动物营养学报    2021, Vol. 33 Issue (1): 199-207    PDF    
辣木在生长猪上的营养价值评定
庞家满1 , 韩丹丹1 , 谈苏贞2 , 杨富裕3 , 赵应堂2 , 张帅1 , 刘岭1 , 臧建军1 , 王军军1     
1. 中国农业大学动物科技学院, 动物营养学国家重点实验室, 北京 100193;
2. 贵州木辣达康养科技有限公司, 晴隆 561401;
3. 中国农业大学草业科学与技术学院, 北京 100193
摘要: 本试验通过在生长猪上测定辣木叶和辣木枝的消化能、代谢能和氨基酸标准回肠消化率,旨在评定辣木在生长猪上的营养价值。选择24头回肠末端安装T型瘘管的"杜×长×大"去势公猪,平均体重为(39.80±1.06)kg,随机分为4个组,分别饲喂无氮饲粮、玉米-豆粕型基础饲粮、辣木叶饲粮和辣木枝饲粮,每组6个重复。预饲7 d后,进行4 d消化代谢试验,收集全部粪尿,用于测定消化能和代谢能。消化代谢试验结束后,继续2 d收集回肠食糜用于测定氨基酸表观回肠消化率和标准回肠消化率。结果表明:与辣木枝相比,辣木叶含有较高含量的营养成分,尤其是粗蛋白质、粗脂肪和钙,含量分别为26.29%、6.25%和2.70%。辣木叶的消化能、代谢能和总能表观消化率分别为9.35、8.24 MJ/kg和49.26%,辣木枝的消化能、代谢能和总能表观消化率分别为7.51、6.03 MJ/kg和40.81%,辣木叶的有效能值和总能表观消化率显著高于辣木枝(P < 0.05)。辣木叶总必需氨基酸、总非必需氨基酸和粗蛋白质标准回肠消化率分别为42.05%、42.59%和49.03%,而辣木枝总必需氨基酸、总非必需氨基酸和粗蛋白质标准回肠消化率分别为35.13%、37.31%和40.15%,辣木叶的总必需氨基酸、总非必需氨基酸和粗蛋白质标准回肠消化率显著高于辣木枝(P < 0.05)。综上所述,辣木叶的消化能、代谢能和总必需氨基酸标准回肠消化率分别为9.35、8.24 MJ/kg和42.05%,而辣木枝的消化能、代谢能和总必需氨基酸标准回肠消化率分别为辣木叶的80.3%、73.3%和83.5%。因此,辣木叶具有更高的营养价值,更适合作为生长猪的蛋白质饲料原料。
关键词: 辣木    消化能    代谢能    氨基酸标准回肠消化率    生长猪    
Nutritional Value Evaluation of Moringa oleifera Lam. in Growing Pigs
PANG Jiaman1 , HAN Dandan1 , TAN Suzhen2 , YANG Fuyu3 , ZHAO Yingtang2 , ZHANG Shuai1 , LIU Ling1 , ZANG Jianjun1 , WANG Junjun1     
1. State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
2. Guizhou Mulada Kangyang Technology Company Limited, Qinglong 561401, China;
3. College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
Abstract: This study was conducted to determine the digestible energy (DE), metabolizable energy (ME) and standardized ileal digestibility (SID) of amino acids in Moringa leaf and Moringa twig in growing pigs, and aimed to evaluate the nutritional value of Moringa oleifera Lam. in growing pigs. A total of 24 crossbred (Duroc×Landrace×Large White) barrows of (39.80±1.06) kg fitted with a T-cannula at the distal ileum were divided into 4 groups with 6 replicates per group. Pigs in the 4 groups were fed the N-free diet, corn-soybean type basal diet, Moringa leaf diet and Moringa twig diet, respectively. The DE and ME of Moringa leaf and Moringa twig were determined by a 7-day diet adaptation and a 4-day digestion and metabolism experiment with all feces and urine collection. After the digestion and metabolism experiment, the ileal digesta was collected for 2 days to determine the apparent ileal digestibility and standardized ileal digestibility of amino acids. The results showed that, compared with Moringa twig, Moringa leaf contained higher nutrient content, especially in crude protein, ether extract and calcium, with contents of 26.29%, 6.25% and 2.70%, respectively. The DE, ME and apparent digestibility of gross energy of Moringa leaf were 9.35, 8.24 MJ/kg and 49.26%, respectively, which were significantly higher than those of Moringa twig (7.51, 6.03 MJ/kg and 40.81%, respectively) (P < 0.05). Similarly, the standardized ileal digestibility of total essential amino acids, total non-essential amino acids and crude protein of Moringa leaf were 42.05%, 42.59% and 49.03%, respectively, which were significantly higher than those of Moringa twig (35.13%, 37.31% and 40.15%, respectively) (P < 0.05). In conclusion, The DE, ME and standardized ileal digestibility of total essential amino acids of Moringa leaf are 9.35, 8.24 MJ/kg and 42.05%, respectively, while DE, ME and standardized ileal digestibility of total essential amino acids of Moringa twig were 80.3%, 73.3% and 83.5% of those of Moringa oleifera, respectively. Therefore, compared with Moringa twig, Moringa leaf has higher nutritional values and is more suitable as a protein feed source for growing pigs.
Key words: Moringa oleifera Lam.    digestible energy    metabolizable energy    standardized ileal digestibility of amino acids    growing pigs    

畜牧业快速发展使得我国饲料资源短缺,尤其是蛋白质饲料资源的短缺制约着我国畜牧业的生产,同时出现了人畜争粮的现象。因此,开发非常规原料成为缓解饲料资源短缺的重要手段之一。辣木(Moringa oleifera Lam.)为辣木科(Moringaceae)辣木属(Moringa)多年生植物,起源于印度,现广泛种植亚洲、非洲等热带地区[1],在我国主要种植地区有云南、福建、广东等地。辣木叶不仅含有丰富的维生素和矿质元素[2-4],还有较高的蛋白质和丰富的氨基酸,因而具有作为蛋白质饲料原料的潜力,弥补蛋白质饲料原料的不足[3, 5-7]。研究发现,添加5%左右的辣木叶粉能够提高生长猪和育肥猪的生长性能,还能改善猪肉品质[8-11]。另外,辣木中的黄酮含量高达4%~7%[12-13],且有很好的抗氧化功能[13-14],添加辣木叶或提取物增强了育肥猪、蛋鸡和肉鸡的抗氧化能力,降低死淘率[11, 15-17]。目前,对辣木的营养价值评定还未见报道。因此,对辣木的营养价值评定有助于更好地利用辣木资源。本试验旨在研究辣木不同部位在生长猪中的营养价值评定,为辣木的合理利用提供理论依据。

1 材料与方法 1.1 试验材料

辣木叶和辣木枝由贵州某生物科技有限公司提供,辣木叶和辣木枝采用65 ℃烘干的方式获得,其营养成分见表 1

表 1 辣木叶和辣木枝营养成分(干物质基础) Table 1 Nutrient composition of Moringa leaf and Moringa twig (DM basis) 
1.2 试验设计和饲养管理

选择24头回肠末端安装有T型瘘管体重为(39.80±1.06) kg的“杜×长×大”生长去势公猪,随机分为4个组,分别饲喂无氮饲粮、基础饲粮、辣木叶饲粮和辣木枝饲粮,每个组6头猪。试验期预饲7 d后,进行4 d消化代谢试验,收集全部粪尿。消化代谢试验结束后继续2 d收集回肠食糜。按照体重的4%进行饲喂,试验期间每天饲喂2次,于08:00和15:00投喂,自由饮水,猪舍温度维持在22 ℃。

1.3 试验饲粮

饲粮参照NRC(2012)20~50 kg生长猪营养需要配制。无氮饲粮主要由玉米淀粉配制,基础饲粮为玉米-豆粕型,试验饲粮替代基础饲粮中15.5%的玉米和豆粕,添加0.4%三氧化二铬(Cr2O3)作为外源指示剂。饲粮组成及营养水平见表 2

表 2 饲粮组成及营养水平(饲喂基础) Table 2 Composition and nutrient levels of diets (as-fed basis) 
1.4 样品收集及处理 1.4.1 粪样和尿样的收集及处理

准确收集整个消化代谢试验期4 d所排出的粪尿,粪样按照全收粪法进行,随排随收,将样品收集后放入密封袋,-20 ℃保存,整个试验期结束后将样品充分混匀,加入6 mol/L盐酸(HCl,每100 g鲜粪加入5 mL)固氮,65 ℃烘箱中烘干至恒重,粉碎过40目筛,回潮24 h制成风干样,保存,待测。每天向收集尿样中加入5%、6 mol/L HCl,充分混匀再按1/20取样,放入-20 ℃冰箱中保存备用,试验结束后将收集的尿样解冻并充分混匀,装入50 mL离心管,-20 ℃保存待检。取5 mL尿样滴加在定量滤纸上在65 ℃干燥8 h用于能量测定[18]

1.4.2 食糜的收集及处理

食糜收集时间为08:00—18:00,使用橡胶袋固定瘘管末端,连续收集10 h,每次收集的食糜样品立即置于-20 ℃冰箱中保存。试验期结束后,取出食糜解冻,将每头猪的食糜样品混合均匀,分别取500 g样品在冻干机中冻干,室温下回潮24 h,制成风干样,过40目筛。经超微粉碎机粉碎后,测定Cr2O3含量[18]

1.5 测定指标及方法 1.5.1 测定指标

干物质含量采用烘箱干燥法测定;粗脂肪含量采用索氏提取法测定;粗蛋白质含量采用凯氏定氮法测定;钙、总磷和粗灰分含量参照AOAC(2006)方法测定;酸性洗涤纤维和中性洗涤纤维含量采用ANKOM-200纤维分析仪测定;能量采用PARR-1281氧弹氏能量测定仪测定。食糜氨基酸含量:食糜在6 mol/L HCl 110 ℃水解24 h,使用氨基酸自动分析仪(日立L-8900,日本)测定。含硫氨基酸(蛋氨酸和半胱氨酸)含量:在0 ℃下过氧乙酸氧化16 h,再经6 mol/L HCl 110 ℃水解24 h,使用氨基酸自动分析仪(日立L-8900,日本)测定。色氨酸含量:经4 mol/L氢氧化锂110 ℃水解后,使用高效液相色谱(安捷伦-1200,美国)测定。铬含量参照GB/T 13088—2006方法,使用原子吸收光谱仪(日立Z-2000,日本)测定[18-19]

1.5.2 待测养分消化率[18, 20]

饲粮消化能和代谢能计算公式如下:

待测原料能值使用套算法,计算公式如下:

式中:X为待测原料养分占混合饲粮该养分比例(%),能值可为消化能或代谢能。

氨基酸标准回肠消化率计算公式如下:

饲粮及原料养分表观消化率计算公式如下:

式中:X为待测原料养分占混合饲粮该养分比例(%)。

1.6 数据统计

数据采用SAS 8.1进行t检验,P < 0.05为差异显著,0.05≤P < 0.10为有显著差异趋势,结果用“平均值±标准误”表示。

2 结果 2.1 辣木叶和辣木枝营养成分

辣木叶和辣木枝营养成分见表 1,辣木叶中含有丰富的钙,钙含量高达2.70%,高于辣木枝。相似的是,辣木叶粗蛋白质含量高达26.29%,高于辣木枝。另外,辣木叶还含有较高含量的粗脂肪和粗灰分,但辣木枝的中性洗涤纤维和酸性洗涤纤维含量高于辣木叶。辣木叶必需氨基酸中精氨酸、赖氨酸、苯丙氨酸和苏氨酸含量较高,含量分别为1.38%、1.42%、1.47%和1.10%,支链氨基酸含量也较高,其中异亮氨酸含量为1.12%、亮氨酸含量为1.98%、缬氨酸含量为1.41%;辣木叶非必需氨基酸中天冬氨酸和谷氨酸含量最高,分别为2.72%和3.47%。辣木枝也有相似的结果,但含量均低于辣木叶。因此,辣木叶更适合作为蛋白质饲料原料。

2.2 辣木叶和辣木枝营养成分有效能值

表 3可知,辣木叶的消化能、代谢能和总能表观消化率分别为9.35、8.24 MJ/kg和49.26%,均显著高于辣木枝(P < 0.05)。

表 3 辣木叶和辣木枝有效能值及总能表观消化率(干物质基础) Table 3 Effective energy value and apparent digestibility of gross energy in Moringa leaf and Moringa twig (DM basis)
2.3 辣木叶和辣木枝氨基酸表观回肠消化率和标准回肠消化率

表 4可知,辣木叶粗蛋白质表观回肠消化率和标准回肠消化率显著高于辣木枝(P < 0.05)。辣木叶中的必需氨基酸异亮氨酸、赖氨酸、蛋氨酸、苯丙氨酸、色氨酸和缬氨酸表观回肠消化率和标准回肠消化率显著高于辣木枝(P < 0.05),组氨酸表观回肠消化率和标准回肠消化率显著低于辣木枝(P < 0.05),亮氨酸表观回肠消化率和标准回肠消化率有高于辣木枝的趋势(0.05≤P < 0.10),而精氨酸和苏氨酸表观回肠消化率和标准回肠消化率与辣木枝相比差异不显著(P>0.05);辣木叶中的非必需氨基酸天冬氨酸、半胱氨酸和丝氨酸表观回肠消化率和标准回肠消化率显著高于辣木枝(P < 0.05),丙氨酸和酪氨酸表观回肠消化率和标准回肠消化率显著低于辣木枝(P < 0.05),而谷氨酸表观回肠消化率和标准回肠消化率与辣木枝相比差异不显著(P>0.05)。辣木叶中的总必需氨基酸和总非必需氨基酸表观回肠消化率和标准回肠消化率显著高于辣木枝(P < 0.05)。

表 4 辣木叶和辣木枝氨基酸表观回肠消化率和标准回肠消化率(干物质基础) Table 4 Apparent ileal digestibility and standardized ileal digestibility of amino acids in Moringa leaf and Moringa twig (DM basis) 
3 讨论

目前,我国传统蛋白质饲料资源短缺,已经成为制约畜牧业发展的重要因素,因此开发新型的蛋白质饲料资源是动物营养研究的重要方向之一。辣木是一种热带、亚热带作物,在我国的云南、海南、广东、四川、福建和贵州等省份都有分布[1]。辣木生长迅速,含有丰富的营养物质,辣木叶的蛋白质含量为27%左右,可以作为一种新型的蛋白质资源。本试验通过测定辣木叶和辣木枝中的营养成分,结果表明辣木叶粗蛋白质、氨基酸、粗脂肪、钙、磷含量和总能均高于辣木枝,但辣木叶中性洗涤纤维和酸性洗涤纤维含量低于辣木枝,因此辣木叶更适合作为猪的蛋白质饲料[2]。与辣木叶相比,辣木枝含有较高的粗纤维,但研究发现辣木枝在肉牛瘤胃的有效降解率与羊草相似[21],因而对于反刍动物是很好的饲料资源。本试验测定的辣木叶氨基酸和粗蛋白质的含量与周丹蓉等[7]测定的辣木老叶中的含量接近,而辣木枝的营养成分含量与张婷婷等[21]报道的相似,但本试验辣木叶中的赖氨酸含量偏低,且辣木枝营养成分与已有报道存在一定差异,可能是采集时间和采集部位、不同干燥方式以及生长地区造成的[3-4, 7, 22]

目前,辣木叶和辣木枝在生长猪上的营养价值评定还未见报道,本试验测定了生长猪阶段辣木叶和辣木枝的有效能值。辣木叶的消化能和代谢能分别为9.35和8.24 MJ/kg,陆唯[17]在蛋鸡中测得的辣木叶表观代谢能为8.51 MJ/kg,本试验与该结果相似。辣木枝的消化能和代谢能分别为8.24和6.03 MJ/kg,均显著低于辣木叶,这可能是辣木枝中纤维含量高造成的,有研究表明,纤维含量增加会降低饲粮的消化能[23-24]。本试验结果发现,辣木叶和辣木枝的消化能较低,一方面与原料中含有较高的纤维有关[25];另一方面,饲粮中的抗营养因子能够降低原料的营养物质的消化率[26]。辣木叶和辣木枝中还含有许多的抗营养因子,如皂苷、酚类、植酸和单宁等[25],这可能是降低辣木叶和辣木枝有效能值的另一原因。

本试验中,辣木叶中组氨酸、丙氨酸和酪氨酸表观回肠消化率和标准回肠消化率低于辣木枝,但辣木叶氨基酸消化率总体高于辣木枝。饲粮中氨基酸表观回肠消化率和标准回肠消化率的差异与饲粮中的纤维含量和抗营养因子含量有关[26-28]。辣木叶的纤维含量比辣木枝的含量低,这是辣木叶中粗蛋白质和氨基酸消化率总体高于辣木枝的主要原因[23]。但辣木叶和辣木枝氨基酸消化率较低,这还与辣木中的抗营养因子含量有关。辣木中皂苷、酚类、植酸和单宁含量较高,辣木叶中皂苷含量高达8.1%[25],皂苷与蛋白质形成复合物抑制蛋白质的消化,降低蛋白质和氨基酸的消化率[29]。单宁通过降低小肠胰蛋白酶和空肠黏膜的氨基肽酶活性,减少对蛋白质的消化[30-31],此外单宁还能与饲粮中蛋白质相互作用阻碍消化酶的消化作用[26],同时损伤肠道细胞影响氨基酸的吸收[32]。植酸也可以与消化酶如羧肽酶或其消化酶辅助矿质元素因子相互作用对消化酶活性产生负面影响[27],降低对蛋白质和氨基酸的消化。一致的是,Falowo等[2]总结了辣木叶在畜禽最适的添加水平为5%,过高的添加量会降低其生长性能[8]。相似的是,在14~60 kg生长猪阶段5%辣木叶添加量具有最佳的生长性能[9]。Serem等[10]在26~65 kg生长猪阶段添加3%~6%辣木叶粉具有最佳的饲料转化效率。本实验室的研究也发现在生长猪阶段使用辣木叶替代2%~6%豆粕不影响其生长性能,但在4%替代组具有最佳生长性能。以上结果表明过高的辣木叶添加量会影响生长猪的生长性能,这与辣木叶的消化利用率有关,也同本试验测定的有效能值和氨基酸消化率结果相似。

综上所述,在生长猪阶段辣木叶的有效能值和粗蛋白质含量显著高于辣木枝,氨基酸消化率整体高于辣木枝,因此辣木叶更适合作为生长猪阶段的蛋白质饲料原料。

4 结论

本试验测定了辣木叶和辣木枝的有效能值和氨基酸消化率,其中辣木叶的消化能、代谢能和总必需氨基酸标准回肠消化率分别为9.35、8.24 MJ/kg和42.05%,辣木枝的消化能、代谢能和总必需氨基酸标准回肠消化率分别为辣木叶的80.3%、73.3%和83.5%,辣木叶具有更高的有效能值和氨基酸消化率,更适合作为生长猪的蛋白质饲料原料。

参考文献
[1]
黄丽娜, 程世敏, 赵增贤, 等. 我国辣木产业发展的现状与前景[J]. 贵州农业科学, 2016, 44(7): 104-107.
HUANG L N, CHENG S M, ZHAO Z X, et al. Current situation and prospects of Moringa oleifera industry in China[J]. Guizhou Agricultural Sciences, 2016, 44(7): 104-107 (in Chinese). DOI:10.3969/j.issn.1001-3601.2016.07.029
[2]
FALOWO A B, MUKUMBO F E, IDAMOKORO E M, et al. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products:a review[J]. Food Research International, 2018, 106: 317-334. DOI:10.1016/j.foodres.2017.12.079
[3]
高敏霞, 王小安, 叶新福, 等. 不同着生部位辣木叶营养成分差异分析[J]. 南方农业学报, 2017, 48(8): 1488-1492.
GAO M X, WANG X A, YE X F, et al. Variance analysis for nutritional components in Moringa oleifera Lam. leaves picked from different positions of branches[J]. Journal of Southern Agriculture, 2017, 48(8): 1488-1492 (in Chinese). DOI:10.3969/j.issn.2095-1191.2017.08.25
[4]
刘昌芬, 伍英, 龙继明. 不同品种和产地辣木叶片营养成分含量[J]. 热带农业科技, 2003, 26(4): 1-2, 14.
LIU C F, WU Y, LONG J M. Nutrients of drumstick tree leaf of different varieties and producing area[J]. Tropical Agricultural Science & Technology, 2003, 26(4): 1-2, 14 (in Chinese). DOI:10.3969/j.issn.1672-450X.2003.04.001
[5]
段琼芬, 陈思多, 马李一, 等. 开拓辣木饲料产业的可行性和必要性分析[J]. 江苏农业科学, 2009(1): 10-12.
DUAN Q F, CHEN S D, MA L Y, et al. Possibility and necessity of exploiting the Moringa oleifera fodde industry[J]. Jiangsu Agricultural Sciences, 2009(1): 10-12 (in Chinese). DOI:10.3969/j.issn.1002-1302.2009.01.004
[6]
杨东顺, 樊建麟, 邵金良, 等. 辣木不同部位主要营养成分及氨基酸含量比较分析[J]. 山西农业科学, 2015, 43(9): 1110-1115.
YANG D S, FAN J L, SHAO J L, et al. Comparative analysis of nutritional components and amino acid composition of different parts of Moringa oleifera Lam.[J]. Journal of Shanxi Agricultural Sciences, 2015, 43(9): 1110-1115 (in Chinese). DOI:10.3969/j.issn.1002-2481.2015.09.11
[7]
周丹蓉, 王小安, 叶新福, 等. 辣木氨基酸分析与营养评价研究[J]. 热带作物学报, 2017, 38(2): 278-282.
ZHOU D R, WANG X A, YE X F, et al. Analysis and nutritional value evaluation of amino acids in Moringa[J]. Chinese Journal of Tropical Crops, 2017, 38(2): 278-282 (in Chinese). DOI:10.3969/j.issn.1000-2561.2017.02.015
[8]
MUKUMBO F E, MAPHOSA V, HUGO A, et al. Effect of Moringa oleifera leaf meal on finisher pig growth performance, meat quality, shelf life and fatty acid composition of pork[J]. South African Journal of Animal Science, 2014, 44(4): 388-400.
[9]
ODURO-OWUSU A D, KAGYA-AGYEMANG J K, ANNOR S Y, et al. Growth performance, carcass characteristics and economic efficiency of using graded levels of Moringa leaf meal in feeding weaner pigs[J]. American Journal of Experimental Agriculture, 2015, 7(3): 190-196. DOI:10.9734/AJEA/2015/15262
[10]
SEREM J K, WAHOME R G, GAKUYA D W, et al. Growth performance, feed conversion efficiency and blood characteristics of growing pigs fed on different levels of Moringa oleifera leaf meal[J]. Journal of Veterinary Medicine and Animal Health, 2017, 9(11): 327-333.
[11]
张婷婷, 张博, 司丙文, 等. 辣木叶对育肥猪生长性能、屠宰性能、抗氧化功能和肉品质的影响[J]. 动物营养学报, 2018, 30(1): 255-261.
ZHANG T T, ZHANG B, SI B W, et al. Effects of Moringa leaf on growth performance, slaughter performance, antioxidant function and meat quality of finishing pigs[J]. Chinese Journal of Animal Nutrition, 2018, 30(1): 255-261 (in Chinese). DOI:10.3969/j.issn.1006-267x.2018.01.031
[12]
PAKADE V, CUKROWSKA E, CHIMUKA L. Comparison of antioxidant activity of Moringa oleifera and selected vegetables in South Africa[J]. South African Journal of Science, 2013, 109(3/4): 1-5.
[13]
岳秀洁, 李超, 扶雄. 超声提取辣木叶黄酮优化及其抗氧化活性[J]. 食品工业科技, 2016, 37(1): 226-231.
YUE X J, LI C, FU X. Optimization of ultrasonic extraction of flavonoids from Moringa stenopetala leaves and their antioxidant activities[J]. Science and Technology of Food Industry, 2016, 37(1): 226-231 (in Chinese).
[14]
LUQMAN S, SRIVASTAVA S, KUMAR R, et al. Experimental assessment of Moringa oleifera leaf and fruit for its antistress, antioxidant, and scavenging potential using in vitro and in vivo assays[J]. Evidence-based Complementary and Alternative Medicine, 2012, 2012(4): 519084.
[15]
刘娇, 常文环, 陈志敏, 等. 日粮中添加辣木提取物对AA肉鸡生产性能、屠宰性能、肉品质及血清生化指标的影响[J]. 中国畜牧兽医, 2019, 46(2): 414-423.
LIU J, CHANG W H, CHEN Z M, et al. Effect of Moringa oleifera Lam. extract on production performance, slaughter performance, meat quality and serum biochemical indexes in AA broilers[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(2): 414-423 (in Chinese).
[16]
刘娇, 常文环, 陈志敏, 等. 爱拔益加肉鸡对饲粮中添加的辣木提取物的耐受性评价[J]. 动物营养学报, 2019, 31(2): 839-849.
LIU J, CHANG W H, CHEN Z M, et al. Tolerance of Arbor Acres broilers to Moringa oleifera Lam. extract in Diet[J]. Chinese Journal of Animal Nutrition, 2019, 31(2): 839-849 (in Chinese). DOI:10.3969/j.issn.1006-267x.2019.02.040
[17]
陆唯.辣木叶对产蛋鸡生产性能、蛋品质和抗氧化性能的影响[D].硕士学位论文.北京: 中国农业科学院, 2017.
LU W.Effects of dietary supplementation of Moringa oleifera leaf on laying performance, egg quality and antioxidant capacity of laying hens[D]. Master's Thesis.Beijing: Chinese Academy of Agricultural Sciences, 2017.(in Chinese)
[18]
HUANG B B, HUANG C F, LYU Z Q, et al. Available energy and amino acid digestibility of defatted rice bran fed to growing pigs[J]. Journal of Animal Science, 2018, 96(8): 3138-3150.
[19]
付敏.菜籽饼混菌固态发酵工艺及发酵产品在生长猪上的营养价值评定[D].硕士学位论文.雅安: 四川农业大学, 2013.
FU M.Solid-state fermentation of rapeseed cake with multi-strains and nutritional evaluation of fermented rapeseed cake in growing-pigs[D]. Master's Thesis.Ya'an: Sichuan Agricultural University, 2013.(in Chinese)
[20]
赵明明.肉用绵羊常用粗饲料原料代谢能的预测模型研究[D].硕士学位论文.乌鲁木齐: 新疆农业大学, 2016.
ZHAO M M.Prediction models of the metabolizable energy content of roughages commonly fed to mutton sheep[D]. Master's Thesis.Urumchi: Xinjiang Agricultural University, 2016.(in Chinese)
[21]
张婷婷, 张博, 李媛, 等. 辣木在肉牛瘤胃中的降解特性研究[J]. 粮食与饲料工业, 2017(8): 43-48.
ZHANG T T, ZHANG B, LI Y, et al. Ruminal degrability characterictics of Moringa in the beef cattle[J]. Cereal & Feed Industry, 2017(8): 43-48 (in Chinese).
[22]
郭刚军, 胡小静, 徐荣, 等. 干燥方式对辣木叶营养、功能成分及氨基酸组成的影响[J]. 食品科学, 2018, 39(11): 39-45.
GUO G J, HU X J, XU R, et al. Effects of different drying methods on nutritional and functional components and amino acid composition of Moringa oleifera leaves[J]. Food Science, 2018, 39(11): 39-45 (in Chinese). DOI:10.7506/spkx1002-6630-201811007
[23]
NOBLET J, LE GOFF G. Effect of dietary fibre on the energy value of feeds for pigs[J]. Animal Feed Science and Technology, 2001, 90(1/2): 35-52.
[24]
WENK C. The role of dietary fibre in the digestive physiology of the pig[J]. Animal Feed Science and Technology, 2001, 90(1/2): 21-33.
[25]
MAKKAR H P S, BECKER K. Nutrients and antiquality factors in different morphological parts of the Moringa oleifera tree[J]. The Journal of Agricultural Science, 1997, 128(3): 311-322. DOI:10.1017/S0021859697004292
[26]
GILANI G S, COCKELL K A, SEPEHR E. Effects of antinutritional factors on protein digestibility and amino acid availability in foods[J]. Journal of AOAC International, 2005, 88(3): 967-987. DOI:10.1093/jaoac/88.3.967
[27]
GILANI G S, XIAO C W, COCKELL K A. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality[J]. British Journal of Nutrition, 2012, 108(Suppl.2): S315-S332.
[28]
SOUFFRANT W B. Effect of dietary fibre on ileal digestibility and endogenous nitrogen losses in the pig[J]. Animal Feed Science and Technology, 2001, 90(1/2): 93-102.
[29]
FRANCIS G, KEREM Z, MAKKAR H P S, et al. The biological action of saponins in animal systems:a review[J]. British Journal of Nutrition, 2002, 88(6): 587-602. DOI:10.1079/BJN2002725
[30]
JANSMAN A, ENTING H, VERSTEGEN M W A, et al. Effect of condensed tannins in hulls of faba beans (Vicia faba L.) on the activities of trypsin (EC 2.4.21.4) and chymotrypsin (EC 2.4.21.1) in digesta collected from the small intestine of pigs[J]. British Journal of Nutrition, 1994, 71(4): 627-641. DOI:10.1079/BJN19940168
[31]
VAN LEEUMEN P, JANSAM A J M, WIEBENGA J, et al. Dietary effects of faba-bean (Vicia faba L.) tannins on the morphology and function of the small-intestinal mucosa of weaned pigs[J]. British Journal of Nutrition, 1995, 73(1): 31-39. DOI:10.1079/BJN19950006
[32]
MAKKAR H P S. Antinutritional factors in foods for livestock[J]. BSAP Occasional Publication, 1993, 16: 69-85. DOI:10.1017/S0263967X00031086