动物营养学报    2021, Vol. 33 Issue (1): 227-235    PDF    
不同能量和蛋白质水平饲粮交替饲喂对妊娠母猪繁殖性能、血浆激素含量及抗氧化指标的影响
张正敏 , 芦春莲 , 李尚 , 曹洪战 , 赵玉萍 , 李佳     
河北农业大学动物科技学院, 保定 071001
摘要: 本试验旨在探究不同能量和蛋白质水平饲粮交替饲喂对妊娠母猪繁殖性能、血浆激素含量及抗氧化指标的影响。试验分为2个阶段,配制6种试验饲粮,妊娠前期试验饲粮:低能量低蛋白质水平饲粮(12.54 MJ/kg、15.55%)、中能量中蛋白质水平饲粮(13.27 MJ/kg、16.47%)、高能量高蛋白质水平饲粮(13.44 MJ/kg、17.86%);妊娠后期试验饲粮:低能量低蛋白质水平饲粮(12.73 MJ/kg、15.96%)、中能量中蛋白质水平饲粮(13.27 MJ/kg、16.47%)、高能量高蛋白质水平饲粮(13.84 MJ/kg、18.13%)。选取2胎、体重相近的加系大白母猪48头,随机分为对照组(早上饲喂中能量中蛋白质水平饲粮,下午饲喂中能量中蛋白质水平饲粮)、试验Ⅰ组(早上饲喂低能量低蛋白质水平饲粮,下午饲喂高能量高蛋白质水平饲粮)、试验Ⅱ组(早上饲喂高能量高蛋白质水平饲粮,下午饲喂低能量低蛋白质水平饲粮),每组16个重复,每个重复1头母猪。每天饲喂2次。妊娠前期中能量中蛋白质水平饲粮每次饲喂1.125 kg,低能量低蛋白质水平饲粮每次饲喂1.150 kg,高能量高蛋白质水平饲粮每次饲喂1.140 kg;妊娠后期中能量中蛋白质水平饲粮每次饲喂1.805 kg,低能量低蛋白质水平饲粮每次饲喂1.800 kg,高能量高蛋白质水平饲粮每次饲喂1.800 kg。试验期114 d。结果表明:1)与对照组相比,试验Ⅰ组妊娠36~90 d的平均日增重(ADG)显著增加(P < 0.05);试验Ⅰ组总产仔数高于对照组(P>0.05);试验Ⅰ组活仔数高于对照组(P>0.05)。2)与对照组相比,试验Ⅰ组妊娠35 d的血浆过氧化氢酶(CAT)活性显著升高(P < 0.05),试验Ⅰ组妊娠80 d的血浆CAT活性极显著升高(P < 0.01),且试验Ⅰ组较试验Ⅱ组显著升高(P < 0.05);与对照组相比,试验Ⅱ组妊娠80 d的血浆丙二醛(MDA)含量极显著降低(P < 0.01),试验Ⅰ组妊娠35 d的血浆MDA含量显著高于试验Ⅱ组(P < 0.05)。3)与对照组相比,试验Ⅰ组妊娠80 d的血浆瘦素(LEP)含量显著升高(P < 0.05);试验组妊娠105 d的血浆胰岛素样生长因子-Ⅰ(IGF-Ⅰ)含量极显著低于对照组(P < 0.01)。综上所述,与早、晚饲喂相同营养水平饲粮相比,早、晚交替饲喂不同能量和蛋白质水平饲粮可提高妊娠母猪的繁殖性能,影响血浆中激素含量和抗氧化指标。
关键词: 能量    蛋白质    交替饲喂    母猪    繁殖性能    生化指标    
Effects of Alternate Feeding of Diets with Different Energy and Protein Levels on Reproductive Performance, Plasma Hormone Contents and Antioxidant Indexes of Pregnant Sows
ZHANG Zhengmin , LU Chunlian , LI Shang , CAO Hongzhan , ZHAO Yuping , LI Jia     
College of Animal Science and Technology, Agricultural University of Hebei, Baoding 071001, China
Abstract: This study was conducted to analysis the effects of alternating feeding of diets with different energy and protein levels on the reproductive performance, plasma hormone contents and antioxidant indexes of pregnant sows. The experiment was divided into 2 stages, and 6 kinds of test diets were prepared. Diets of pre-gestation period: low energy and low protein level diet (12.54 MJ/kg, 15.55%), medium energy and medium protein level diet (13.27 MJ/kg, 6.47%), high energy and high protein level diet (13.44 MJ/kg, 7.86%); diets of late gestation period: low energy and low protein level diet (12.73 MJ/kg, 15.96%), medium energy and medium protein level diet (13.27 MJ/kg, 16.47%), high energy and high protein level diet (13.84 MJ/kg, 18.13%). Forth-eight Canadian white sows with similar weights and second fetuses were selected and divided into three groups: control group (feeding medium energy and medium protein level diet in the morning, feeding medium energy and medium protein level diet in the afternoon), test group Ⅰ (feeding low energy and protein level diet in the morning, feeding high energy and high protein level diet in the afternoon), test group Ⅱ (feeding high energy and protein level diet in the morning, feeding low energy and low protein level diet in the afternoon), and each group will consisted of 16 replications with 1 sow per replication. In the pre-gestation period, 1.125 kg of medium energy and medium protein level diet was fed, 1.150 kg of low energy and low protein level diet was fed, 1.140 kg of high energy and high protein level diet was fed each time; in the late gestation period, 1.805 kg of medium energy and medium protein level diet was fed, 1.800 kg for low energy and low protein level diet was fed, 1.800 kg of high energy and high protein level diet was fed each time. This experiment lasted for 114 days. The results showed as follows: 1) compared with the control group, the average daily gain (ADG) of test group Ⅰ increased significantly from 36 to 90 d of gestation (P < 0.01). The total litter size of test group Ⅰ was higher than that of control group (P>0.05); the live birth number in test group Ⅰ was higher than that in control group (P>0.05). 2) Compared with the control group, the plasma catalase (CAT) activity in test group Ⅰ increased significantly at 35 d of gestation (P < 0.05), and the plasma CAT activity in the test group Ⅰ had a extremely significance at 80 d of gestation (P < 0.01), and test group Ⅰ was significantly higher than test that of group Ⅱ (P < 0.05); compared with the control group, the plasma malonaldehyde (MDA) content in test group Ⅱ was significantly reduced at 80 d of gestation (P < 0.01). At the 35 d of gestation, the plasma MDA content of test group Ⅰ was significantly higher than that of test group Ⅱ (P < 0.05). 3) Compared with the control group, the plasma leptin (LEP) content was significantly increased at 80 d of gestation in test group Ⅰ (P < 0.05); the plasma insulin like growth factor-Ⅰ (IGF-Ⅰ) content in test groups at 105 d of gestation was significantly lower than that of control group (P < 0.01). In conclusion, compared with the same nutritional level in the morning and evening, the alternate feeding of diets with different energy and protein levels in the morning and evening can improve the reproductive performance of pregnant sows and affect the plasma hormone contents and antioxidant indexes.
Key words: energy    protein    alternate feeding    sow    reproductive performance    biochemical index    

随着动物饲养标准朝着精准化、动态化改进,动物各个生理阶段需要不同饲粮配方,为了达到这个目的需要精确了解动物机体的生物节律。地球上大部分动物的生理节律分为2个部分:一部分是活动期,另一部分是睡眠期。活动期间主要以活动和采食为主,睡眠期间主要以睡眠和禁食为主,活动/采食和睡觉/禁食运行24 h形成昼夜节律[1-2]。哺乳动物机体的体温、血压、激素、机体氧化等都随着白天和黑夜的交替而发生变化,呈现出特有的昼夜节律[3]。生物节律影响机体能量代谢,即1 d采食相同能量,营养代谢受采食时间的影响[4]。Gao等[5]早、晚采用不同钙量交替饲喂母猪,研究表明每天摄入相同钙量,与对照组相比,早高晚低组母猪血清总甘油三酯(TG)和脐带血高密度脂蛋白(HDL)含量显著提高。动物机体的消化代谢是一个十分复杂的动态变化过程。研究表明,小鼠夜晚是活动期,夜晚开始活动时,体内糖原储备较少对碳水化合物的需求增加,早晨活动期结束后,对蛋白质和碳水化合物的摄取多于脂肪,生物节律在睡眠期时营养需求偏向于脂肪的摄取,进入活动期偏向于对糖原的摄取[6-7]

精准饲喂需要精确了解动物机体的生物节律,在适宜的饲粮营养条件下,一定程度上可以提高饲料转化率、改善畜产品品质、提高畜牧生产经济效益。目前,国外关于生物节律对饲粮营养水平的影响在小鼠中研究较为广泛,关于生物节律影响饲粮营养水平在猪上的研究相对较少。因此,本试验拟通过不同能量和蛋白质水平饲粮交替饲喂,研究其对妊娠母猪繁殖性能、血浆激素含量及抗氧化指标的影响,旨在为动态饲喂模式对妊娠母猪繁殖性能的研究积累资料,为精准饲喂提供可靠参考数据。

1 材料与方法 1.1 试验动物与饲养管理

试验猪来自中国内蒙古自治区某种猪场。选取2胎、体重相近的加系大白母猪48头,随机分为3组,每组16个重复,每个重复1头母猪,单栏饲养。猪场采用全进全出式管理模式。母猪采用人工输精,配种2次,完成配种30 d后转入妊娠舍。妊娠第105天转入分娩舍。每天05:30、14:30分别饲喂1次,对照组和试验组每日摄取的能量和蛋白质水平尽量一致,自由饮水,消毒、卫生防疫和日常管理按照试验猪场日常规范进行操作。

1.2 试验饲粮

饲粮参照NRC(2012)猪营养需要与《猪饲养标准》(NY/T 65—2004)配制。整个妊娠期分为2个阶段:妊娠前期(0~90 d)、妊娠后期(91 d至产仔),共配制6种试验饲粮。妊娠前期试验饲粮:低能量低蛋白质水平饲粮(12.54 MJ/kg、15.55%)、中能量中蛋白质水平饲粮(13.27 MJ/kg、16.47%)、高能量高蛋白质水平饲粮(13.44 MJ/kg、17.86%);妊娠后期试验饲粮:低能量低蛋白质水平饲粮(12.73 MJ/kg、15.96%)、中能量中蛋白质水平饲粮(13.27 MJ/kg、16.47%)、高能量高蛋白质水平饲粮(13.84 MJ/kg、18.13%)。基础饲粮组成及营养水平分别见表 1表 2

表 1 妊娠前期基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of basal diets in early gestation (air-dry basis)  
表 2 妊娠后期基础饲粮组成及营养水平(风干基础) Table 2 Composition and nutrient levels of basal diets in later gestation (air-dry basis)  
1.3 试验设计

对照组早上饲喂中能量中蛋白质水平饲粮,下午饲喂中能量中蛋白质水平饲粮;试验Ⅰ组早上饲喂低能量低蛋白质水平饲粮,下午饲喂高能量高蛋白质水平饲粮;试验Ⅱ组早上饲喂高能量高蛋白质水平饲粮,下午饲喂低能量低蛋白质水平饲粮。妊娠前期中能量中蛋白质水平饲粮每次饲喂1.125 kg,低能量低蛋白质水平饲粮每次饲喂1.150 kg,高能量高蛋白质水平饲粮每次饲喂1.140 kg;妊娠后期中能量中蛋白质水平饲粮每次饲喂1.805 kg,低能量低蛋白质水平饲粮每次饲喂1.800 kg,高能量高蛋白质水平饲粮每次饲喂1.800 kg。试验期114 d。

1.4 指标检测 1.4.1 生长性能和繁殖性能

记录试验母猪妊娠0、25、35、90、105 d的体重,计算平均日增重,同时使用运高背膘仪(Rencourage,Lean-meter)测定背膘厚,每头测3次取平均值, 测定部位为最后1根肋骨向上距离背中线6.5 cm(P2),待仪器读数稳定后记录;母猪分娩当天记录总产仔数、产活仔数、健仔数(>1 kg);产后4 h内记录初生窝重、初生个体重。

1.4.2 血浆激素含量和抗氧化指标

早晨饲喂前采血,于妊娠35、80和105 d,每组选取6头母猪进行前腔静脉采血各2管,分装于放有抗凝剂的乙二胺四乙酸(EDTA)离心管和肝素钠离心管中,室温静置1 h,在3 000 r/min条件下离心10 min,分离上清液,-20 ℃条件下保存,待检测妊娠35、80和105 d的血浆指标。抗氧化指标测定所用试剂盒购自南京建成生物工程研究所,瘦素(LEP)和胰岛素样生长因子-Ⅰ(IGF-Ⅰ)含量测定所用试剂盒购自上海酶联生物科技有限公司。

1.5 统计分析

利用Excel 2007对所有试验数据进行初步整理,应用SPSS 21.0软件分别进行单因素方差分析及Duncan氏法多重比较检验,数据均采用“平均值±标准误”表示,以P<0.05为差异显著判断标准,P<0.01为差异极显著判断标准。

2 结果 2.1 不同能量和蛋白质水平饲粮交替饲喂对妊娠母猪生长性能的影响

表 3所示,试验组与对照组之间背膘厚无显著差异(P>0.05);与试验Ⅰ组相比,对照组妊娠36~90 d平均日增重降低,差异极显著(P<0.01),试验Ⅱ组也显著降低(P<0.05)。

表 3 不同能量和蛋白质水平饲粮交替饲喂对妊娠母猪生长性能的影响 Table 3 Effects of alternate feeding of diets with different energy and protein levels on growth performance of pregnant sows (n=16)
2.2 不同能量和蛋白质水平饲粮交替饲喂对妊娠母猪繁殖性能的影响

表 4所示,与对照组相比,试验Ⅰ组总产仔数提高14.79%(P>0.05),试验Ⅱ组提高4.73%(P>0.05),试验Ⅰ组总产仔数高于试验Ⅱ组9.68%(P>0.05);试验Ⅰ组、试验Ⅱ组产活仔数较对照组分别提高了9.48%和4.74%(P>0.05)。各组间健仔数、初生窝重、初生个体均重无显著差异(P>0.05)。

表 4 不同能量和蛋白质水平饲粮交替饲喂对妊娠母猪繁殖性能的影响 Table 4 Effects of alternate feeding of diets with different energy and protein levels on reproductive performance of pregnant sows (n=16)
2.3 不同能量和蛋白质水平饲粮交替饲喂对妊娠母猪血浆激素含量的影响

表 5所示,与对照组相比,试验Ⅰ组妊娠80 d的血浆LEP含量显著升高(P<0.05);试验组妊娠105 d的血浆IGF-Ⅰ含量极显著低于对照组(P<0.01)。

表 5 不同能量和蛋白质水平饲粮交替饲喂对妊娠母猪血浆激素含量的影响 Table 5 Effects of alternate feeding of diets with different energy and protein levels on plasma hormone contents of pregnant sows (n=6)
2.4 不同能量和蛋白质水平饲粮交替饲喂对妊娠母猪血浆抗氧化指标的影响

表 6所示,与对照组相比,试验Ⅰ组妊娠35 d血浆CAT活性显著升高(P<0.05),试验Ⅰ组妊娠80 d血浆CAT活性极显著升高(P<0.01),且试验Ⅰ组较试验Ⅱ组显著升高(P<0.05);与对照组相比,试验Ⅱ组妊娠80 d血浆MDA含量极显著降低(P<0.01), 试验Ⅰ组妊娠35 d血浆MDA含量极显著高于试验Ⅱ组(P<0.01)。

表 6 不同能量和蛋白质水平饲粮交替饲喂对妊娠母猪血浆抗氧化指标的影响 Table 6 Effects of alternate feeding of diets with different energy and protein levels on plasma antioxidant indexes of pregnant sows (n=6)
3 讨论 3.1 不同能量和蛋白质水平饲粮交替饲喂对妊娠母猪生长和繁殖性能的影响

研究表明,昼夜节律在调节代谢、维持能量平衡和体重方面起着重要作用,且肠道微生物对机体消化代谢与生物钟之间相互作用、相互影响[8-9]。在本试验中,与对照组相比,试验Ⅰ组妊娠36~90 d的平均日增重显著提高,一方面因为猪肠道微生物菌群呈现生物节律性的消化和吸收,刺激肠道的消化和吸收,影响代谢平衡[10-11];另一方面因为猪早、中、晚对营养物质需求不同,使机体对营养物质的消化吸收有差异,肠道对营养物质的吸收也呈现生物节律,碳水化合物和蛋白质在小肠水解,水解产物通过内膜转运蛋白吸收,而这些转运蛋白的基因表达受生物钟基因调控,葡萄糖转运蛋白1(GLUT1)、葡萄糖转运蛋白2(GLUT2)、葡萄糖转运蛋白5(GLUT5)在夜间显示峰值的表达[12-13]。在机体脂肪消化代谢的生物节律调控下,试验Ⅰ组早上低能量低蛋白质水平饲粮,下午高能量高蛋白质水平饲粮更符合机体脂肪和蛋白质的沉积。本试验动态饲喂模式较常规饲喂模式效果更优,可能是统一标准的饲粮会造成营养吸收利用不充分,营养物质之间的相互转化而造成的蛋白质和能量物质的额外消耗增加,使机体能量、蛋白质、脂肪储存减少[14-15]。在本试验中, 与对照组相比,试验Ⅰ组、试验Ⅱ组的健仔数分别提高1.06、0.94头;且试验Ⅰ组总产仔数高于对照组,产活仔数高于对照组1.38头。这说明在改善母猪繁殖性能方面,试验Ⅰ组效果相对更好。这可能是因为生物节律调节IGF-Ⅰ和LEP的分泌,刺激母猪胎盘发育,为胎儿生长提供了优良场所[16],试验组妊娠母猪在动态饲喂下对营养物质的吸收增加,胎盘对母体摄取升高,胎儿获取的营养物质充足,健仔数升高[17]。研究发现,生物钟基因(CLOCK)突变导致小鼠在正常光照下比正常野生小鼠生育能力略有下降,生物节律对调节生育能力有重要作用[18]

3.2 不同能量和蛋白质水平饲粮交替饲喂对妊娠母猪血浆激素含量及抗氧化指标的影响

激素分泌的日常节律受昼夜节律系统控制,受下丘脑视交叉上核(SCN)的主时钟以及大脑和周围器官的许多辅助时钟调节,下丘脑调控了激素的释放[19]。IGF-Ⅰ是机体调控细胞生长、卵母细胞成熟、胚胎发育的重要因子[20]。LEP作为一种多效激素,参与机体繁殖性能、维持机体免疫系统的动态平衡[21-22]。IGF-Ⅰ与生物钟之间互作,IGF-Ⅰ可以重置肝脏生物钟;LEP受昼夜节律的调控,夜间分泌比白天多[23]。在本试验中,试验组妊娠105 d的血浆IGF-Ⅰ含量低于对照组。试验Ⅰ组妊娠80 d的血浆LEP含量高于对照组。推测原因可能是IGF-Ⅰ重置肝脏生物钟,肝脏生物钟调节了胰岛素分泌,增加了糖原的去路,机体通过糖原转化为脂质储存起来,试验组体重增加。试验Ⅰ组妊娠80 d的血浆LEP含量高于对照组,这说明动态饲喂受生物节律的调节,LEP夜间分泌高于白天。此外,由于1 d中各时间段营养变化也会在一定程度上影响外周节律的表达,进而通过时钟系统影响机体激素的分泌,具体原因还有待进一步研究。

在本试验中,试验Ⅰ组妊娠35和80 d的血浆CAT含量显著高于对照组和试验Ⅱ组,试验Ⅱ组妊娠35和80 d的血浆MDA含量均低于试验Ⅰ组,推测可能是交替饲喂模式影响了妊娠母猪抗氧化能力,一方面是因为机体产生的抗氧化剂和酶的表达可以通过昼夜节律调控[24-25], 已知由活性氧(ROS)和抗氧化剂产生的氧化还原状态扰动会影响许多基因的表达和信号转导途径,琥珀酸氧化辅因子(NAD)、琥珀酸还原辅因子(NADP)都调节视交叉上核(SCN)中的时钟基因活性,并被其诱导[26];另一方面可能是因为试验Ⅱ组采血前1天下午饲喂低能量低蛋白质水平饲粮,机体脂质发生过氧化反应较少,血浆MDA含量随之降低,CAT活性升高,减轻ROS物质对机体细胞的损伤[27]。研究发现,小鼠在连续黑暗环境下,氧化应激低于对照组,昼夜节律刺激氧化应激[28]

4 结论

本试验结果表明,不同能量和蛋白质水平饲粮交替饲喂可以有效提高妊娠母猪的生长及繁殖性能,影响部分血液生理生化指标的水平,且早上饲喂低能量低蛋白质水平饲粮、下午饲喂高能量高蛋白质水平饲粮的模式相对更优。

参考文献
[1]
STEPHAN F K, ZUCKER I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1972, 69(6): 1583-1586. DOI:10.1073/pnas.69.6.1583
[2]
PEEK C B, RAMSEY K M, MARCHEVA B, et al. Nutrient sensing and the circadian clock[J]. Trends in Endocrinology & Metabolism, 2012, 23(7): 312-318.
[3]
DORAN D M, KULKARNI-DATAR K, COOL D R, et al. Hypoxia activates constitutive luciferase reporter constructs[J]. Biochimie, 2011, 93(2): 361-368. DOI:10.1016/j.biochi.2010.10.009
[4]
DIBNER C, SCHIBLER U. Circadian timing of metabolism in animal models and humans[J]. Journal of Internal Medicine, 2015, 277(5): 513-527. DOI:10.1111/joim.12347
[5]
GAO L M, XIE C Y, ZHANG T Y, et al. Maternal supplementation with calcium varying with feeding time daily during late pregnancy affects lipid metabolism and transport of placenta in pigs[J]. Biochemical and Biophysical Research Communications, 2018, 505(2): 624-630. DOI:10.1016/j.bbrc.2018.09.143
[6]
LAX P, LARUE-ACHAGIOTIS C, MARTEL P, et al. Repeated short-fasting modifies the macronutrient self-selection pattern in rats[J]. Physiology & Behavior, 1998, 65(1): 69-76.
[7]
LEIBOWITZ S F. Neurochemical-neuroendocrine systems in the brain controlling macronutrient intake and metabolism[J]. Trends in Neurosciences, 1992, 15(12): 491-497. DOI:10.1016/0166-2236(92)90101-D
[8]
SHIMIZU H, HANZAWA F, KIM D, et al. Delayed first active-phase meal, a breakfast-skipping model, led to increased body weight and shifted the circadian oscillation of the hepatic clock and lipid metabolism-related genes in rats fed a high-fat diet[J]. PLoS One, 2018, 13(10): e0206669. DOI:10.1371/journal.pone.0206669
[9]
WU X, XIE C Y, LONG C M, et al. Effects of a daily three-meal pattern with different dietary protein contents on pig growth performance, carcass and muscle quality traits[J]. Journal of the Science of Food and Agriculture, 2018, 98(1): 415-421. DOI:10.1002/jsfa.8467
[10]
THAISS C A, ZEEVI D, LEVY M, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis[J]. Cell, 2014, 159(3): 514-529. DOI:10.1016/j.cell.2014.09.048
[11]
DOLATSHAD H, CAMPBELL E A, O'HARA L, et al. Developmental and reproductive performance in circadian mutant mice[J]. Human Reproduction, 2006, 21(1): 68-79. DOI:10.1093/humrep/dei313
[12]
SAITO H, TERADA T, SHIMAKURA J, et al. Regulatory mechanism governing the diurnal rhythm of intestinal H+/peptide cotransporter 1 (PEPT1)[J]. American Journal of Physiology:Gastrointestinal and Liver Physiology, 2008, 295(2): G395-G402. DOI:10.1152/ajpgi.90317.2008
[13]
陈丽丽, 梁世岳, 陈龙宾, 等. 日动态饲喂净能和有效赖氨酸饲粮对生长猪营养消化率及血液指标的影响[J]. 中国饲料, 2019(23): 82-87.
CHEN L L, LIANG S Y, CHEN L B, et al. Effect of dynamic diets with different NE and SID-Lys levels on nutrient digestibility and biochemistry indexes of growing pigs[J]. China Food, 2019(23): 82-87 (in Chinese).
[14]
柴捷, 张亮, 朱丹, 等. 加系初产母猪妊娠始末背膘厚度对其当胎繁殖性能的影响[J]. 中国畜牧杂志, 2019, 55(12): 140-142, 166.
CHAI J, ZHANG L, ZHU D, et al. Effect of backfat thickness at the beginning and end of pregnancy of Canadian primiparous sows on their reproductive performance[J]. Chinese Journal of Animal Science, 2019, 55(12): 140-142, 166 (in Chinese).
[15]
谢春艳, 黎俊, 吴信, 等. 饲粮粗蛋白质水平日变化对生长猪生长性能和血液生理生化指标的影响[J]. 动物营养学报, 2014, 26(7): 1753-1759.
XIE C Y, LI J, WU X, et al. Effects of daily changes of dietary crude protein levels on growth performance and blood physiological and biochemical indexes of growing pigs[J]. Chinese Journal of Animal Nutrition, 2014, 26(7): 1753-1759 (in Chinese). DOI:10.3969/j.issn.1006-267x.2014.07.006
[16]
O'NEIL D S, STEWART C J, CHU D M, et al. Conditional postnatal deletion of the neonatal murine hepatic circadian gene, Npas2, alters the gut microbiome following restricted feeding[J]. American Journal of Obstetrics and Gynecology, 2017, 217(S2): 218e.
[17]
SABEN J, ZHONG Y, GOMEZ-ACEVEDO H, et al. Early growth response protein-1 mediates lipotoxicity-associated placental inflammation:role in maternal obesity[J]. American Journal of Physiology-Endocrinology and Metabolism, 2013, 305(1): E1-E14. DOI:10.1152/ajpendo.00076.2013
[18]
钟翔, 王恬.生物钟与营养生理代谢研究进展[C]//中国畜牧兽医学会动物营养学分会第十届全国代表大会暨十二届学术研讨会论文集.武汉: 中国畜牧兽医学会, 2016.
ZHONG X, WANG T.Research progress of biological clock and nutrient physiological metabolism[C]//Proceedings of the 10th National Congress of the Animal Nutrition Branch of the Chinese Society of Animal Husbandry and Veterinary Medicine and the 12th Academic Symposium.Wuhan: Chinese Society of Animal Husbandry and Veterinary Medicine, 2016.(in Chinese)
[19]
JHA P K, CHALLET E, KALSBEEK A. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals[J]. Molecular and Cellular Endocrinology, 2015, 418: 74-88. DOI:10.1016/j.mce.2015.01.024
[20]
CERVERO A, HORCAJADAS J A, DOMÍNGUEZ F, et al. Leptin system in embryo development and implantation:a protein in search of a function[J]. Reproductive Biomedicine Online, 2005, 10(2): 217-223. DOI:10.1016/S1472-6483(10)60943-1
[21]
赵霞. 瘦素能促进胎盘滋养细胞HLA-G表达[J]. 基因组学与应用生物学, 2019, 38(8): 3836-3842.
ZHAO X. Leptin could promote the HLA-G expression in placental trophoblasts[J]. Genomics and Applied Biology, 2019, 38(8): 3386-3842 (in Chinese).
[22]
KOUSTA E, CHRISOULIDOU A, LAWRENCE N, et al. The circadian rhythm of leptin is preserved in patients with hypopituitarism[J]. Growth Hormone & IGF Research, 1998, 8(2): 189.
[23]
CUNDRLE JR I, SUK P, SRAMEK V, et al. Circadian leptin concentration changes in critically ill heart failure patients[J]. Physiological Research, 2018, 67(3): 505-508.
[24]
张琦琦, 李延, 陈代文, 等. 大豆黄酮对妊娠母猪繁殖性能、血清激素含量、抗氧化能力及免疫机能的影响[J]. 动物营养学报, 2019, 31(10): 4710-4716.
ZHANG Q Q, LI Y, CHEN D W, et al. Effect of daidzein on reproductive performance, serum hormone contents, antioxidant capacity and immune function of pregnant sows[J]. Chinese Journal of Animal Nutrition, 2019, 31(10): 4710-4716 (in Chinese).
[25]
QIN F, SHEN T, CAO H, et al. CeO2NPs relieve radiofrequency radiation, improve testosterone synthesis, and clock gene expression in Leydig cells by enhancing antioxidation[J]. International Journal of Nanomedicine, 2019, 14: 4601-4611. DOI:10.2147/IJN.S206561
[26]
CARDONA F. Periodic dip of lipidperoxidation in humans:a redox signal to synchronize peripheral circadian clocks?[J]. Medical Hypotheses, 2004, 63(5): 841-846. DOI:10.1016/j.mehy.2004.03.033
[27]
VERMA A K, SINGH S, RIZVI S I, et al. Redox homeostasis in a rodent model of circadian disruption:effect of melatonin supplementation[J]. General and Comparative Endocrinology, 2019, 280: 97-103. DOI:10.1016/j.ygcen.2019.04.016
[28]
马睿, 潘阳阳, 王萌, 等. 胰岛素样生长因子-1(IGF-1)对小鼠卵丘细胞自噬与胞吞相关因子表达的影响[J]. 西北农业学报, 2019, 29(9): 1394-1402.
MA R, PAN Y Y, WANG M, et al. Effects of insulin-like growth factors IGF-1 on factors expression related to autophagy and endocytosis in mouse cumulus cells[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 29(9): 1394-1402 (in Chinese).