动物营养学报    2021, Vol. 33 Issue (1): 390-396    PDF    
妊娠后期营养限制对蒙古绵羊胎儿生物原胺类神经递质的影响
秦宇龙1 , 马驰1 , 杨欢1 , 訾阳1 , 乔依娜1 , 刘迎春2 , 高峰1     
1. 内蒙古农业大学动物科学学院, 呼和浩特 010018;
2. 内蒙古农业大学生命科学学院, 呼和浩特 010018
摘要: 本试验旨在研究妊娠后期营养限制对蒙古绵羊胎儿生物原胺类神经递质的影响。选择健康、体况相近的蒙古绵羊18只,对其进行同期发情、配种后,从妊娠第90天开始,随机分为3个组:营养限制1组[NG1组,n=6,代谢能(ME)=0.175 MJ/(kg BW0.75·d)]、营养限制2组[NG2组,n=6,ME=0.330 MJ/(kg BW0.75·d)]和对照组[CG组,n=6,ME=0.670 MJ/(kg BW0.75·d)],在妊娠第140天时屠宰,取各组胎儿及其脑组织和血液。结果显示:NG1组胎儿的脑重较CG组显著增高(P < 0.05),并且NG1组胎儿脑中5-羟色胺(5-HT)(P < 0.01)、肾上腺素(EPI)(P < 0.05)含量显著或极显著高于CG组,去甲肾上腺素(NA)的含量极显著低于CG组(P < 0.01)。NG2组胎儿脑中5-HT含量极显著高于CG组(P < 0.01),而NA(P < 0.01)、多巴胺(DA)(P < 0.05)含量显著或极显著低于CG组。另外,NG1组胎儿血浆中5-HT(P < 0.01)、EPI(P < 0.01)、NA(P < 0.05)、DA(P < 0.01)含量显著或极显著低于CG组;NG2组胎儿血浆中5-HT(P < 0.01)、NA(P < 0.01)、DA(P < 0.05)含量显著或极显著低于CG组。由此得出,妊娠后期营养限制使得蒙古绵羊胎儿脑中5-HT、EPI含量升高和NA含量降低,血浆中5-HT、EPI、NA、DA含量降低。
关键词: 蒙古绵羊    妊娠后期    营养限制    宫内生长受限        血液    神经递质    
Effects of Nutritional Restriction during Late Gestation on Biogenic Amine Neurotransmitters of Mongolian Sheep Fetus
QIN Yulong1 , MA Chi1 , YANG Huan1 , ZI Yang1 , QIAO Yina1 , LIU Yingchun2 , GAO Feng1     
1. College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China;
2. College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, China
Abstract: The purpose of this study was to investigate the effects of nutritional restriction during late gestation on biogenic amine neurotransmitters of Mongolian sheep fetus. Eighteen Mongolian sheep with synchronization of estrus and conception were randomly divided into three groups at day 90 of gestation: nutritional restriction group 1 [NG1 group, n=6, metabolizable energy (ME)=0.175 MJ/(kg BW0.75·d)], nutritional restriction group 2 [NG2 group, n=6, metabolizable energy (ME)=0.330 MJ/(kg BW0.75·d)] and control group [CG group, n=6, metabolizable energy (ME)=0.670 MJ/(kg BW0.75·d)].All sheep were slaughtered at 140 days of gestation, and the fetuses and their brain tissues and blood were sampled. The results showed that the fetal brain weight of NG1 group was significantly higher than that of CG group (P < 0.05), and the contents of 5-hydroxytryptamine (5-HT) (P < 0.01) and epinephrine (EPI) (P < 0.05) were significantly or extremely significantly higher than those of CG group, while the content of noradrenaline (NA) was extremely significantly lower than that of CG group (P < 0.01). The content of 5-HT in fetal brain of NG2 group was extremely significantly higher than that of CG group (P < 0.01), while the content of NA (P < 0.01) and dopamine (DA) (P < 0.05) were significantly lower than those of CG group. In addition, the contents of 5-HT (P < 0.01), EPI (P < 0.01), NA (P < 0.05) and DA (P < 0.01) in fetal plasma of NG1 group were significantly or extremely significantly lower than those of CG group; the contents of 5-HT (P < 0.01), NA (P < 0.01) and DA (P < 0.05) in fetal plasma of NG2 group were significantly or extremely significantly lower than those of CG group. In conclusion, nutritional restriction during late gestation makes the contents 5-HT, EPI increasing and the content of NA decreasing in Mongolian sheep fetal brain, as well as makes the contents of 5-HT, EPI, NA and DA decreasing in fetal brain.
Key words: Mongolian sheep    late gestation    nutritional restriction    intrauterine growth restriction    brain    blood    neurotransmitters    

宫内生长受限(IUGR)对胎儿有直接和长期的影响,可导致围产期发病率和死亡率增加、生长衰竭、智力缺陷和成年性疾病风险增加[1]。长期以来,由于IUGR胎儿的脑保护效应,有研究表明IUGR胎儿脑重未受影响,因此大量的研究主要集中在IUGR胎儿的心脏[2]、肝脏[3]、胸腺[4]、T淋巴细胞[4]、肌肉和肾脂肪组织[5]、肾脏及肠组织[6]等生长发育,而忽略了IUGR对脑发育及功能影响的相关研究。直到近几年才发现IUGR会导致胎儿脑的重量[7-8]、结构[9-10]等发生不同程度的改变。在机体神经系统中,脑神经传递充当着不可或缺的角色[11]。神经递质可分为氨基酸类、γ-氨基丁酸、生物胺类以及胆碱类[12],其作用在机体中极其重要,对动物体的学习和记忆、感觉、运动、心血管活动的调节[13],神经元可塑性[14],睡眠调节、体温调节、精神稳定[15]以及大脑发育等方面起着重要作用[16]。虽然IUGR会导致胎儿脑发育和结构等发生不同程度的改变,但是,IUGR胎儿脑重和结构改变是否会影响其生物原胺类神经递质生成及分泌的相关报道较少。因此,本试验拟开展妊娠后期营养限制对蒙古绵羊胎儿生物原胺类神经递质分泌影响的相关研究。

1 材料与方法 1.1 试验动物、试验期及营养水平的确定

试验选择健康、体况优良的蒙古绵羊18只,对其进行同期发情、配种后,在妊娠第90天,将其随机分为3组,参照吴庶青[17]、高峰[18]研究确定的不影响蒙古绵羊所产羔羊补偿生长能力的最低营养供给值,即代谢能(ME)0.330 MJ/(kg BW0.75·d)(阈值),设定低于该阈值50%的营养限制1组[NG1组,n=6,ME=0.175 MJ/(kg BW0.75·d)]、等于该“阈值”水平的营养限制2组[NG2组,n=6,ME=0.330 MJ/(kg BW0.75·d)]以及高于该阈值50%的对照组[CG组,n=6,ME=0.670 MJ/(kg BW0.75·d)]。各组按照营养设置饲喂(表 1表 2),在妊娠第140天时进行屠宰。在此饲喂期间,各组母羊自由饮水和采食盐砖。

表 1 饲草及营养物质采食量 Table 1 Intakes of grass and nutrients
表 2 采食饲草及剩料的营养水平(风干基础) Table 2 Nutrient levels of fed grass and left grass (air-dry basis)
1.2 屠宰方法

屠宰前的24 h时开始停止进食,15 h时停止饮水。屠宰后,即刻取出胎儿称重,称重后立即静脉采血,肝素钠抗凝离心分离血浆(3 500 r/min,15 min),-80 ℃冷冻保存待测;打开胎儿颅腔,完整地取出胎儿的脑组织,用无酶的生理盐水进行冲洗,待冲洗干净后对称重,然后取样待测。

1.3 胎儿脑中生物原胺类神经递质含量的测定

称取约0.05 g的胎儿脑组织,并放入已经灭菌的离心管中,充分剪碎,按照称取脑组织质量的9倍体积加入生理盐水和1颗小钢珠,进行充分匀浆。然后取其上清液,所得上清液即为10%的脑组织匀浆液,采用酶联免疫吸附检测试剂盒(南京建成生物工程研究所)测定多巴胺(DA)、去甲肾上腺素(NA)、肾上腺素(EPI)、5-羟色胺(5-HT)的含量。

1.4 胎儿血浆中生物原胺类神经递质含量的测定

将离心分离后的血浆采用酶联免疫检测试剂盒(南京建成生物工程研究所)测定DA、NA、EPI、5-HT的含量。

1.5 数据统计分析

试验数据采用Excel 2003和SAS 9.0进行一般线性模型统计分析,并采用Duncan氏法进行多重比较。P<0.05为差异显著。

2 结果与分析 2.1 妊娠后期营养限制对蒙古绵羊胎儿脑重的影响

妊娠后期营养限制对蒙古绵羊胎儿脑重的影响见表 3。由表可知,妊娠第140天,NG1组胎儿的脑重和脑重占体重的百分比显著高于CG组(P < 0.05),而NG2组胎儿的脑重和脑重占体重的百分比与CG组差异不显著(P>0.05)。

表 3 妊娠后期营养限制对蒙古绵羊胎儿脑重的影响 Table 3 Effects of nutritional restriction in late gestation on fetal brain weight of Mongolian sheep
2.2 妊娠后期营养限制对蒙古绵羊胎儿脑中生物原胺类神经递质的影响

妊娠后期营养限制对蒙古绵羊胎儿脑组织生物原胺类神经递质的影响见表 4。由表可知,NG1组胎儿脑中5-HT(P < 0.01)、EPI(P < 0.05)含量显著或极显著高于CG组,NA含量极显著低于CG组(P < 0.01),DA含量与CG组差异不显著(P>0.05);NG2组胎儿脑中5-HT含量极显著高于CG组(P < 0.01),NA(P < 0.01)、DA(P < 0.05)含量显著或极显著低于CG组,EPI含量与CG组差异不显著(P>0.05)。

表 4 妊娠后期营养限制对蒙古绵羊胎儿脑中生物原胺类神经递质的影响 Table 4 Effects of nutritional restriction in late gestation on biological protoamine neurotransmitters in fetal brain of Mongolian sheep 
2.3 妊娠后期营养限制对蒙古绵羊胎儿血浆中生物原胺类神经递质的影响

妊娠后期宫内生长受限对蒙古绵羊胎儿血生物原胺类神经递质的影响见表 5。由表可知,NG1组胎儿血液的5-HT(P < 0.01)、EPI(P < 0.01)、NA(P < 0.05)、DA(P < 0.01)的含量显著或极显著低于CG组;NG2组胎儿血液的5-HT(P < 0.01)、NA(P < 0.01)、DA(P < 0.05)的含量显著或极显著低于CG组,2组间的EPI含量无显著差异(P>0.05)。

表 5 妊娠后期营养限制对蒙古绵羊胎儿血浆中生物原胺类神经递质的影响 Table 5 Effects of nutritional restriction in late gestation on biological protoamine neurotransmitters in fetal plasma of Mongolian sheep 
3 讨论

在妊娠后期,胚胎快速生长发育,当母羊的饲粮营养水平不能满足胚胎的正常发育的需求时,母羊会动员自身的营养储备,尽量满足胚胎的生长发育[19]。但是当母体动员自身的营养储备仍不能满足胎儿需求时,胎儿的组织、器官将会受到影响。母体营养对胎儿和新生儿中枢神经系统的发育成熟和功能完善起着重要的作用[20]。在本试验中,妊娠后期母羊营养限饲严重限制了NG1组和NG2组胎儿体重,并导致NG1组胎儿脑重显著增加,这与高峰[18]、Morgane等[20]的试验结果相似。绵羊脑组织在胎儿期快速发育,胎儿脑组织对营养的获取会优先于其他组织[21]。当母体营养水平受限,胎儿会通过血液营养再分配牺牲其他组织器官的营养来优先保障脑发育的营养供应,从而确保脑在一定程度上的正常发育,这就是“脑保护效应”[22-23]

神经递质的含量及其变化规律是动物机体中重要的生物学指标。在正常情况下,动物中枢内神经递质的分泌保持在一定水平,并且它们相互之间的比例协调,从而维持功能的稳定[24]。神经递质作为蛋白质和氨基酸的代谢产物,如色氨酸中的5-HT、苯丙氨酸或酪氨酸中的NA和DA,其合成因此也对营养不良敏感[25]。广泛存在于脑皮层质中的5-HT对哺乳动物大脑的发育与成熟起到调节作用[16]。Мрипевскии等[26]研究发现脑中5-HT含量升高,抑制了脑在营养不良情况下对营养物质的消耗。本试验中,随着母体营养水平的降低,NG1组和NG2组胎儿脑中5-HT含量极显著升高。而且,5-HT会抑制NA的释放[27]。正常情况下,NA与其受体作用有收缩血管、升高血压的作用。本试验中2个营养限制组胎儿脑中NA含量极显著降低,这可能与5-HT含量的升高有关。另外,赵文培等[28]、Kerage等[29]的研究中指出EPI和DA都可以扩张血管,增加血流量。本试验中,随着母体营养水平的降低,NG1组胎儿脑中EPI含量极显著升高,从而增加了脑中的血流量。妊娠后期营养限制使胎儿脑中升高的5-HT、EPI和降低的NA可能会导致脑中血管扩张、血流量增加,血管营养物质转运增加、消耗减少,而形成脑保护效应。然而,随着母体营养水平的降低,胎儿血浆中5-HT、EPI、NA、DA含量不同程度地降低,这可能会导致外周组织血管收缩,血流量降低,机体外周组织血液向脑组织有关。总之,IUGR胎儿脑和血中生物原胺类神经递质含量的改变,一方面使机体外周血管收缩,促使血液向脑中回流;另一方面使脑中血管扩张,加大外周血液回流,这可能是生物原胺类神经递质在“脑保护效应”中起到协调平衡作用的一个重要机理。

4 结论

妊娠后期营养限制使得蒙古绵羊胎儿脑中5-HT、EPI含量升高和NA含量降低,血浆中5-HT、EPI、NA、DA含量降低,这可能是导致IUGR胎儿脑中血管扩张、血流量增加,血管营养物质转运增加、消耗减少,从而形成“脑保护效应”的重要原因。

参考文献
[1]
刘莲, 何雯雯, 汪晖. 胎儿生长受限的神经内分泌机制研究进展[J]. 中华围产医学杂志, 2011, 14(7): 439-442.
LIU L, HE W W, WANG H. Research progress on neuroendocrine mechanism of fetal growth restriction[J]. Chinese Journal of Perinatal Medicine, 2011, 14(7): 439-442 (in Chinese). DOI:10.3760/cma.j.issn.1007-9408.2011.07.013
[2]
CRISPI F, BIJNENS B, FIGUERAS F, et al. Fetal growth restriction results in remodeled and less efficient hearts in children[J]. Circulation, 2010, 121(22): 2427-2436. DOI:10.1161/CIRCULATIONAHA.110.937995
[3]
李玲瑶, 刘迎春, 何珊, 等. 妊娠后期IUGR对蒙古绵羊胎儿肝脏糖代谢的影响[J]. 黑龙江畜牧兽医, 2016(3): 99-101.
LI L Y, LIU Y C, HE S, et al. Effect of intrauterine growth restriction (IUGR) during late pregnancy on glucose metabolism in the fetal livers from Mongolian sheep[J]. Heilongjiang Animal Science and Veterinary Medicine, 2016(3): 99-101 (in Chinese).
[4]
张园, 高峰, 刘迎春, 等. 妊娠后期胎儿宫内生长受限对蒙古绵羊胎儿胸腺生长发育的影响[J]. 畜牧兽医学报, 2012, 43(11): 1710-1715.
ZHANG Y, GAO F, LIU Y C, et al. Effects of IUGR during late pregnancy on the fetal thymus development of Mongolia ovine[J]. Acta Veterinaria et Zootechnica Sinica, 2012, 43(11): 1710-1715 (in Chinese).
[5]
宋珊珊.妊娠后期宫内生长受限对蒙古绵羊胎儿肌肉和肾脏脂肪组织生长发育的影响[D].硕士学位论文.呼和浩特: 内蒙古农业大学, 2012.
SONG S S.Effects of intrauterine growth restriction during late pregnancy on the growth and development of ovine fetal muscle and perirenal adipose tissue[D].Master's Thesis.Huhehaote: Inner Mongolia Agricultural University, 2012.(in Chinese)
[6]
AKHUNDOVA A A, PANAHOVA N F, HASANOV S S, et al. Assessment of renal and intestinal tissue condition of IUGR infant[J]. Archives of Disease in Childhood, 2012, 97(Suppl.2): A367.
[7]
姜舟.宫内生长受限新生大鼠脑肝SOD、MDA水平研究[D].硕士学位论文.杭州: 浙江大学, 2007.
JIANG Z.Study on cerebral and hepatic SOD and MDA level in neonatal rats with intrauterine growth restriction[D].Master's Thesis.Hangzhou: Zhejiang University, 2007.(in Chinese)
[8]
罗蓉, 毛萌, 肖侠明. 钳夹子宫血管致宫内生长迟缓幼鼠小脑皮层神经生长因子改变的研究[J]. 华西医科大学学报, 2001, 32(1): 89-91.
LUO R, MAO Y, XIAO X M. Level of nerve growth factor protein in cerebellar cortex of rat pups in intrauterine growth retardation model by clamping the uterine vasculature of pregnant rat[J]. Journal of West China University of Medical Sciences, 2001, 32(1): 89-91 (in Chinese).
[9]
VAN VLIET E, EIXARCH E, ILLA M, et al. Metabolomics reveals metabolic alterations by intrauterine growth restriction in the fetal rabbit brain[J]. PLoS One, 2013, 8(5): e64545. DOI:10.1371/journal.pone.0064545
[10]
PADILLA N, FALCÓN C, SANZ-CORTÉS M, et al. Differential effects of intrauterine growth restriction on brain structure and development in preterm infants:a magnetic resonance imaging study[J]. Brain Research, 2011, 1382: 98-108. DOI:10.1016/j.brainres.2011.01.032
[11]
曹雨虹, 张明勇, 刘敏, 等. 生物样品中神经递质的定量测定及其应用研究进展[J]. 色谱, 2019, 37(3): 265-273.
CHAO Y H, ZHANG M Y, LIU M, et al. Quantitative determination of neurotransmitters in biological samples and its application research progress[J]. Chinese Journal of Chromatography, 2019, 37(3): 265-273 (in Chinese).
[12]
邝洪轩, 张海彬, 谭建华, 等. 维生素C抗氧化-同位素内标稀释-超高效液相色谱-串联质谱同时测定新生期大鼠海马体神经递质的含量[J]. 色谱, 2019, 37(4): 404-411.
KUANG H X, ZHANG H B, TAN J H, et al. Simultaneous determination of five neurotransmitters in neonatal rat hippocampus by adding vitamin C coupled with isotope dilution-ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2019, 37(4): 404-411 (in Chinese).
[13]
杨俐萍, 钱红, 刘爱东, 等. 家兔脑内P物质介导侧脑室注射乙酰胆碱的心血管效应[J]. 中国应用生理学杂志, 2001, 17(4): 326,369,395.
YANG L P, QIAN H, LIU A D, et al. Substance P mediates the cardiovascular effects of intracerebroventricular injection of acetylcholine in rabbit brain[J]. Chinese Journal of Applied Physiology, 2001, 17(4): 326,369,395 (in Chinese). DOI:10.3969/j.issn.1000-6834.2001.04.029
[14]
张秦喆, 王瑞, 董振宇, 等. 谷氨酸受体调控树突棘形态可塑性的研究进展[J]. 现代生物医学进展, 2016, 16(10): 1984-1987.
ZHANG Q Z, WANG R, DONG Z Y, et al. Progress of regulation of glutamate receptors on morphological plasticity of dendritic spines[J]. Progress in Modern Biomedicine, 2016, 16(10): 1984-1987 (in Chinese).
[15]
李文雅.5-羟色胺对大鼠海马CA1区NMDA电流的调节作用[D].硕士学位论文.石家庄: 河北医科大学, 2012.
LI W Y.The regulation of serotonin on NMDA current in hippocampal CA1 pyramidal neurons[D].Master's Thesis.Shijiazhuang: Hebei Medical University, 2012.(in Chinese)
[16]
MAZER C, MUNEYYIRCI J, TAHENY K, et al. Serotonin depletion during synaptogenesis leads to decreased synaptic density and learning deficits in the adult rat:a possible model of neurodevelopmental disorders with cognitive deficits[J]. Brain Research, 1997, 760(1/2): 68-73.
[17]
吴庶青.苏尼特羊妊娠后期限制饲养对羔羊初生重影响及机理的研究[D].硕士学位论文.呼和浩特: 内蒙古农业大学, 2003.
WU S Q.The study of the effect of feed restriction during late pregnancy on the lamb birth weight of sunit ewes and the mechanism involved[D].Master's Thesis.Huhehaote: Inner Mongolia Agricultural University, 2003.(in Chinese)
[18]
高峰.妊娠后期限饲母羊对其胎儿生长发育及出生后羔羊补偿生长的影响[D].博士学位论文.呼和浩特: 内蒙古农业大学, 2006.
GAO F.Effect of maternal undernutrition during late pregnancy on ovine fetal development and subsequent compensatory growth of postnatal lambs[D].Ph.D.Thesis.Huhehaote: Inner Mongolia Agricultural University, 2006.(in Chinese)
[19]
FUNSTON R N, LARSON D M, VONNAHME K A. Effects of maternal nutrition on conceptus growth and offspring performance:implications for beef cattle production[J]. Journal of Animal Science, 2010, 88(13): E205-E215.
[20]
MORGANE P J, AUSTIN-LAFRANCE R, BRONZINO J, et al. Prenatal malnutrition and development of the brain[J]. Neuroscience & Biobehavioral Reviews, 1993, 17(1): 91-128.
[21]
MCINTOSH G H, BAGHURST K I, POTTER B J, et al. Foetal brain development in the sheep[J]. Neuropathology and Applied Neurobiology, 1979, 5(2): 103-114. DOI:10.1111/j.1365-2990.1979.tb00664.x
[22]
GODFREY K, ROBINSON S. Maternal nutrition, placental growth and fetal programming[J]. Proceedings of the Nutrition Society, 1998, 57(1): 105-111. DOI:10.1079/PNS19980016
[23]
万仪芳, 陈萍. 大脑中动脉测量在胎儿期各方面评估中的意义[J]. 上海医学, 2008, 31(11): 831-833.
WAN Y F, CHEN P. Significance of middle cerebral artery measurement in evaluation of various aspects of fetal period[J]. Shanghai Medical Journal, 2008, 31(11): 831-833 (in Chinese).
[24]
文春晓, 闫玉仙. 神经递质在学习记忆中的作用[J]. 武警医学院学报, 2009, 18(1): 65-67.
WENG C X, YAN Y X. Effects of neurotransmitters on learning and memory[J]. Journal of Logistics University of CPAF, 2009, 18(1): 65-67 (in Chinese).
[25]
FERNSTROM J D, LYTLE L D. Corn malnutrition, brain serotonin and behavior[J]. Nutrition Reviews, 1976, 34(9): 257-262.
[26]
МРИПЕВСКИИ А·Я, 李子瑜. 5-羟色胺在中枢神经系统活动中的作用的现代概念[J]. 江西医学院学报, 1961(1): 189-192.
МРИПЕВСКИИ А·Я, LI Z Y. Modern conception of the role of serotonin in central nervous system activity[J]. Acta Academiae Medicinae Jiangxi, 1961(1): 189-192 (in Chinese).
[27]
徐万红, 吴东波, 张雄, 等. 自主神经递质去甲肾上腺素心脏作用的调制[J]. 浙江大学学报(医学版), 2002, 31(1): 59-62.
XU W H, WU D B, ZHANG X, et al. Modulation of the cardiac action of the autonomic neurotransmitter norepinephrine[J]. Journal of Zhejiang University (Medical Sciences), 2002, 31(1): 59-62 (in Chinese).
[28]
赵文培, 翟成凯, 乔留杰. 不同剂量肾上腺素在心肺脑复苏中的作用[J]. 新乡医学院学报, 1993, 10(3): 209-212.
ZHAO W P, CUI C K, QIAO L J. Different does of adrenaline for the cardio-pulmonsry and cerebral resuscitation[J]. Journal of Xinxiang Medical University, 1993, 10(3): 209-212 (in Chinese).
[29]
KERAGE D, SLOAN E K, MATTAROLLO S R, et al. Interaction of neurotransmitters and neurochemicals with lymphocytes[J]. Journal of Neuroimmunology, 2019, 332: 99-111.