[J]. Journal of Immunology Research, 2018, 2018: 1264074.
[24]
KUO C L, CHEN T S, LIOU S Y, et al. Immunomodulatory effects of EGCG fraction of green tea extract in innate and adaptive immunity via T regulatory cells in murine model[J]. Immunopharmacology and Immunotoxicology, 2014, 36(5): 364-370. DOI:10.3109/08923973.2014.953637
[25]
于娟, 纪海玉, 白云, 等. 红茶多酚对H22荷瘤小鼠的免疫调节和抗氧化作用[J]. 中国食品学报, 2019(10): 49-55.
YU J, JI H Y, BAI Y, et al. Immunoregulatory and antioxidant activities of black tea polyphenols on H22-bearing mice[J]. Journal of Chinese Institute of Food Science and Technology, 2019(10): 49-55 (in Chinese).
[26]
李振, 陈现伟. 茶多酚的免疫调节作用及应用[J]. 中国兽药杂志, 2004, 38(4): 33-35.
LI Z, CHEN X W. The Immunoregulatory function and application of tea polyphenols[J]. Chinese Journal of Veterinary Drug, 2004, 38(4): 33-35 (in Chinese). DOI:10.3969/j.issn.1002-1280.2004.04.013
[27]
FONTELLES C C, ONG T P. Selenium and breast cancer risk:focus on cellular and molecular mechanisms[J]. Advances in Cancer Research, 2017, 136: 173-192. DOI:10.1016/bs.acr.2017.08.001
[28]
SUR S, PANDA C K. Molecular aspects of cancer chemopreventive and therapeutic efficacies of tea and tea polyphenols[J]. Nutrition, 2017, 43-44: 8-15. DOI:10.1016/j.nut.2017.06.006
[29]
NEGRI A, NAPONELLI V, RIZZI F, et al. Molecular targets of epigallocatechin-gallate (EGCG):a special focus on signal transduction and cancer[J]. Nutrients, 2018, 10(12): 1936. DOI:10.3390/nu10121936
[30]
BAG A, BAG N. Tea polyphenols and prevention of epigenetic aberrations in cancer[J]. Journal of Natural Science, Biology, and Medicine, 2018, 9(1): 2-5. DOI:10.4103/jnsbm.JNSBM_46_17
[31]
KO S Y, YANG C J. Effect of green tea probiotics on the growth performance, meat quality and immune response in finishing pigs[J]. Asian-Australasian Journal of Animal Sciences, 2008, 21(9): 1339-1347. DOI:10.5713/ajas.2008.70597
[32]
KRAJKA-KUŹNIAK V, PALUSZCZAK J, BAER-DUBOWSKA W. The Nrf2-ARE signaling pathway:an update on its regulation and possible role in cancer prevention and treatment[J]. Pharmacological Reports, 2017, 69(3): 393-402. DOI:10.1016/j.pharep.2016.12.011
[33]
BRIGELIUS-FLOHÉ R, KIPP A P. Selenium in the redox regulation of the Nrf2 and the Wnt pathway[J]. Methods in Enzymology, 2013, 527: 65-86. DOI:10.1016/B978-0-12-405882-8.00004-0
[34]
KIM E K, CHOI E J. Pathological roles of MAPK signaling pathways in human diseases[J]. Biochimica et Biophysica Acta:Molecular Basis of Disease, 2010, 1802(4): 396-405. DOI:10.1016/j.bbadis.2009.12.009
[35]
WANG H, BI C L, WANG Y J, et al. Selenium ameliorates Staphylococcus aureus-induced inflammation in bovine mammary epithelial cells by inhibiting activation of TLR2, NF-κB and MAPK signaling pathways[J]. BMC Veterinary Research, 2018, 14: 197. DOI:10.1186/s12917-018-1508-y
[36]
MA Y F, ZHAO L, GAO M, et al. Tea polyphenols protect bovine mammary epithelial cells from hydrogen peroxide-induced oxidative damage in vitro[J]. Journal of Animal Science, 2018, 96(10): 4159-4172. DOI:10.1093/jas/sky278
[37]
SIDDIQUI I A, ADHAMI V M, AFAQ F, et al. Modulation of phosphatidylinositol-3-kinase/protein kinase B- and mitogen-activated protein kinase-pathways by tea polyphenols in human prostate cancer cells[J]. Journal of Cellular Biochemistry, 2004, 91(2): 232-242. DOI:10.1002/jcb.10737
[38]
VLANTIS K, WULLAERT A, POLYKRATIS A, et al. NEMO prevents RIP kinase 1-mediated epithelial cell death and chronic intestinal inflammation by NF-κB-dependent and-independent functions[J]. Immunity, 2016, 44(3): 553-567. DOI:10.1016/j.immuni.2016.02.020
[39]
GANDHI U H, KAUSHAL N, RAVINDRA K C, et al. Selenoprotein-dependent up-regulation of hematopoietic prostaglandin D2 synthase in macrophages is mediated through the activation of peroxisome proliferator-activated receptor (PPAR)?[J]. Journal of Biological Chemistry, 2011, 286(31): 27471-27482. DOI:10.1074/jbc.M111.260547
[40]
VARA J Á F, CASADO E, DE CASTRO J, et al. PI3K/Akt signalling pathway and cancer[J]. Cancer Treatment Reviews, 2004, 30(2): 193-204. DOI:10.1016/j.ctrv.2003.07.007
[41]
CHEN W Y, CUI Y H, ZHENG S H, et al. 2-methoxyestradiol induces vasodilation by stimulating NO release via PPARγ/PI3K/akt pathway[J]. PLoS One, 2015, 10(3): e0118902. DOI:10.1371/journal.pone.0118902
[42]
ZHAO D, ZHANG X Y. Selenium antagonizes the lead-induced apoptosis of chicken splenic lymphocytes in vitro by activating the PI3K/AKT pathway[J]. Biological Trace Element Research, 2018, 182(1): 119-129. DOI:10.1007/s12011-017-1088-x
[43]
NA H K, KIM E H, JUNG J H, et al. (-)-Epigallocatechin gallate induces Nrf2-mediated antioxidant enzyme expression via activation of PI3K and ERK in human mammary epithelial cells[J]. Archives of Biochemistry and Biophysics, 2008, 476(2): 171-177. DOI:10.1016/j.abb.2008.04.003
[44]
MAYER I A, ARTEAGA C L. The PI3K/AKT pathway as a target for cancer treatment[J]. Annual Review of Medicine, 2016, 67: 11-28. DOI:10.1146/annurev-med-062913-051343
[45]
CAO J, GUO F C, ZHANG L Y, et al. Effects of dietary selenomethionine supplementation on growth performance, antioxidant status, plasma selenium concentration, and immune function in weaning pigs[J]. Journal of Animal Science and Biotechnology, 2014, 5(1): 46-51. DOI:10.1186/2049-1891-5-46
[46]
FALK M, LEBED P, BERNHOFT A, et al. Effects of sodium selenite and L-selenomethionine on feed intake, clinically relevant blood parameters and selenium species in plasma, colostrum and milk from high-yielding sows[J]. Journal of Trace Elements in Medicine and Biology, 2019, 52: 176-185. DOI:10.1016/j.jtemb.2018.12.009
[47]
卢建, 王克华, 曲亮, 等. 酵母硒和亚硒酸钠对蛋鸡蛋硒含量动态变化的影响[J]. 动物营养学报, 2014, 26(12): 3740-3746.
LU J, WANG K H, QU L, et al. Effects of sodium selenite and selenium yeast on dynamic change of egg selenium content in laying hens[J]. Chinese Journal of Animal Nutrition, 2014, 26(12): 3740-3746 (in Chinese). DOI:10.3969/j.issn.1006-267x.2014.12.025
[48]
CHEN G S, WU J F, LI C. The effect of different selenium levels on production performance and biochemical parameters of broilers[J]. Italian Journal of Animal Science, 2013, 12(4): e79. DOI:10.4081/ijas.2013.e79
[49]
ZHOU X, WANG Y. Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in guangxi yellow Chicken[J]. Poultry Science, 2011, 90(3): 680-686. DOI:10.3382/ps.2010-00977
[50]
LIU H, YU Q F, FANG C K, et al. Effect of selenium source and level on performance, egg quality, egg selenium content, and serum biochemical parameters in laying hens[J]. Foods, 2020, 9(1): 68. DOI:10.3390/foods9010068
[51]
李晓丽, 何万领, 位治国, 等. 酵母硒对蛋鸡生产性能、血清生化指标及常规蛋品质的影响[J]. 中国兽医学报, 2015, 35(11): 1835-1839.
LI X L, HE W L, WEI Z G, et al. Effects of yeast-se on production performance, serum biochemical parameters and egg quality of laying hens[J]. Chinese Journal of Veterinary Science, 2015, 35(11): 1835-1839 (in Chinese).
[52]
黄霞.茶叶粗提物对生长育肥猪生长性能和肉品质及免疫功能的影响研究[D].硕士学位论文.杭州: 浙江大学, 2014.
HUANG X.Effects of crude tea extract on growth performance, meat quality, and immune functions in growing-finishing pigs[D].Master's Thesis.Hangzhou: Zhejiang University, 2014.(in Chinese)
[53]
DENG Q L, XU J, YU B, et al. Effect of dietary tea polyphenols on growth performance and cell-mediated immune response of post-weaning piglets under oxidative stress[J]. Archives of Animal Nutrition, 2010, 64(1): 12-21. DOI:10.1080/17450390903169138
[54]
HUANG J B, ZHOU Y B, WAN B, et al. Green tea polyphenols alter lipid metabolism in the livers of broiler chickens through increased phosphorylation of AMP-activated protein kinase[J]. PLoS One, 2017, 12(10): e0187061. DOI:10.1371/journal.pone.0187061
[55]
卢垚.茶多酚降低鸡蛋胆固醇效果及其机制研究[D].硕士毕业论文.重庆: 西南大学, 2019.
LU Y.Study on the effect and mechanism of tea polyphenols on egg cholesterol reduction[D].Master's Thesis.Chongqing: Southwest University, 2019.(in Chinese)
[56]
WANG X C, WANG X H, WANG J, et al. Dietary tea polyphenol supplementation improved egg production performance, albumen quality, and magnum morphology of Hy-Line Brown hens during the late laying period[J]. Journal of Animal Science, 2018, 96(1): 225-235. DOI:10.1093/jas/skx007
[57]
李卫春.日粮中添加高水平的硒与茶多酚对肉鸡生产性能、肉品质和肌肉抗氧化的影响研究[D].硕士学位论文.杨凌: 西北农林科技大学, 2008.
LI W C.Effects of high level of dietary tea polyphenols and selenium on growth performance, meat quality, antioxidant status of broilers[D].Master's Thesis.Yangling: Northwest A&F University, 2008.(in Chinese)
[58]
LONG M, LIN W, HOU J, et al. Dietary supplementation with selenium yeast and tea polyphenols improve growth performance and nitrite tolerance of Wuchang bream (Megalobrama amblycephala)[J]. Fish & Shellfish Immunology, 2017, 68: 74-83.
[59]
龙萌, 侯杰, 苏玉晶, 等. 酵母硒和茶多酚对团头鲂幼鱼生长和生长轴基因表达、营养品质及抗病力的影响[J]. 水产学报, 2015, 39(1): 97-107.
LONG M, HOU J, SU Y J. Effects of selenium yeast and tea polyphenols on growth and related gene transcription in the hypothalamus-pituitary-growth axis, muscle composition and disease resistance of juvenile wuchang bream(Megalobrama amblycephala)[J]. Journal of Fisheries of China, 2015, 39(1): 97-107 (in Chinese).