动物营养学报    2021, Vol. 33 Issue (1): 436-447    PDF    
氨氮胁迫下饥饿与复投喂对黄颡鱼肝脏中脂质代谢相关酶活性及相关基因表达的影响
刘嘉欣 , 张木子 , 黎明 , 谢雨欣 , 钱云霞 , 王日昕     
宁波大学海洋学院, 宁波 315211
摘要: 为了研究氨氮胁迫下饥饿与复投喂对黄颡鱼脂质代谢的影响,将360尾黄颡鱼幼鱼[初始体重为(14.95±0.03)g]随机分配到12个养殖桶中,每桶30尾。对照组人工饱食投喂42 d,试验组饥饿14 d后恢复投喂28 d。对照组和试验组分别被暴露到总氨氮浓度为0(低氨氮处理,正常养殖环境)和5.70 mg/L(高氨氮处理,氨氮胁迫)的水体中,每组分配3桶试验鱼。结果显示:饥饿14 d后,高氨氮处理黄颡鱼肝脏中6-磷酸葡萄糖酸脱氢酶(6PGD)、脂肪酸合酶(FAS)活性以及6PGD、葡萄糖-6-磷酸脱氢酶(G6PD)、FAS、胆固醇调节元件结合蛋白-1(SREBP-1)、过氧化物酶体增殖物激活受体α(PPARα)和过氧化物酶体增殖物激活受体γ(PPARγ)基因的mRNA相对表达量显著低于低氨氮处理(P < 0.05),而肝脏中肉碱棕榈酰转移酶(CPT)、脂蛋白脂酶(LPL)活性以及肉碱棕榈酰转移酶1(CPT1)和LPL基因的mRNA相对表达量则显著高于低氨氮处理(P < 0.05);在氨氮胁迫或正常养殖环境下,饥饿14 d后,试验组黄颡鱼肝脏中6PGD、FAS活性以及6PGDG6PDFASSREBP-1和PPARγ基因的mRNA相对表达量显著低于对照组(P < 0.05),而CPT、LPL活性以及PPARαCPT1和LPL基因的mRNA相对表达量显著高于对照组(P < 0.05);恢复投喂28 d后,高氨氮处理黄颡鱼肝脏中6PGD、FAS活性以及6PGDG6PDFASPPARα基因的mRNA相对表达量显著低于低氨氮处理(P < 0.05),而肝脏中CPT、LPL活性以及CPT1和LPL基因的mRNA相对表达量则显著高于低氨氮组(P < 0.05);在氨氮胁迫或正常养殖环境下,恢复投喂28 d后,试验组黄颡鱼肝脏中6PGD活性以及6PGDG6PD基因的mRNA相对表达量显著高于对照组(P < 0.05),而肝脏中LPL活性显著低于对照组(P < 0.05);此外,在氨氮胁迫下,试验组黄颡鱼肝脏中FASSREBP-1和PPARγ基因的mRNA相对表达量显著高于对照组(P < 0.05),而LPL基因的mRNA相对表达量则显著低于对照组(P < 0.05)。综上可知,氨氮胁迫和饥饿胁迫均会促进黄颡鱼的脂质分解代谢,并抑制脂质合成代谢;氨氮胁迫下饥饿后复投喂能够恢复黄颡鱼的脂质代谢稳态。
关键词: 黄颡鱼    氨氮胁迫    饥饿胁迫    复投喂    脂质代谢    酶活性    基因表达    
Effects of Starvation and Re-Feeding on Enzyme Activities and Gene Expression Involved in Liver Lipid Metabolism of Yellow Catfish (Pelteobagrus fulvidraco) under Ammonia Nitrogen Stress
LIU Jiaxin , ZHANG Muzi , LI Ming , XIE Yuxin , QIAN Yunxia , WANG Rixin     
School of Marine Sciences, Ningbo University, Ningbo 315211, China
Abstract: This experiment was conducted to study the effects of starvation and re-feeding on lipid metabolism of yellow catfish (Pelteobagrus fulvidraco) under ammonia nitrogen stress. Three hundred and thirty-six yellow catfish [initial body weight: (14.95±0.03) g] were randomly distributed into 12 culture buckets with 30 fish per bucket. The fish in the control group were fed on satiation for 42 days, and the fish in the trial group were starved for 14 days, then re-feeding to satiation for 28 days. The control group and trial group were exposed to 0 (low ammonia nitrogen treatment, normal culture environment) and 5.70 mg/L ammonia nitrogen (high ammonia nitrogen treatment, ammonia nitrogen stress), respectively, and each group had 3 buckets of fish. The results showed as follows: after 14 days of starvation, the activities of 6-phosphogluconate dehydrogenase (6PGD) and fatty acid synthase (FAS), and the mRNA relative expression levels of 6PGD, glucose 6-phosphate dehydrogenase (G6PD), FAS, sterol-regulatory element binding protein-1 (SREBP-1), peroxisome proliferator-activated receptor α (PPARα) and peroxisome proliferator-activated receptor γ (PPARγ) genes in the liver of fish in the high ammonia nitrogen treatment were significantly lower than those of fish in the low ammonia nitrogen treatment, but the activities of carnitine palmitoyltransferase (CPT) and lipoprotein lipase (LPL), and the mRNA relative expression levels of carnitine palmitoyltransferase 1 (CPT1) and LPL genes were significantly higher than those of fish in the low ammonia nitrogen treatment (P < 0.05). Under the ammonia nitrogen stress or normal culture environment, after 28 days of starvation, the activities of 6PGD and FAS, and the mRNA relative expression levels of 6PGD, G6PD, FAS, SREBP-1 and PPARγ genes in the liver of fish in the trial group were significantly lower than those of fish in the control group (P < 0.05), but the activities of CPT and LPL, and the mRNA relative expression levels of PPARα, CPT1 and LPL genes were significantly higher than those of fish in the control group (P < 0.05). After 28 days of re-feeding, the activities of 6PGD and FAS, and the mRNA relative expression levels of 6PGD, G6PD, FAS and PPARα genes in the liver of fish in the high ammonia nitrogen treatment were significantly lower than those of fish in the low ammonia nitrogen treatment (P < 0.05), but the activities of CPT and LPL, and the mRNA relative expression levels of CPT1 and LPL genes were significantly higher than those of fish in low ammonia nitrogen treatment (P < 0.05). Under the ammonia nitrogen stress or normal culture environment, after 28 days of re-feeding, the activity of 6PGD and the mRNA relative expression levels of 6PGD and G6PD genes in the liver of fish in the trial group were significantly higher than those of fish in the control group (P < 0.05), but the activity of LPL was significantly lower than that of fish in the control group (P < 0.05). Moreover, under the ammonia nitrogen stress, the mRNA relative expression levels of FAS, SREBP-1 and PPARγ genes in the liver of fish in the trial group were significantly higher than those of fish in the control group (P < 0.05), but the mRNA relative expression level of LPL gene was significantly lower than that of fish in the control group (P < 0.05). The results indicate that both ammonia nitrogen stress and starvation stress can promote the lipid catabolism and inhibit the lipid anabolism of yellow catfish, and re-feeding after starvation can restore the lipid metabolism homeostasis of yellow catfish under ammonia nitrogen stress.
Key words: yellow catfish (Pelteobagrus fulvidraco)    ammonia nitrogen stress    starvation stress    re-feeding    lipid metabolism    enzyme activity    gene expression    

集约化养殖模式下,饲料残渣和动物排泄物的大量积累,极易导致细菌增殖、缺氧、氨氮及亚硝酸盐胁迫[1]。其中,氨氮极难从养殖水体中除去,高浓度的氨氮将严重影响养殖动物的产量和品质。当鱼类处于低氨氮环境中,通常会在细胞和亚细胞水平上缓解氨中毒造成的不良反应,但环境中氨氮浓度达到较高水平时,由于外源氨氮的不断涌入,会造成血氨浓度持续(或瞬间)升高,继而表现出各种氨中毒症状[2],包括生长性能下降[3-4]、鳃组织增生、肝脏病变[5]、免疫应答受到抑制、病原易感性上升[6-7]、脑疝,甚至死亡。目前,有关氨中毒的研究在许多鱼类上已有报道,如许氏齿弹涂鱼(Periophthalmodon schlosseri)、薄氏大弹涂鱼(Boleophthalmus boddaerti)[2]、尼罗罗非鱼(Oreochromis niloticus)[8]、鳙鱼(Hypophthalmythys nobilis)[9]、草鱼(Ctenophynodon idellus)[10]和鲫鱼(Carassius auratus)[11]等。

先前的研究发现,当环境氨氮浓度升高时,部分鱼类能够通过停止摄食或减少摄食量以降低内源性氨氮的产生[12]。正因为如此,企业采用减少投饲量或短期停止投食的策略,以降低养殖鱼类氨中毒造成的不利影响[13]。正常生理状态下,处于饥饿中的鱼类能够通过分解自身储存的营养物质以满足生存的需要,当食物充足时,则会表现出异于常态的补偿生长现象[14-15],包括超补偿生长[16]、完全补偿生长[17-18]和部分补偿生长[19]。然而,在氨氮胁迫下,饥饿后恢复摄食是否仍会表现出补偿生长效应,迄今尚不十分清楚。弄清这个问题,对于集约化养殖投喂模式的完善具有十分重要的意义。

脂质是生命活动主要的能源物质,在各项生理、发育和生殖活动中扮演着不可或缺的角色[20-21]。Li等[22]发现,氨氮胁迫导致黄颡鱼(Pelteobagrus fulvidraco)全鱼粗脂肪含量显著降低,表明氨氮胁迫动员了机体的能量储备,导致体增重减少;Zhang等[23]发现,氨氮胁迫导致黄颡鱼肝脏6-磷酸葡萄糖酸脱氢酶(6PGD)和脂肪酸合酶(FAS)活性显著降低,并与6PGDFAS mRNA的表达量结果是一致的,而肉碱棕榈酰转移酶2(CPT2)和脂蛋白脂酶(LPL)mRNA的表达量显著升高,表明能量需求的增加,提示氨氮胁迫影响了脂质代谢平衡;覃川杰等[24]发现,饥饿胁迫会降低瓦氏黄颡鱼(Pelteobagrus vachelli)机体脂肪含量,改变肌肉及肝脏等组织脂肪酸的组成模式;Tian等[25]发现,饥饿胁迫显著增强罗非鱼肝脏LPL mRNA的表达,复投喂后则出现显著下降,这是因为肝脏中LPL分解甘油三酯生成脂肪酸和甘油,以满足机体对能量的需求。上述研究表明,氨氮胁迫和饥饿胁迫均会提高鱼类脂质分解代谢,而复投喂则促进脂质合成代谢,那么,氨氮胁迫下饥饿复投喂对鱼类脂质代谢会造成怎样的影响,迄今尚未见到报道。

黄颡鱼是一种杂食性淡水鱼类,因其肉质鲜美、富含人体所需多种氨基酸而深受广大老百姓喜爱。据《2020中国渔业统计年鉴》权威发布,截止2019年,全国黄颡鱼总产量达536 964 t[26],已成为我国重要的淡水养殖品种之一。近年来,随着养殖规模的不断扩大,氨氮胁迫对黄颡鱼养殖产业造成的负面影响逐渐凸显,然而,迄今尚未找到有效的解决手段[27]。本试验以黄颡鱼为研究对象,评估氨氮胁迫下饥饿与复投喂对其肝脏中脂质代谢酶活性及相关基因表达的影响,以期为黄颡鱼养殖投喂管理提供理论依据。

1 材料与方法 1.1 试验设计

黄颡鱼幼鱼购自浙江省湖州市,暂养14 d后,随机挑选360尾健康活泼、大小均匀的黄颡鱼幼鱼[初始体重为(14.95±0.03) g]分配到12个300 L塑料养殖桶中,每桶30尾。参考Li等[28]报道的黄颡鱼氨氮暴露安全浓度,设置2个氨氮处理:低氨氮处理,总氨氮浓度 < 0.01 mg/L,非离子氨浓度 < 0.001 mg/L,该浓度下黄颡鱼未受氨氮胁迫;高氨氮处理,总氨氮浓度5.70 mg/L,非离子氨浓度0.10~0.12 mg/L,该浓度下黄颡鱼受到氨氮胁迫。表观氨氮浓度以新配的10 g/L氯化铵(NH4Cl)为母液,每隔7 h进行调整,水体中总氨氮浓度采用YSI ProPlus多参数水质测定仪进行检测。2个氨氮处理内各设置1个对照组和1个试验组,每组分配3桶试验鱼,采用人工饱食投喂的方式,对照组投喂商业饲料(粗蛋白质含量40.50%,粗脂肪含量7.15%,粗灰分含量8.16%,水分含量10.53%)42 d;试验组饥饿14 d后,复投喂商业饲料28 d。整个试验期间,养殖用水为除氯自来水,日换水量为总体积的1/3,水温24.5~29.5 ℃,pH 6.7~7.0,溶解氧浓度(7.83±0.12) mg/L,亚硝酸盐浓度 < 0.5 mg/L,保持自然光照。

1.2 样品采集

分别于试验开始后第14和42天时进行取样。每次取样前禁食24 h,采用120 mg/L MS-222麻醉,每个养殖桶中随机挑选3尾试验鱼,分别解剖取出肝脏,液氮速冻,-80 ℃储存,用于脂质代谢相关基因mRNA表达量分析,剩余肝脏混合后于-20 ℃储存,用于脂质代谢相关酶活性分析。

1.3 脂质代谢相关酶活性分析

称取0.5 g肝脏样品,按重量(g) :体积(mL)=1 : 9于预冷的磷酸缓冲液(50 mmol/L,pH 7.4)中匀浆,离心(4 ℃,2 000 r/min,10 min)分离上清。6PGD活性测定参考Barroso等[29]的报道,每毫克组织蛋白每分钟催化产生1 nmol还原型辅酶Ⅱ(NADPH)的酶量为1个6PGD活性单位;FAS活性测定参考Chang等[30]的报道,37 ℃条件下每毫克组织蛋白每分钟氧化1 μmol NADPH的酶量为1个FAS活性单位;肉碱棕榈酰转移酶(CPT)活性测定参考Bieber等[31]的报道,25 ℃条件下每毫克组织蛋白每分钟产生1 μmol产物的酶量为1个CPT活性单位;LPL活性测定参考Ballart等[32]的报道,每毫克组织蛋白每小时在反应系统中所产生1 μmol的游离脂肪酸为1个LPL活性单位。所有指标均采用商业试剂盒(南京建成生物工程研究所产品)进行测定,严格按照说明书操作步骤进行。

1.4 脂质代谢相关基因mRNA表达分析

冷冻的肝脏组织于RNAiso Plus试剂(TaKaRa)中匀浆,加入匀浆液1/5体积的氯仿后离心(4 ℃,12 000 r/min,15 min),取上清液与等体积异丙醇混合后离心(4 ℃,12 000 r/min,10 min),弃上清液后加入75%乙醇洗涤3遍,待干燥后溶于焦碳酸二乙酯(DEPC)水中。取1 μL总RNA,经2%琼脂糖凝胶电泳检测RNA完整性,依据260和280 nm处吸光度的比值(OD260 nm/OD280 nm)检测总RNA的浓度及纯度。

使用Prime ScriptTM PT Reagent Kit with gDNA Eraser(TaKaRa)逆转录试剂盒进行第1链cDNA的合成,用于实时荧光定量PCR分析。特异性引物利用Primer Premier 5.0软件设计,如表 1所示。所用引物均由生工生物工程(上海)股份有限公司合成。实时荧光定量PCR反应体系(20 μL)为:10 μL GoTaq® qPCR Master mix、2 μL cDNA、0.8 μL上游引物、0.8 μL下游引物和6.4 μL无菌水。实时荧光定量PCR(SYBR Premix Ex Taq Ⅱ,TaKaRa)反应条件为:95 ℃,5 min;95 ℃,20 s,40个循环;57 ℃,25 s;72 ℃,25 s,所有反应均重复进行3次。以β-肌动蛋白(β-actin)作为对照基因,采用2-ΔΔCt[33]分析目的基因的mRNA相对表达量。

表 1 用于黄颡鱼实时荧光定量PCR分析的引物 Table 1 Primers for real-time qPCR analysis of yellow catfish
1.5 统计分析

试验数据采用双因素方差分析(two-way ANOVA)进行统计学处理,结果以平均值±标准差(mean±SD)表示,差异显著性水平设为P < 0.05。所有分析均采用SPSS 20.0在Windows操作系统中进行。

2 结果 2.1 氨氮胁迫下饥饿与复投喂对黄颡鱼肝脏中脂质代谢相关酶活性的影响

表 2可以看出,饥饿14 d后,高氨氮处理黄颡鱼肝脏中6PGD和FAS活性显著低于低氨氮处理(P < 0.05),而肝脏中CPT和LPL活性显著高于低氨氮处理(P < 0.05);在氨氮胁迫或正常养殖环境下,试验组黄颡鱼肝脏中6PGD和FAS活性显著低于对照组(P < 0.05),而肝脏中CPT和LPL活性则显著高于对照组(P < 0.05);黄颡鱼肝脏中6PGD(P=0.001)、FAS(P=0.001)、CPT(P=0.047)和LPL(P=0.038)活性受到氨氮胁迫和饥饿胁迫交互作用的显著影响。

表 2 氨氮胁迫下饥饿对黄颡鱼肝脏中脂质代谢相关酶活性的影响 Table 2 Effects of starvation on activities of lipid metabolism-related enzymes in liver of yellow catfish under ammonia stress 

表 3可以看出,恢复投喂28 d后,高氨氮处理黄颡鱼肝脏中6PGD和FAS活性显著低于低氨氮处理(P < 0.05),而肝脏中CPT和LPL活性显著高于低氨氮处理(P < 0.05);在氨氮胁迫或正常养殖环境下,试验组黄颡鱼肝脏中6PGD活性显著高于对照组(P < 0.05),而LPL活性显著低于对照组(P < 0.05);黄颡鱼肝脏中6PGD(P=0.001)、FAS(P=0.001)、CPT(P=0.034)和LPL(P=0.025)活性受到氨氮胁迫和复投喂交互作用的显著影响。

表 3 氨氮胁迫下复投喂对黄颡鱼肝脏中脂质代谢相关酶活性的影响 Table 3 Effects of re-feeding on activities of lipid metabolism-related enzymes in liver of yellow catfish under ammonia stress 
2.2 氨氮胁迫下饥饿与复投喂对黄颡鱼肝脏中脂质代谢相关基因mRNA相对表达量的影响

图 1可以看出,饥饿14 d后,高氨氮处理黄颡鱼肝脏中6PGD、葡萄糖-6-磷酸脱氢酶(G6PD)、FAS、胆固醇调节元件结合蛋白-1(SREBP-1)、过氧化物酶体增殖物激活受体α(PPARα)和过氧化物酶体增殖物激活受体γ(PPARγ)基因的mRNA相对表达量显著低氨氮处理(P < 0.05),而肝脏中肉碱棕榈酰转移酶1(CPT1)和LPL基因的mRNA相对表达量显著高于低氨氮处理(P < 0.05);在氨氮胁迫或正常养殖环境下,试验组黄颡鱼肝脏中6PGDG6PDFASSREBP-1和PPARγ基因的mRNA相对表达量显著低于对照组(P < 0.05),而PPARαCPT1和LPL基因的mRNA相对表达量显著高于对照组(P < 0.05)。

将β-肌动蛋白mRNA的表达量归一化为对照(对照=1)的比值。数据柱标注不同大写字母(A、B)表示低氨氮处理内组间差异显著(P < 0.05),标注不同小写字母(a、b)表示高氨氮处理内组间差异显著(P < 0.05),标注不同数字(1、2)表示低氨氮处理与高氨氮处理间差异显著(P < 0.05)。 The expression level of β-actin mRNA was normalized to the ratio of the control (control=1). Date columns with different captial letters (A, B) indicated significant difference in low ammonia treatment (P < 0.05), with different lowercase letters (a, b) indicated significant difference in high ammonia treatment (P < 0.05), and with different numbers (1, 2) indicated significant difference between low and high ammonia treatments (P < 0.05). 图 1 氨氮胁迫下饥饿与复投喂对黄颡鱼脂质代谢相关基因mRNA相对表达量的影响 Fig. 1 Effects of starvation and re-feeding on mRNA relative expression levels of lipid metabolism-related genes in liver of yellow catfish under ammonia stress

图 1可以看出,恢复投喂28 d后,高氨氮处理黄颡鱼肝脏中6PGDG6PDFASPPARα基因的mRNA相对表达量显著低于低氨氮处理(P < 0.05),而肝脏中CPT1和LPL基因的mRNA相对表达量显著高于低氨氮处理(P < 0.05);在氨氮胁迫或正常养殖环境下,试验组黄颡鱼肝脏中6PGDG6PD基因的mRNA相对表达量显著高于对照组(P < 0.05);氨氮胁迫下,试验组黄颡鱼肝脏中SREBP-1和PPARγ基因的mRNA相对表达量显著高于对照组(P < 0.05),而肝脏中LPL基因的mRNA相对表达量显著低于对照组(P < 0.05);正常养殖环境下,试验组黄颡鱼肝脏中FASSREBP-1、PPARαPPARγCPT1和LPL基因的mRNA相对表达量与对照组无显著差异(P>0.05)。

3 讨论 3.1 氨氮胁迫下饥饿对黄颡鱼脂质代谢相关酶活性及相关基因表达的影响

养殖生产过程中,通常采用减少投饲量或短期停止投食的策略来降低氨氮胁迫对养殖鱼类造成的伤害,但却会对鱼类正常的生理活动造成不同程度的影响,如影响蛋白质代谢和脂质代谢等[12]。脂质是鱼类生存的主要能量来源[14]。覃川杰等[24]研究发现,饥饿胁迫会降低瓦氏黄颡鱼体脂肪含量,改变肌肉和肝脏组织脂肪酸的组成模式;朱站英等[34]研究发现,随着饥饿胁迫时间的延长,草鱼血清中甘油三酯的含量呈先降低后升高再降低的变化趋势,推测可能是由于机体脂肪储存效率提高或者代谢速率降低所致。从上述研究可以看出,饥饿胁迫会对鱼类的脂质代谢造成负面影响,但作用机制至今尚不十分清楚,弄清脂质代谢相关酶活性的变化不失为较好的研究切入点。

6PGD和G6PD是磷酸戊糖途径的关键调控酶类,能够催化NADPH的合成,与能量平衡、生长速率和细胞活力等密切相关,其中,6PGD在机体应对环境胁迫的生理活动中可能发挥重要作用[35];FAS是脂肪酸合成的主要调节酶,能够催化乙酰辅酶A和丙二酰辅酶A生成长链脂肪酸[36];SREBP-1是重要的核转录因子,能够影响内源性胆固醇、甘油三酯和脂肪酸合成有关的几种酶的表达,在脂肪生成和脂质储存中发挥关键作用,以维持脂质动态平衡。Barroso等[37]研究发现,饥饿胁迫下虹鳟(Oncorhynchus mykiss)肝脏中G6PD和6PGD活性显著降低;Pérez-Jiménez等[38]研究发现,饥饿胁迫下欧洲鲈鱼(Dicentrarchus labrax)肝脏中G6PD活性显著降低;Tian等[25]研究发现,饥饿胁迫下罗非鱼肝脏中FAS活性及其基因的mRNA相对表达量显著降低;Gosmain等[39]发现,饥饿胁迫下大鼠肝脏中SREBP-1基因的mRNA相对表达量显著降低,与肝脏中FAS基因mRNA相对表达量的变化趋势相同。本研究也发现了类似的现象,正常养殖环境下,饥饿14 d后,试验组黄颡鱼肝脏中6PGD和FAS活性显著低于对照组,通常酶的活性与其编码基因在转录(mRNA)水平上的表达有关,进一步的研究发现,黄颡鱼肝脏中6PGDG6PDFASSREBP-1基因的mRNA相对表达量受到饥饿胁迫的影响显著下调;在氨氮胁迫下,试验组黄颡鱼饥饿14 d后脂质代谢相关酶活性及其基因的mRNA相对表达量与正常养殖环境下的变化趋势相同;基于双因素统计进一步证实,氨氮胁迫和饥饿胁迫均会对黄颡鱼脂质代谢造成抑制。

过氧化物酶体增殖物激活受体(PPAR)存在多种亚型,在脂质稳态中发挥中介作用,协调参与脂质代谢酶的基因转录[36]。其中,PPARα和PPARγ是与脂质代谢和脂肪生成密切相关的2个关键转录因子[40-42]。PPARα通过上调与脂肪酸分解有关的几种关键酶的表达,在脂肪酸的分解代谢中发挥关键作用[43-45],而PPARγ通过上调与脂肪酸合成有关的几种关键酶的表达,在脂肪生成和脂质储存中发挥关键作用[46]。Mohapatra等[47]发现,饥饿胁迫下真鲷(Pagrosomus major)肝脏中PPARα基因的mRNA相对表达量显著升高,与CPT1基因的mRNA相对表达量变化趋势相同,而PPARγ基因的mRNA相对表达量显著降低,与G6PD基因的mRNA相对表达量变化趋势相同。在本研究中,正常养殖环境下,饥饿14 d后,试验组黄颡鱼肝脏中PPARα基因的mRNA相对表达量显著高于对照组,而PPARγ基因的mRNA相对表达量显著低于对照组。此外,Zheng等[40]发现,急性和慢性锌暴露下PPARα基因的mRNA相对表达量与脂肪分解关键酶基因(CPT1和LPL)的mRNA相对表达量变化趋势相同,而PPARγ基因的mRNA相对表达量与脂肪合成相关酶基因(G6PD、6PGDFAS)的mRNA相对表达量变化趋势相同。同样,在氨氮胁迫下,黄颡鱼饥饿14 d后,肝脏中PPARαPPARγ基因的mRNA相对表达量与正常养殖环境下变化趋势相同。

LPL是脂质分解代谢过程中关键的限速酶,能够催化甘油三酯分解为游离脂肪酸和单脂肪酸甘油酯,为机体氧化分解供能[48];CPT是长链脂肪酸从胞浆内进入线粒体进行β氧化的限速酶,其活性变化决定了机体对脂肪酸的利用能力[49]。Han等[50]研究发现,饥饿胁迫下罗非鱼肝脏中LPL活性升高,与其基因的mRNA相对表达量变化趋势相同;Oku等[51]研究发现,随着饥饿时间的延长,真鲷肝脏中LPL基因的mRNA相对表达量显著升高;Morash等[52]研究发现,饥饿胁迫下虹鳟肝脏中CPT1活性显著升高;马细兰等[53]研究发现,饥饿胁迫下虎龙斑(Epinephelus fuscoguttatus♀×E. lanceolatus)肝脏中CPT-1A活性及其基因的mRNA相对表达量显著升高。本研究中,在正常养殖环境下,饥饿14 d后,试验组黄颡鱼肝脏中LPL和CPT活性显著高于对照组,进一步的研究发现,试验鱼肝脏中LPLCPT1基因的mRNA相对表达量受到饥饿胁迫的影响而显著上调。然而,Black等[54]研究发现,饥饿胁迫下虹鳟肝脏中LPL活性显著降低;Ölmez等[55]研究发现,饥饿胁迫下斑马鱼(Danio rerio)肝脏中CPT1-β基因的mRNA相对表达量显著下调,这可能是因为过度饥饿超过了动物的耐受阈值。Zheng等[40]研究发现,慢性锌暴露下黄颡鱼肝脏中CPT活性显著升高;Zhang等[23]研究发现,氨氮胁迫导致黄颡鱼肝脏中CPT和LPL活性显著升高,与CPT2和LPL基因的mRNA相对表达量结果是一致的。本研究中,在氨氮胁迫下,饥饿14 d后,黄颡鱼肝脏中CPTLPL活性及其基因mRNA相对表达量与正常养殖环境下变化趋势相同,并发现氨氮胁迫与饥饿胁迫对CPT和LPL活性存在显著交互作用,均促进了黄颡鱼脂质分解代谢。

3.2 氨氮胁迫下复投喂对黄颡鱼脂质代谢相关酶活性及相关基因表达的影响

本研究发现,正常养殖环境下,恢复投喂28 d后,试验组黄颡鱼肝脏中6PGD活性显著高于对照组,同时还发现,试验组肝脏中6PGDG6PD基因的mRNA相对表达量显著高于对照组。这与前人的研究结果是一致的,Barroso等[37]研究发现,饥饿后复投喂,虹鳟肝脏中G6PD和6PGD活性显著升高;Amalia等[38]研究发现,饥饿后复投喂,欧洲鲈鱼肝脏中G6PD活性显著升高;Tian等[25]研究发现,饥饿后复投喂,罗非鱼肝脏中FAS活性及其基因的mRNA相对表达量显著升高。在本研究中,在氨氮胁迫下,恢复投喂28 d后,试验组黄颡鱼肝脏中6PGD活性以及6PGDG6PDFASSREBP-1基因的mRNA相对表达量显著高于对照组,提示氨氮胁迫下饥饿后复投喂能够提高黄颡鱼脂质合成代谢。

Mohapatra等[47]发现,饥饿后复投喂,真鲷肝脏中PPARα基因的mRNA相对表达量显著降低,而PPARγ基因的mRNA相对表达量变化趋势则相反;Ölmez等[55]研究发现,饥饿胁迫下斑马鱼肝脏中PPARα基因的mRNA表达显著下调,复投喂后恢复到正常水平。在本研究中,在正常养殖环境下,恢复投喂28 d后,试验组肝脏中PPARαPPARγ基因的mRNA相对表达量与对照组无显著差异,而在氨氮胁迫下,恢复投喂后,试验组黄颡鱼肝脏中PPARα基因的mRNA相对表达量显著低于对照组,肝脏中PPARγ基因的mRNA相对表达量则显著高于对照组。

Oku等[51]研究发现,随着饥饿时间的延长,真鲷肝脏中LPL基因的mRNA相对表达量显著升高,复投喂6 h后,其mRNA相对表达量恢复到0 h时的水平;Tian等[25]发现,饥饿胁迫显著增强罗非鱼肝脏中LPL活性,复投喂后LPL活性出现显著下降,这是因为肝脏中的LPL被用于分解甘油三酯生成脂肪酸和甘油,以满足机体对能量的需求;马细兰等[53]研究发现,饥饿后复投喂,虎龙斑肝脏中CPT-1A活性及其基因的mRNA相对表达量显著下降。本研究中,在正常养殖环境下,恢复投喂28 d后,试验组黄颡鱼肝脏中CPT活性以及LPLCPT1基因的mRNA相对表达量与对照组无显著差异;而在氨氮胁迫下,恢复投喂28 d后,试验组黄颡鱼肝脏中LPL活性及其基因的mRNA相对表达量显著低于对照组,提示氨氮胁迫下饥饿后复投喂能够降低黄颡鱼的脂质分解代谢。

4 结论

综上所述,氨氮胁迫和饥饿胁迫均会促进黄颡鱼的脂质分解代谢,并抑制脂质合成代谢;氨氮胁迫下饥饿后复投喂能够恢复黄颡鱼的脂质代谢平衡。

参考文献
[1]
RANDALL D J, TSUI T K N. Ammonia toxicity in fish[J]. Marine Pollution Bulletin, 2002, 45(1/2/3/4/5/6/7/8/9/10/11/12): 17-23.
[2]
IP Y K, LEONG M W F, SIM M Y, et al. Chronic and acute ammonia toxicity in mudskippers, Periophthalmodon schlosseri and Boleophthalmus boddaerti:brain ammonia and glutamine contents, and effects of methionine sulfoximine and MK801[J]. Journal of Experimental Biology, 2005, 208(10): 1993-2004. DOI:10.1242/jeb.01586
[3]
THRANE V R, THRANE A S, WANG F S, et al. Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering[J]. Nature Medicine, 2013, 19(12): 1643-1648. DOI:10.1038/nm.3400
[4]
HEGAZI M M, HASANEIN S S. Effects of chronic exposure to ammonia concentrations on brain monoamines and ATPases of Nile tilapia (Oreochromis niloticus)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2010, 151(4): 420-425.
[5]
LEASE H M, HANSEN J A, BERGMAN H L, et al. Structural changes in gills of Lost River suckers exposed to elevated pH and ammonia concentrations[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2003, 134(4): 491-500.
[6]
邱德全, 周鲜娇, 邱明生. 氨氮胁迫下凡纳滨对虾抗病力和副溶血弧菌噬菌体防病效果研究[J]. 水生生物学报, 2008, 32(4): 455-461.
QIU D Q, ZHOU X J, QIU M S. Study on anti-disease ability of Litopenaeus vannamei and the biological control of Vibrio parahaemolyticus bacteriophage under stresses of ammonia nitrogen[J]. Acta Hydrobiologica Sinica, 2008, 32(4): 455-461 (in Chinese). DOI:10.3321/j.issn:1000-3207.2008.04.002
[7]
HURVITZ A, BERCOVIER H, VAN RIJN J V. Effect of ammonia on the survival and the immune response of rainbow trout (Oncorhynchus mykiss, Walbaum) vaccinated against Streptococcus iniae[J]. Fish & Shellfish Immunology, 1997, 7(1): 45-53.
[8]
陈家长, 臧学磊, 胡庚东, 等. 氨氮胁迫下罗非鱼(GIFT Oreochromis niloticus)机体免疫力的变化及其对海豚链球菌易感性的影响[J]. 生态环境学报, 2011, 20(4): 629-634.
CHEN J Z, ZANG X L, HU G D, et al. The immune response of GIFT Oreochromis niloticus and its susceptibility to Streptococcus iniae under stress in different ammonia[J]. Ecology and Environmental Sciences, 2011, 20(4): 629-634 (in Chinese). DOI:10.3969/j.issn.1674-5906.2011.04.007
[9]
SUN H J, LVUE K, MINTER E J A, et al. Combined effects of ammonia and microcystin on survival, growth, antioxidant responses, and lipid peroxidation of bighead carp Hypophthalmythys nobilis larvae[J]. Journal of Hazardous Materials, 2012, 221/222: 213-219. DOI:10.1016/j.jhazmat.2012.04.036
[10]
XING X D, LI M, YUAN L X, et al. The protective effects of taurine on acute ammonia toxicity in grass carp Ctenopharynodon idellus[J]. Fish & Shellfish Immunology, 2016, 56: 517-522.
[11]
REN Q Y, LI M, YUAN L X, et al. Acute ammonia toxicity in crucian carp Carassius auratus and effects of taurine on hyperammonemia[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2016, 190: 9-14.
[12]
IP Y K, CHEW S F. Air-breathing and excretory nitrogen metabolism in fishes[J]. Acta Histochemica, 2018, 120(7): 680-690. DOI:10.1016/j.acthis.2018.08.013
[13]
DAVIS K B, GAYLORD T G. Effect of fasting on body composition and responses to stress in sunshine bass[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2011, 158(1): 30-36.
[14]
CHO S H, LEE S M, PARK B H, et al. Compensatory growth of juvenile olive flounder, Paralichthys olivaceus L. and changes in proximate composition and body condition indexes during fasting and after refeeding in summer season[J]. Journal of the World Aquaculture Society, 2006, 37(2): 168-174. DOI:10.1111/j.1749-7345.2006.00023.x
[15]
OH S Y, NOH C H, KANG R S, et al. Compensatory growth and body composition of juvenile black rockfish Sebastes schlegeli following feed deprivation[J]. Fisheries Science, 2008, 74(4): 846-852. DOI:10.1111/j.1444-2906.2008.01598.x
[16]
HAYWARD R S, NOLTIE D B, WANG N. Use of compensatory growth to double hybrid sunfish growth rates[J]. Transactions of the American Fisheries Society, 1997, 126(2): 316-322. DOI:10.1577/1548-8659(1997)126<0316:NUOCGT>2.3.CO;2
[17]
XIE S, ZHU X, CUI Y, et al. Compensatory growth in the gibel carp following feed deprivation:temporal patterns in growth, nutrient deposition, feed intake and body composition[J]. Journal of Fish Biology, 2001, 58(4): 999-1009. DOI:10.1111/j.1095-8649.2001.tb00550.x
[18]
ZHU X M, XIE S Q, LEI W, et al. Compensatory growth in the Chinese longsnout catfish, Leiocassis longirostris following feed deprivation:temporal patterns in growth, nutrient deposition, feed intake and body composition[J]. Aquaculture, 2005, 248(1/2/3/4): 307-314.
[19]
PAUL A J, PAUL J M, SMITH R L. Compensatory growth in Alaska yellowfin sole, Pleuronectes asper, following food deprivation[J]. Journal of Fish Biology, 1995, 46(3): 442-448. DOI:10.1111/j.1095-8649.1995.tb05984.x
[20]
TOCHER D R. Metabolism and functions of lipids and fatty acids in teleost fish[J]. Reviews in Fisheries Science, 2003, 11(2): 107-184. DOI:10.1080/713610925
[21]
POLAKOF S, MÉDALE F, SKIBA-CASSY S, et al. Molecular regulation of lipid metabolism in liver and muscle of rainbow trout subjected to acute and chronic insulin treatments[J]. Domestic Animal Endocrinology, 2010, 39(1): 26-33. DOI:10.1016/j.domaniend.2010.01.003
[22]
LI M, CHEN L Q, QIN J G, et al. Growth performance, antioxidant status and immune response in darkbarbel catfish Pelteobagrus vachelli fed different PUFA/vitamin E dietary levels and exposed to high or low ammonia[J]. Aquaculture, 2013, 406/407: 18-27. DOI:10.1016/j.aquaculture.2013.04.028
[23]
ZHANG M Z, HOU C D, LI M, et al. Modulation of lipid metabolism in juvenile yellow catfish (Pelteobagrus fulvidraco) as affected by feeding frequency and environmental ammonia[J]. Fish Physiology and Biochemistry, 2019, 45(1): 115-122. DOI:10.1007/s10695-018-0540-y
[24]
覃川杰, 邵婷, 杨洁萍, 等. 饥饿胁迫对瓦氏黄颡鱼脂肪代谢的影响[J]. 水生生物学报, 2015, 39(1): 58-65.
QIN C J, SHAO T, YANG J P, et al. The effect of starvation on lipid metabolism of darkbarbel catfish, Pelteobagrus vachelli[J]. Acta Hydrobiologica Sinica, 2015, 39(1): 58-65 (in Chinese).
[25]
TIAN J, WEN H, ZENG L B, et al. Changes in the activities and mRNA expression levels of lipoprotein lipase (LPL), hormone-sensitive lipase (HSL) and fatty acid synthetase (FAS) of Nile tilapia (Oreochromis niloticus) during fasting and re-feeding[J]. Aquaculture, 2013, 400/401: 29-35. DOI:10.1016/j.aquaculture.2013.01.032
[26]
农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会.2020中国渔业统计年鉴[M].北京: 中国农业出版社有限公司, 2020.
Fisheries and Fisheries Administration, Ministry of Agriculture.China fisheries statistical yearbook[M].Beijing: China Agriculture Press, 2020.(in Chinese)
[27]
赵忠波, 汪帆, 吴巧婉, 等. 放养密度对黄颡鱼的生长性能和养殖水体水质的影响[J]. 中国农学通报, 2016, 32(23): 37-42.
ZHAO Z B, WANG F, WU Q W, et al. Stocking density affecting growth performance of yellow catfish (Pelteobagrus fulvidraco) and water quality[J]. Chinese Agricultural Science Bulletin, 2016, 32(23): 37-42 (in Chinese). DOI:10.11924/j.issn.1000-6850.casb16030025
[28]
LI M, GONG S Y, LI Q, et al. Ammonia toxicity induces glutamine accumulation, oxidative stress and immunosuppression in juvenile yellow catfish Pelteobagrus fulvidraco[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2016, 183-184: 1-6.
[29]
BARROSO J B, PERAGÓN J, GARCÍA-SALGUERO L, et al. Variations in the kinetic behaviour of the NADPH-production systems in different tissues of the trout when fed on an amino-acid-based diet at different frequencies[J]. The International Journal of Biochemistry & Cell Biology, 1999, 31(2): 277-290.
[30]
CHANG H C, SEIDMAN I, TEEBOR G, et al. Liver acetyl CoA carboxylase and fatty acid synthetase: relative activities in the normal state and in hereditary obesity[J]. Biochemical and Biophysical Research Communications, 1967, 28(5): 682-686. DOI:10.1016/0006-291X(67)90369-5
[31]
BIEBER L L, FIOL C. Purification and assay of carnitine acyltransferases[J]. Methods in Enzymology, 1986, 123: 276-284. DOI:10.1016/S0076-6879(86)23031-1
[32]
BALLART X, SICHES M, PEINADO-ONSURBE J, et al. Isoproterenol increases active lipoprotein lipase in adipocyte medium and in rat plasma[J]. Biochimie, 2003, 85(10): 971-982. DOI:10.1016/j.biochi.2003.09.001
[33]
SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3(6): 1101-1108. DOI:10.1038/nprot.2008.73
[34]
朱站英, 华雪铭, 于宁, 等. 草鱼蛋白质和脂肪代谢对饥饿胁迫的响应[J]. 水产学报, 2012, 36(5): 756-763.
ZHU Z Y, HUA X M, YU Y, et al. Response of lipid and protein metabolism of grass carp (Ctenopharyngodon idellus) to starvation[J]. Journal of Fisheries of China, 2012, 36(5): 756-763 (in Chinese).
[35]
CHEN Q L, GONG Y, LUO Z, et al. Differential effect of waterborne cadmium exposure on lipid metabolism in liver and muscle of yellow catfish Pelteobagrus fulvidraco[J]. Aquatic Toxicology, 2013, 142/143: 380-386. DOI:10.1016/j.aquatox.2013.09.011
[36]
CARVALHO C D S, FERNANDES M N. Effect of copper on liver key enzymes of anaerobic glucose metabolism from freshwater tropical fish Prochilodus lineatus[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2008, 151(3): 437-442.
[37]
BARROSO J B, PERAGÓN J, CONTRERAS-JURADO C, et al. Impact of starvation-refeeding on kinetics and protein expression of trout liver NADPH-production systems[J]. American Journal of Physiology Regulatory, Integrative & Comparative Physiology, 1998, 274(6): R1578-R1587.
[38]
PÉREZ-JIMÉNEZ A, GUEDES M J, MORALES A E, et al. .Metabolic responses to short starvation and refeeding in Dicentrarchus labrax.Effect of dietary composition[J]. Aquaculture, 2007, 265(1/2/3/4): 325-335.
[39]
GOSMAIN Y, DIF N, BERBE V, et al. Regulation of SREBP-1 expression and transcriptional action on HKⅡ and FAS genes during fasting and refeeding in rat tissues[J]. Journal of Lipid Research, 2005, 46(4): 697-705. DOI:10.1194/jlr.M400261-JLR200
[40]
ZHENG J L, LUO Z, LIU C X, et al. Differential effects of acute and chronic zinc (Zn) exposure on hepatic lipid deposition and metabolism in yellow catfish Pelteobagrus fulvidraco[J]. Aquatic Toxicology, 2013, 132-133: 173-181. DOI:10.1016/j.aquatox.2013.02.002
[41]
HU W, MAI K S, LUO Z, et al. Effect of waterborne zinc exposure on lipid deposition and metabolism in hepatopancreas and muscle of grass carp Ctenopharyngodon idella[J]. Fish Physiology and Biochemistry, 2016, 42(4): 1093-1105. DOI:10.1007/s10695-016-0200-z
[42]
REDDY J K, HASHIMOTO T. Peroxisomal β-oxidation and peroxisome proliferator-activated receptor α:an adaptive metabolic system[J]. Annual Review of Nutrition, 2001, 21(21): 193-230.
[43]
CHO H K, KONG H J, NAM B H, et al. Molecular cloning and characterization of olive flounder (Paralichthys olivaceus) peroxisome proliferator-activated receptor γ[J]. General and Comparative Endocrinology, 2009, 163(3): 251-258. DOI:10.1016/j.ygcen.2009.04.018
[44]
KLIEWER S A, SUNDSETH S S, JONES S A, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(9): 4318-4323. DOI:10.1073/pnas.94.9.4318
[45]
RIBET C, MONTASTIER E, VALLE C, et al. Peroxisome proliferator-activated receptor-α control of lipid and glucose metabolism in human white adipocytes[J]. Endocrinology, 2010, 151(1): 123-133. DOI:10.1210/en.2009-0726
[46]
ROSEN E D, SARRAF P, TROY A E, et al. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro[J]. Molecular Cell, 1999, 4(4): 611-617. DOI:10.1016/S1097-2765(00)80211-7
[47]
MOHAPATRA S, CHAKRABORTY T, REZA M A N, et al. Short-term starvation and realimentation helps stave off Edwardsiella tarda infection in red sea bream (Pagrus major)[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2017, 206: 42-53. DOI:10.1016/j.cbpb.2017.01.009
[48]
HERMENEGILDO C, MONFORT P, FELIPO V. Activation of N-methyl-D-aspartate receptors in rat brain in vivo following acute ammonia intoxication:characterization by in vivo brain microdialysis[J]. Hepatology, 2000, 31(3): 709-715. DOI:10.1002/hep.510310322
[49]
NILSSON-EHLE P, GARFINKEL A S, SCHOTZ M C. Lipolytic enzymes and plasma lipoprotein metabolism[J]. Annual Review of Biochemistry, 1980, 49: 667-693. DOI:10.1146/annurev.bi.49.070180.003315
[50]
HAN C Y, WEN X B, ZHENG Q M, et al. Effect of starvation on activities and mRNA expression of lipoprotein lipase and hormone-sensitive lipase in tilapia (Oreochromis niloticus×O.areus)[J]. Fish Physiology and Biochemistry, 2011, 37(1): 113-122. DOI:10.1007/s10695-010-9423-6
[51]
OKU H, KOIZUMI N, OKUMURA T, et al. Molecular characterization of lipoprotein lipase, hepatic lipase and pancreatic lipase genes:effects of fasting and refeeding on their gene expression in red sea bream Pagrus major[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2006, 145(2): 168-178. DOI:10.1016/j.cbpb.2006.06.008
[52]
MORASH A J, MCCLELLAND G B. Regulation of carnitine palmitoyltransferase (CPT) Ⅰ during fasting in rainbow trout (Oncorhynchus mykiss) promotes increased mitochondrial fatty acid oxidation[J]. Physiological and Biochemical Zoology, 2011, 84(6): 625-633. DOI:10.1086/662552
[53]
马细兰, 黄文俞, 刘炎丰. 饥饿-复投喂对虎龙斑FASCPT-1A表达的影响[J]. 惠州学院学报, 2018, 38(6): 15-20.
MA X L, HUANG W Y, LIU Y F. Effect of starvation and re-feeding on the expression of FAS and CPT-1A in Hulong grouper[J]. Journal of Huizhou University, 2018, 38(6): 15-20 (in Chinese). DOI:10.3969/j.issn.1671-5934.2018.06.003
[54]
BLACK D, SKINNER E R. Features of the lipid transport system of fish as demonstrated by studies on starvation in the rainbow trout[J]. Journal of Comparative Physiology B Biochemical Systemic & Environmental Physiology, 1986, 156(4): 497-502. DOI:10.1007/BF00691035
[55]
ÖLMEZ A, BAYIR M, WANG C F, et al. Effects of long-term starvation and refeeding on fatty acid metabolism-related gene expressions in the liver of zebrafish, Danio rerio[J]. Turkish Journal of Veterinary and Animal Sciences, 2015, 39(6): 654-660.