动物营养学报    2021, Vol. 33 Issue (2): 644-650    PDF    
叶黄素在反刍动物生产中应用的研究进展
吕仁龙 , 李茂 , 胡海超 , 周汉林     
中国热带农业科学院热带作物品种资源研究所, 儋州 571737
摘要: 叶黄素(lutein)是含氧类胡萝卜素,广泛存在于自然界中,具有着色功能和强抗氧化作用,近年来在动物饲养研究中,作为添加剂被逐渐关注。反刍动物可以通过采食植物饲料获得,也可以通过采食补充到饲粮中的添加剂获得。叶黄素不仅对反刍动物机体代谢和健康具有积极作用,还可以显著提升畜产品品质。人类摄取富含叶黄素的畜产品有助于机体健康。探究粗饲料中叶黄素含量的变化及其在动物生产中的应用,将有助于提升粗饲料价值和合理利用,也有助于叶黄素制剂推广和高品质畜产品生产。本文综述了叶黄素在植物饲料中的动态变化规律和对反刍动物机体代谢影响的国内外研究进展,深入了解叶黄素的功能,为其生产和应用提供参考。
关键词: 叶黄素    粗饲料    反刍动物    畜产品    应用    
Research Progress and Application of Lutein in Ruminant Production
LYU Renlong , LI Mao , HU Haichao , ZHOU Hanlin     
Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
Abstract: Lutein, an oxygen-containing carotenoid, widely exists in nature and has coloring function and strong antioxidant effect. Recently, lutein as an additive has aroused more attention in animal feeding research field. Ruminants could obtain lutein either from plant feed or from diets containing lutein. Lutein not only has positive effects on ruminant metabolism and health, but also can significantly improve the quality of animal products. In addition, these animal products rich in lutein contribute to the body of people. Exploring the changes of lutein content in forage and its application in animal production will contribute to improving the forage value and utilization, promoting the lutein preparations and increasing the production of high quality animal products. The review summarized the changes of lutein in plant feed and the effects of lutein on ruminant metabolism. Exploring the functions of lutein could provide related references for future production and application.
Key words: lutein    forage    ruminant    animal product    application    

叶黄素(lutein)属含氧类胡萝卜素,广泛存在于自然界植物中(如牧草、藻类和果蔬)[1],它可在人体内合成维生素A[2]。叶黄素具有多种生物学功能,其强抗氧化功能有助于增强机体免疫力[3],对多种癌症和心血管疾病具有抑制作用[4-5],同时可防止氧化引起的脂质过氧化[6]。叶黄素是人眼视网膜黄斑区主要组成成分,人体内不能自行合成叶黄素,外来食物是摄入叶黄素的唯一来源[7]。此外,叶黄素有显著的着色功能,研究人员针对这个功能,将其作为饲料和食品添加剂进行了大量研究[8-9]。一些研究者对添加了叶黄素的家禽和水产饲料进行了评价[10-11]。奶牛饲粮中补充叶黄素会直接影响乳制品的营养品质[12]。此外,Alvarez等[13]研究表明,叶黄素只出现在放牧羔羊的血浆中,这可以有助于很好地区分放牧羔羊和舍饲羔羊。研究结果显示,在反刍动物饲养过程中,以精饲料为主饲养的方式和完全以青绿饲料饲养的方式进行对比后发现,反刍动物脂肪组织和肉色存在显著差异[14-15]

在反刍动物饲养中,叶黄素的来源主要来自于青绿饲料和叶黄素制剂。尽管牧草中存在大量叶黄素,但由于栽培管理方式、日照降雨和加工处理方法的不同导致牧草中叶黄素的含量差异较大[16];此外,饲粮中的叶黄素转化到肉制品、脂肪组织和奶制品中的比例偏低,补充叶黄素制剂可以有效提升畜产品中叶黄素含量。叶黄素制剂主要提取自万寿菊的花瓣[17]。Jeon等[18]发现小球藻中也有大量叶黄素存在。随着需求量的不断扩大,研究者们开始关注利用体外培养方法获得游离态叶黄素[19]

近年来,反刍动物规模化饲养的高效发展加大了谷物饲料的投入,这对环境带来了巨大压力,因此,扩大粗饲料资源的利用效率对生态环境具有积极作用。另外,充分利用牧草中的色素资源,对改善粗饲料利用方法、提升粗饲料价值、动物健康饲养及获得高品质畜产品都具有重要意义[20-21]。综上所述,本文针对粗饲料中叶黄素和叶黄素制剂,结合国内外现有研究进展对牧草中叶黄素含量的变动和对反刍动物饲养的影响进行综述。

1 叶黄素含量在青绿饲料中的动态变化 1.1 叶黄素的结构与特性

叶黄素广泛存在于植物中,其化学式中含有2个酮环,3个手性中心,8种立体异构体,可在光合作用中捕获光能,调节植物生长和发育[22]。叶黄素难溶于水且稳定性差,易受氧、光、热、金属离子、pH等因素的影响[23]。作为一种抗氧化剂,叶黄素具有很强的抗氧化能力,可以消除活性氧自由基活性,防止正常细胞受损,从而保护机体免受代谢损伤[24-25]。在不同植物中,叶黄素以游离态和酯化形态存在[26],在制备叶黄素制剂过程中,需要将酯化态叶黄素经过皂化反应来提纯叶黄素[27]

1.2 叶黄素含量在青绿饲料中的变化

青绿饲料中的叶黄素含量受光合作用强弱的影响[28]。氮元素参与了植物光合作用,因此,对牧草施加氮肥可以显著提升叶黄素含量[29]。Lv等[16]对不同施肥条件和不同收割阶段条件下的意大利黑麦草中叶黄素含量进行了测定,发现早期收割样品中的叶黄素含量显著高于晚期收割样品中的叶黄素含量,并且都随施肥量增加而呈线性升高,特别是120 kg/hm2施氮肥条件下的早期收割样品中,叶黄素的含量高达1 003 mg/kg。Elgersma等[30]对多种牧草中叶黄素含量进行了测定,发现百脉根中的叶黄素含量最高,为206 mg/kg,菊苣、小地榆、葛缕子、车前草、黄香草木樨和苜蓿中的叶黄素含量分别为129、174、152、149、131和129 mg/kg。另外,研究表明大多数牧草中叶黄素含量与牧草产量呈负相关[16, 31]。Reynoso等[32]测定墨西哥境内干燥区域和潮湿区域的盘固草和狗牙根草混合物中的叶黄素含量后发现,在潮湿区域内,混合牧草的叶黄素平均含量为185 mg/kg,而干燥区域混合牧草的叶黄素平均含量仅为64 mg/kg。研究结果证明了地域和气候条件也会影响牧草中叶黄素的含量。李建华[33]探究了柱花草和象草中叶黄素在不同干燥条件和加工方法下的变动规律,结果表明牧草经高温干燥后色素损失量远远高于低温干燥,此外,相比制备草粉,制作压缩草块可显著减缓叶黄素的流失。

1.3 叶黄素含量在青贮过程中的变化规律

Lv等[29]探究了青贮过程中叶黄素含量的动态变化,发现在整个青贮过程中,叶黄素含量不发生变化,并且没有受到青贮品质的影响,在低pH的青贮环境中,叶黄素可以被完好的保存。因此,青贮中的叶黄素含量与青贮前原料中的叶黄素含量几乎相同,也会受到来自施肥水平和收割阶段的影响[16]。Kara等[34]在青贮玉米中添加了马来酸后,玉米青贮中叶黄素含量显著提高,可见青贮是保存粗饲料中叶黄素含量的有效手段。

2 叶黄素在反刍动物中的应用 2.1 叶黄素在反刍动物体内的代谢

Mora等[35]探究了叶黄素在瘤胃内的分解机制,尽管没有得到确切结果,但这些结果表明叶黄素在瘤胃内的消失可能是由于某些细胞成分的参与,而不是叶黄素分子在瘤胃内直接被破坏或受到瘤胃微生物的攻击所导致,上述结果也有待进一步探明。此外,叶黄素的代谢机制在不同品种动物或不同瘤胃环境下可能也存在差异。Cardinault等[36]认为瘤胃微生物具有释放共轭叶黄素的能力。研究表明,在奶牛饲粮中添加小球藻后发现,奶牛的血清和生长卵母细胞的叶黄素含量均有显著提高[37]。Jeon等[38]认为饲粮中的叶黄素在被反刍动物采食后,经由血液进入肝脏和乳腺堆积。有报告也指出,反刍动物中类胡萝卜素和视黄醇主要沉积在肝脏中[39]。Mireia Blanco等[40]也发现了叶黄素含量在放牧乳羊的肝脏中显著偏高。Wang等[41]筛选了叶黄素与乳腺代谢相关的乳腺蛋白,发现有33种相关蛋白发生变化,其中有15种呈现上升趋势,这些蛋白与奶牛的葡萄糖代谢、脂肪酸代谢和免疫功能有关。尽管不同品种反刍动物的脂肪颜色存在差异[42],但Dunne等[43]证实,通过对比肉牛脂肪组织颜色可以判断其饲养方式,在放牧条件下,脂肪黄度值显著偏高。Reynoso等[32]的试验分别对干燥和潮湿热带地区不同性别放牧牛的脂肪组织中叶黄素含量进行了监测,结果表明脂肪组织中叶黄素含量没有受到气候、区域和性别的影响。

Prache等[44]的研究表明,在羔羊、公羊和阉割羊的肾脏周围的脂肪组织中,叶黄素是沉积的唯一类胡萝卜素。Yang等[45]的研究表明,在羔羊脂肪组织中难以检测到叶黄素。Tucker等[46]早在1967年就已经发现绵羊的回肠和粪便中存在较多的叶黄素。盲肠和结肠不是叶黄素的主要吸收部位,由于叶黄素的亲脂性,反刍动物可能优先通过淋巴管完成对叶黄素的吸收[36]。周利梅等[47]详细探讨了叶黄素在山羊体内的吸收机制,在山羊小肠内,叶黄素的吸收量随灌注时间增长而上升,在灌注2 h后达到峰值,此外,在叶黄素灌注液中添加游离脂肪酸后可以显著促进吸收,上述现象的详细机理还有待进一步探明,相信这与肠道菌群、信号表达等存在潜在关联。上述研究大体揭示了叶黄素在不同品种反刍动物和不同饲养条件下的代谢规律,但没有报告指出叶黄素在反刍动物体内的详细代谢路径,这有必要在未来的研究中明确。

2.2 叶黄素对反刍动物畜产品的影响

叶黄素不仅通过抗氧化活性间接地影响乳制品的营养价值[12],而且还直接影响乳制品的感官特性,因为它可使消费者正面地感受到乳制品颜色偏黄[48]。Ripoll等[49]的研究发现在放牧条件下,牛血浆中的叶黄素含量显著升高,但当饲养条件由放牧变成干草饲喂后,血浆中叶黄素含量明显降低。可见饲粮中的叶黄素含量可以有效地推测反刍动物血浆和畜产品中叶黄素含量。

一般情况下,牛乳中叶黄素含量占总类胡萝卜素的12%~25%[50-51]。Mireia Blanco等[40]的研究对比了饲喂山羊鲜草和干草后羊乳中叶黄素含量,结果表明,鲜草饲养条件下的羊乳中叶黄素含量明显偏高。韩吉雨等[52]在奶牛饲粮中补充了叶黄素制剂,结果显示,在投喂10 d后,牛乳中的叶黄素含量显著高于对照组,但并没有影响牛乳产量、乳脂肪、乳蛋白和葡萄糖含量。Xu等[53]的试验表明,奶牛饲粮中,叶黄素制剂的最佳含量为150~200 g/(d·头),在这个范围内,叶黄素转化到牛乳中的比例约为0.08%,含量为1.2~1.5 μg/dL。试验结果还表明在奶牛饲粮中补充叶黄素制剂可以提高奶牛的抗氧化能力,改善机体免疫力,预防疾病[53]。Jeon等[38]的试验对荷斯坦奶牛投喂叶黄素后发现,最高剂量组牛乳中叶黄素的含量达71.9 μg/dL,这个结果高于Xu等[53]的结果40~50倍。引起这个差异的原因可能是由于叶黄素来源不同,也可能与饲养环境、基础饲粮等存在潜在关系。Mora-Gutierrez等[54]发现选择适当类型的酪蛋白对提高低脂类乳制品饮料中叶黄素的化学稳定性具有重要意义,结果将有助于提升叶黄素乳制品生产工艺。另外,与脂肪组织类似,放牧也增加了肌肉中叶黄素和视黄醇的含量[55],但没有报告进一步揭示反刍动物肌肉中叶黄素含量的变化机制。

3 小结

叶黄素是人类重要的功能性物质之一,对机体健康起到重要作用。青绿饲料中富含叶黄素,也是反刍动物体内和畜产品中叶黄素的主要来源,随着近年来叶黄素提取工艺成熟,在反刍动物饲粮内补充叶黄素制剂成为了生产高品质畜产品的主要手段。多项研究结果表明,在牧草栽培和生长过程中,影响叶黄素含量的因素较多,制定适当的栽培管理标准将有助于提升粗饲料品质和营养稳定。饲养方式、地域、饲粮的差异导致了畜产品品质的差异,在未来研究中有必要结合粗饲料中叶黄素资源,同时配合叶黄素制剂来制定完善的规模化饲养标准。此外,在反刍动物畜产品加工和保存的过程中,探究叶黄素在畜产品中的稳定性将有助于进一步明确叶黄素化学特性和畜产品生产标准。

参考文献
[1]
KRINSKY N I, JOHNSON E J. Carotenoid actions and their relation to health and disease[J]. Molecular Aspects of Medicine, 2005, 26(6): 459-516.
[2]
KARPPI J, LAUKKANEN J A, KURL S. Plasma lutein and zeaxanthin and the risk of age-related nuclear cataract among the elderly Finnish population[J]. British Journal of Nutrition, 2012, 108(1): 148-154. DOI:10.1017/S0007114511005332
[3]
MORAES M L, RIBEIRO A M L, SANTIN E, et al. Effects of conjugated linoleic acid and lutein on the growth performance and immune response of broiler chickens[J]. Poultry Science, 2016, 95(2): 237-246. DOI:10.3382/ps/pev325
[4]
王敏, 王晓黎, 沈慧. 叶黄素预防心血管疾病的研究进展[J]. 职业与健康, 2020, 36(3): 424-427.
WANG M, WANG X L, SHEN H. Research progress of lutein in preventing cardiovascular diseases[J]. Occupation and Health, 2020, 36(3): 424-427 (in Chinese).
[5]
SCHWEIGERT F J, REIMANN J. Micronutrients and their relevance for the eye-function of lutein, zeaxanthin and omega-3 fatty acids[J]. Klin Monbl Augenheilkd, 2011, 228(6): 537-543. DOI:10.1055/s-0029-1245527
[6]
WANG M X, JIAO J H, LI Z Y, et al. Lutein supplementation reduces plasma lipid peroxidation and C-reactive protein in healthy nonsmokers[J]. Atherosclerosis, 2013, 227(2): 380-385. DOI:10.1016/j.atherosclerosis.2013.01.021
[7]
杨雨江, 张辉, 崔焕忠, 等. 叶黄素生物学功能及其在饲料中应用的研究进展[J]. 中国畜牧兽医, 2014, 41(5): 121-124.
YANG Y J, ZHANG H, CUI H Z, et al. Reaserch progress on biology function of lutein and its application in feed[J]. China Animal Husbandry & Veterinary Medicine, 2014, 41(5): 121-124 (in Chinese).
[8]
孙涵潇, 邓若蕾, 程树品, 等. 叶黄素对婴幼儿的功能及其在婴幼儿配方食品中的应用[J]. 营养学报, 2019, 41(5): 501-506.
SUN H X, DENG R L, CHENG S P, et al. Function of lutein on infants and its application in infant formula[J]. Acta Nutrimenta Sinica, 2019, 41(5): 501-506 (in Chinese). DOI:10.3969/j.issn.0512-7955.2019.05.016
[9]
PELZ R, SCHMIDT-FABER B, HESEKER H. Carotenoid intake in the German national food consumption survey[J]. Zeitschrift für Ernährungswissenschaft, 1998, 37(4): 319-327. DOI:10.1007/s003940050032
[10]
赵典惠, 吴秀丽, 曾胡龙. 天然叶黄素在水产饲料中的研究与应用[J]. 当代水产, 2019, 44(1): 94-96.
ZHAO D H, WU X L, ZENG H L. Research and application of natural lutein in aquatic feed[J]. Current Fisheries, 2019, 44(1): 94-96 (in Chinese).
[11]
张权, 李辉, 徐鹏, 等. 叶黄素对蛋鸡蛋黄颜色、生产性能及蛋品质的影响[J]. 中国家禽, 2019, 41(6): 33-36.
ZHANG Q, LI H, XU P, et al. Effect of lutein on yolk color, production performance and egg quality of layers[J]. China Poultry, 2019, 41(6): 33-36 (in Chinese).
[12]
ANTONE U, STERNA V, ZAGORSKA J. Carotenoid potential to protect cow's milk fat against oxidative deterioration[J]. World Academy of Science, Engineering and Technology, 2012, 6(4): 200-204.
[13]
ÁLVAREZ R, MELÉNDEZ-MARTÍNEZ A J, VICARIO I M, et al. Effect of pasture and concentrate diets on concentrations of carotenoids, vitamin A and vitamin E in plasma and adipose tissue of lambs[J]. Journal of Food Composition and Analysis, 2014, 36(1/2): 59-65.
[14]
BLANCO M, CASAS U ' S I, RIPOLL G, et al.The use of subcutaneous fat colour to trace grass-feeding in Parda de Montaña yearling bulls[M]//BOUCHE R, DERKIMBA A, CASABIANCA F.New trends for innovation in the mediterranean animal production.Wageningen: Wageningen Academic Publishers, 2011: 206-209.
[15]
RIPOLL G, ALVAREZ-RODRIGUEZ J, SANZ A, et al. The capability of alfalfa grazing-and concentrate-based feeding systems to produce homogeneous carcass quality in light lambs over time[J]. Spanish Journal of Agricultural Research, 2004, 12(1): 167-179.
[16]
LV R L, EL-SABAGH M, OBITSU T, et al. Effects of nitrogen fertilizer and harvesting stage on photosynthetic pigments and phytol contents of Italian ryegrass silage[J]. Animal Science Journal, 2017, 88(10): 1513-1522. DOI:10.1111/asj.12810
[17]
D'ESTE M, DE FRANCISCI D, ANGELIDAKI I. Novel protocol for lutein extraction from microalga Chlorella vulgaris[J]. Biochemical Engineering Journal, 2017, 127: 175-179. DOI:10.1016/j.bej.2017.06.019
[18]
JEON J Y, KIM K E, IM H J, et al. The production of lutein-enriched eggs with dietary chlorella[J]. Korean Society for Food Science of Animal Resources, 2012, 32(1): 13-17. DOI:10.5851/kosfa.2012.32.1.13
[19]
徐晓辉, 王莉洁, 孙丹, 等. 万寿菊悬浮培养细胞生产游离叶黄素工艺的研究[J]. 生物化工, 2020, 6(2): 5-9.
XU X H, WANG L J, SUN D, et al. Study on the process of producing free lutein by cell suspension cultures of Tagetes erecta L.[J]. Biological Chemical Engineering, 2020, 6(2): 5-9 (in Chinese).
[20]
吕仁龙, 李茂, 胡海超, 等. 叶绿素在反刍动物饲养中应用的研究进展[J]. 动物营养学报, 2019, 31(2): 509-514.
LYU R L, LI M, HU H C, et al. Research progress of chlorophyll application for ruminants feeding[J]. Chinese Journal of Animal Nutrition, 2019, 31(2): 509-514 (in Chinese). DOI:10.3969/j.issn.1006-267x.2019.02.003
[21]
吕仁龙, 丁兰兰, 李茂, 等. β-胡萝卜素在反刍动物营养中应用的研究进展[J]. 动物营养学报, 2019, 31(9): 3639-3943.
LYU R L, DING L L, LI M, et al. Research process of β-carotene for application in nutrition of ruminants[J]. Chinese Journal of Animal Nutrition, 2019, 31(9): 3639-3943 (in Chinese).
[22]
LADO J, ZACARÍAS L, RODRIGO M J.Regulation of carotenoid biosynthesis during fruit development[M]//STANGE C.Carotenoids in nature.Cham: Springer, 2016: 161-162.
[23]
MITRI K, SHEGOKAR R, GOHLA S, et al. Lutein nanocrystals as antioxidant formulation for oral and dermal delivery[J]. International Journal of Pharmaceutics, 2011, 420(1): 141-146. DOI:10.1016/j.ijpharm.2011.08.026
[24]
ZHANG L X, COONEY R V, BERTRAM J S. Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/10T1/2 cells:relationship to their cancer chemopreventive action[J]. Carcinogenesis, 1991, 12(11): 2109-2114. DOI:10.1093/carcin/12.11.2109
[25]
CHEW B P, WONG M W, WONG T S. Effects of lutein from marigold extract on immunity and growth of mammary tumors in mice[J]. Anticancer Research, 1996, 16(6B): 3689-3694.
[26]
PICCAGLIA R, MAROTTI M, GRANDI S. Lutein and lutein ester content in different types of Tagetes patula and T. erecta[J]. Industrial Crops and Products, 1998, 8(1): 45-51. DOI:10.1016/S0926-6690(97)10005-X
[27]
ARAYA B, GOUVEIA L, NOBRE B, et al. Evaluation of the simultaneous production of lutein and lipids using a vertical alveolar panel bioreactor for three Chlorella species[J]. Algal Research, 2014, 6: 218-222. DOI:10.1016/j.algal.2014.06.003
[28]
BALLET N, ROBERT J C, WILLIAMS, P E V.Vitamins in forages[M]//GIVENS D I, OWEN E, AXFORD R F E, et al.Forage evaluation in ruminant nutrition.Wallingford, UK: CABI Publishing, 2000.
[29]
LV R L, EL-SABAGH M, OBITSU T, et al. Effect of varying fermentation conditions with ensiling period and inoculum on photosynthetic pigments and phytol content in Italian ryegrass (Lolium multiflorum Lam.) silage[J]. Animal Science Journal, 2020, 91(1): e13309. DOI:10.1111/asj.13309
[30]
ELGERSMA A, SØEGAARD K, JENSEN S K. Fatty acids, α-tocopherol, β-carotene, and lutein contents in forage legumes, forbs, and a grass-clover mixture[J]. Journal of Agricultural and Food Chemistry, 2013, 61(49): 11913-11920. DOI:10.1021/jf403195v
[31]
ELGERSMA A, SØEGAARD K, JENSEN S K. Interrelations between herbage yield, α-tocopherol, β-carotene, lutein, protein, and fiber in non-leguminous forbs, forage legumes, and a grass-clover mixture as affected by harvest date[J]. Journal of Agricultural and Food Chemistry, 2015, 63(2): 406-414.
[32]
REYNOSO C R, MORA O, NIEVES V, et al. β-carotene and lutein in forage and bovine adipose tissue in two tropical regions of Mexico[J]. Animal Feed Science and Technology, 2004, 113(1/2/3/4): 183-190.
[33]
李建华. 不同加工贮存方法对牧草天然色素的影响[J]. 饲料研究, 2002(5): 30-32.
LI J H. Effects of different processing and storage methods on natural pigments of forage[J]. Feed Research, 2002(5): 30-32 (in Chinese).
[34]
KARA K. Effect of maleic acid on nutritive value, carotenoids content and in vitro digestibility of maize silage[J]. Animal Nutrition and Feed Technology, 2017, 17(2): 245-254.
[35]
MORA O, ROMANO J L, GONZÁLez E, et al. In vitro and in situ disappearance of β-carotene and lutein from lucerne (Medicago sativa) hay in bovine and caprine ruminal fluids[J]. Journal of the Science of Food and Agriculture, 1999, 79(2): 273-276.
[36]
CARDINAULT N, DOREAU M, PONCET C, et al. Digestion and absorption of carotenoids in sheep given fresh red clover[J]. Animal Science, 2006, 82(1): 49-55.
[37]
AN B K, JEON J Y, KANG CW, et al. The tissue distribution of lutein in laying hens fed lutein fortified chlorella and production of chicken eggs enriched with lutein[J]. Korean Society for Food Science of Animal Resources, 2014, 34(2): 172-177.
[38]
JEON J Y, PARK K K, LEE K W, et al. Dietary effects of lutein-fortified chlorella on milk components of Holstein cows[J]. SpringerPlus, 2016, 5(1): 908.
[39]
ÁLVAREZ R, MELÉNDEZ-MARTÍNEZ A J, VICARIO I M, et al. Carotenoid and vitamin A contents in biological fluids and tissues of animals as an effect of the diet:a review[J]. Food Reviews International, 2015, 31(4): 319-340.
[40]
BLANCO M, LOBÓN S, BERTOLÍN J R, et al. Effect of the maternal feeding on the carotenoid and tocopherol content of suckling lamb tissues[J]. Archives of Animal Nutrition, 2019, 73(6): 472-484.
[41]
WANG C H, WANG C, LIU J X, et al. Proteomic analysis of the effects of lutein on mammary gland metabolism in dairy cows[J]. Journal of Dairy Research, 2018, 85(2): 152-156.
[42]
NOZIÈRE P, GRAULET B, LUCAS A, et al. Carotenoids for ruminants:from forages to dairy products[J]. Animal Feed Science and Technology, 2006, 131(3/4): 418-450.
[43]
DUNNE P G, MONAHAN F J, O'MARA F P, et al. Colour of bovine subcutaneous adipose tissue:a review of contributory factors, associations with carcass and meat quality and its potential utility in authentication of dietary history[J]. Meat Science, 2009, 81(1): 28-45.
[44]
PRACHE S, PRIOLO A, GROLIER P. Effect of concentrate finishing on the carotenoid content of perirenal fat in grazing sheep:its significance for discriminating grass-fed, concentrate-fed and concentrate-finished grazing lambs[J]. Animal Science, 2003, 77(2): 225-233.
[45]
YANG A, LARSEN T W, TUME R K. Carotenoid and retinol concentrations in serum, adipose tissue and liver and carotenoid transport in sheep, goats and cattle[J]. Australian Journal of Agricultural Research, 1992, 43(8): 1809-1817.
[46]
TUCKER R E, MITCHELL G E, LITTLE C O. Absorption of labelled carotene from the large intestine of sheep[J]. Journal of Animal Science, 1967, 26: 225.
[47]
周利梅, 周光宏, 陈波. 山羊对β-胡萝卜素与叶黄素吸收的研究[J]. 动物营养报, 2003, 15(2): 29-32, 44.
ZHOU L M, ZHOU G H, CHEN B. Studies on the absorption of β-carotene and lutein by goats[J]. Chinese Journal of Animal Nutrition, 2003, 15(2): 29-32, 44 (in Chinese).
[48]
SERRANO E, PRACHE S, CHAUVEAU-DURIOT B, et al. Traceability of grass-feeding in young beef using carotenoid pigments in plasma and adipose tissue[J]. Animal Science, 2006, 82(6): 909-918.
[49]
RIPOLL G, CASAS U ' S I, JOY M, et al. Fat color and reflectance spectra to evaluate the β-carotene, lutein and α-tocopherol in the plasma of bovines finished on meadows or on a dry total mixed ration[J]. Animal Feed Science and Technology, 2015, 207: 20-30.
[50]
MARTIN B, FEDELE V, FERLAY A, et al.Effect of grass based diets on the content of micronutrients and fatty acids in bovine and caprine dairy products[C]//Proceedings of the 20th General Meeting of the European Grassland Federation.Luzern: [s.n.], 2004: 876-886.
[51]
CALDERÓN F, TORNAMBÉ G, MARTIN B, et al. Effects of mountain grassland maturity stage and grazing management on carotenoids in sward and cow's milk[J]. Animal Research, 2006, 55(6): 533-544.
[52]
韩吉雨, 宋丽华, 王典, 等. 日粮中添加叶黄素对牛乳理化指标的影响[J]. 中国畜牧兽医, 2013, 40(增刊1): 121-125.
HAN J Y, SONG L H, WANG D, et al. Effect of diet lutein on bovine milk physical and chemistry parameters[J]. China Animal Husbandry & Veterinary Medicine, 2013, 40(Suppl.1): 121-125 (in Chinese).
[53]
XU C Z, WANG H F, YANG J Y, et al. Effects of feeding lutein on production performance, antioxidative status, and milk quality of high-yielding dairy cows[J]. Journal of Dairy Science, 2014, 97(11): 7144-7150.
[54]
MORA-GUTIERREZ A, ATTAIE R, NÚÑEZ DE GONZÁLEZ M T, et al. Complexes of lutein with bovine and caprine caseins and their impact on lutein chemical stability in emulsion systems:effect of arabinogalactan[J]. Journal of Dairy Science, 2018, 101(1): 18-27.
[55]
OSORIO M T, ZUMALACÁRREGUI J M, CABEZA E A, et al. Effect of rearing system on some meat quality traits and volatile compounds of suckling lamb meat[J]. Small Ruminant Research, 2008, 78(1/2/3): 1-12.