动物营养学报    2021, Vol. 33 Issue (2): 698-709    PDF    
谷物不同加工处理方式在反刍动物饲粮中的应用
马晓文1 , 李飞1 , 李发弟1,2 , 郭龙1     
1. 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 农业农村部草牧业创新重点实验室, 兰州 730020;
2. 甘肃省肉羊繁育生物技术工程实验室, 民勤 733300
摘要: 集约化养殖中,饲喂高精料饲粮已成为提高肉牛、肉羊等反刍动物经济效益的一种营养策略。但反刍动物摄入过多精料会造成谷物在瘤胃中快速降解,瘤胃液挥发性脂肪酸(VFA)大量积累,pH急剧下降,增加反刍动物患亚急性瘤胃酸中毒(SARA)的风险。对谷物进行加工处理能够改变谷物在瘤胃中的降解速率,进而改善反刍动物的瘤胃发酵、养分消化和生产性能。而谷物加工方式不同,对反刍动物产生的影响也不同。本文分析了淀粉在瘤胃中的降解过程以及淀粉特性对淀粉消化率的影响,综述了国内外常见谷物加工处理方式在反刍动物饲粮中应用的研究成果,为谷物饲料在反刍动物饲粮中的合理利用提供参考。
关键词: 谷物    反刍动物    加工处理方式    生产性能    瘤胃健康    
Application of Different Processing Methods of Cereals in Diet for Ruminants
MA Xiaowen1 , LI Fei1 , LI Fadi1,2 , GUO Long1     
1. State Key Laboratory of Grassland Agro-Ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
2. Engineering Laboratory of Mutton Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin 733300, China
Abstract: In intensive farming, feeding high-concentration diet has become a nutritional strategy to increase the economic benefits of ruminants such as beef cattle and mutton sheep. However, excessive intake of too much concentrates for ruminants will cause rapid degradation of cereals in the rumen, a large amount of volatile fatty acids (VFA) in the rumen fluid, and a sharp drop in pH, increasing the risk of subacute ruminal acidosis. Processing cereals can change the degradation rate of cereals in the rumen, thereby improving rumen fermentation, nutrient digestion and performance. Different processing methods of cereals have different effects on ruminants. In this paper, the degradation process of starch in the rumen and the effect of starch characteristics on starch digestibility, the research results of common processing of cereals in ruminant diets at home and abroad were reviewed, which provided a reference for the rational use of cereal feed in ruminant diets.
Key words: cereal    ruminants    grain processing methods    performance    rumen health    

近年来,饲喂高能、高谷物饲粮已成为高产反刍动物典型的营养措施[1-2],这种饲喂模式在满足反刍动物能量需求的同时,亦增加其患亚急性瘤胃酸中毒(subacute ruminal acidosis,SARA)的风险[3-4]。SARA发生后会影响反刍动物瘤胃内环境稳定、微生物区系平衡和代谢,进而引起肝脏脓肿和蹄叶炎等并发症[5-7]。据报道,对高产反刍动物饲粮中的谷物进行粉碎处理[8-9]以及添加有机酸[10-11]、乳酸[12]和酶[13-14]等方法能够通过改变淀粉结构或降解部位[15-16],进而改变养分消化率,对缓解SARA的发生起到积极的作用。目前,国内外谷物加工处理方式多种多样,对反刍动物的作用效果也不一致,而且对各加工处理方式的难易程度、成本和安全等问题尚未有全面的认识。因此,本文结合淀粉在瘤胃中的降解过程以及淀粉特性对淀粉消化率的影响,综述了国内外通过对谷物进行加工处理提高反刍动物生产性能和消化道健康的研究成果,为谷物饲料在反刍动物生产中的合理利用提供参考。

1 淀粉在反刍动物消化道中的降解过程

淀粉是谷物饲料中的主要能量物质,对反刍动物营养具有重要作用。在反刍动物瘤胃中,淀粉大部分在瘤胃微生物和麦芽糖酶的作用下水解为葡萄糖,再经微生物降解为宿主和微生物生长的能量源——挥发性脂肪酸(volatile fatty acids,VFA)[17];有一部分淀粉未被降解随食糜进入小肠,即为过瘤胃淀粉。过瘤胃淀粉在胰腺α-淀粉酶和黏膜寡糖酶的作用下水解成为葡萄糖,葡萄糖不仅是反刍动物重要的能量来源,还参与乳糖的合成,决定产奶量。适宜的过瘤胃淀粉还有利于瘤胃氮源的利用和微生物蛋白的合成[18]。肉牛在短期强度育肥时饲粮中精料比例通常可达70%以上,因此通过调控反刍动物育肥饲粮中的淀粉降解,提高过瘤胃淀粉比例显得尤为重要。而在小肠中未被消化吸收的淀粉和葡萄糖进入大肠后,被大肠微生物发酵利用或随粪便排出[12]。当反刍动物采食过多谷类饲料,会使瘤胃内容物高度异常发酵而产生大量的VFA,引起严重的消化紊乱,降低养分的利用效率,甚至产生酸中毒的危险[19]。在实际生产中,通常对谷物饲料进行加工处理后再进行饲喂,这不仅可以提高谷物淀粉的瘤胃降解率,而且能够改变谷物淀粉降解部位使能量合理利用,对于充分发挥反刍动物最佳生产性能和保证瘤胃健康具有重要的意义。谷物加工处理方式多样,在瘤胃中的降解程度也随之不同,这对反刍动物的瘤胃健康、养分消化和生产性能的影响也不一致。因此,针对不同种类的反刍动物,选择适宜的谷物加工方式,对保障动物健康和提高生产效益意义重大[20]

2 谷物淀粉结构特性对其消化率的影响 2.1 分子结构

淀粉是植物养分的储存形式,谷物中含有大量的淀粉[21],一般占到饲粮干物质的20%~40%。谷物中大部分淀粉存在于胚乳中,含量较高,达70%左右,胚乳有2种:一种是角状胚乳,含角状胚乳的淀粉镶嵌于蛋白质中,会阻碍其降解;另一种是粉状胚乳,位于谷物最内层,为谷物中淀粉最富集的区域,较角状胚乳更易消化。胚乳中淀粉的基本单位称为淀粉颗粒,镶嵌在淀粉-蛋白质基质中[22-23],阻碍微生物对淀粉颗粒的消化。通过Meta分析发现,因谷物类型不同,瘤胃淀粉降解率的差异较大,如大麦和小麦分别比玉米高出17%和25%[24],这是因为谷物类型不同其结构也随之不同,因此更需要进行加工来促进其合理的瘤胃发酵。淀粉是由许多葡萄糖分子连接起来的链状高分子化合物,分为直链淀粉和支链淀粉[25-26],如图 1-h图 1-g所示。直链淀粉的平均相对分子质量在1×105~9×106[27],支链淀粉的平均相对分子质量在1×107~1×109,是存在于自然界中最大的高聚物之一[28]。在淀粉颗粒形成的过程中,直链淀粉穿插在支链淀粉中间,形成致密的氢键,阻止消化酶的侵入,降低了淀粉发酵[29]。直链淀粉与支链淀粉的比值越大,淀粉消化率越低[30]。因此,直链淀粉比例的增加会使淀粉降解更困难。目前已有相关谷物淀粉结构的改变对其养分利用影响的研究,如Sun等[31]研究了大麦籽粒中分子结构的改变显著影响了谷物的养分利用和生物降解。

(a):淀粉颗粒starch granules;(b):非结晶和半结晶生长环amorphous and semicrystalline growth rings;(c):非结晶区和结晶区amorphous and crystalline lamellae;(d):淀粉小体starch blocklets;(e):支链淀粉双螺旋结构amylopectin double helixes;(f):纳米晶体nanocrystals;(g):支链淀粉分子结构amylopectin’s molecular structure;(h):直链淀粉分子结构amylose’s molecular structure。
Amorphous growth ring:非结晶环;Amorphous lamella:非结晶薄片;Crystalline lamella:结晶薄片;Blocklets:小体;Lipid:脂质;Reducing end:还原端;Nanocrystals:纳米晶体;Amylopectin:支链淀粉:Amylose;直链淀粉。
图 1 淀粉的多尺度结构 Fig. 1 Starch multiscale structure[32]
2.2 晶体结构

淀粉颗粒的共同特性是具有一定的形态和结晶性,有结晶区和非结晶区(图 1-c),水分可自由穿梭于非结晶区,却不易渗入结晶区,微生物也难以进入,因而会降低其消化率和降解速率。淀粉颗粒的结晶度受直链淀粉含量[33]、支链淀粉长度[34]和淀粉颗粒大小[35]等因素的影响。结晶区主要由支链淀粉组成,组成淀粉颗粒的致密层;而非结晶区由直链淀粉组成,组成淀粉颗粒的疏松层[36]。谷物淀粉的来源不同,结晶形态也不同,天然玉米的淀粉颗粒较大,易受各种淀粉酶的作用[37],块茎的淀粉颗粒由短支链淀粉形成双螺旋结构的晶体薄片构成,能够抵抗淀粉酶的水解。淀粉的晶体结构中有双螺旋结构和氢键,这削弱了淀粉酶对淀粉的消化作用,因此越大的晶体区越不利于淀粉的消化[38]

2.3 糊化特性

淀粉完全糊化通常是指在水分充足的条件下,加热达到一定温度,淀粉颗粒吸水膨胀、破裂、瓦解,失去可识别颗粒形状的过程[39]。淀粉糊化后,原有的淀粉晶体结构被改变,更易与消化酶发生反应[40]。淀粉颗粒晶体度越大,越不容易被糊化,糊化温度就越高[38]。根据酶解特性,淀粉可分为快速消化淀粉、慢速消化淀粉及抗性淀粉(resistant starch,RS),其中RS对消化酶有较强的消化抗性,含有较高RS的饲粮能起到降低瘤胃消化率的作用[41],RS对热稳定,具有致密而不易被糊化的颗粒结构,能够抵制消化酶作用[42]。RS能够绕过消化道上端(如瘤胃),在小肠中被消化[43]。由此可见,RS的存在阻碍着淀粉的消化。而RS的形成受淀粉的结晶度,颗粒结构、直链淀粉与支链淀粉的比例等因素的影响[44]

3 反刍动物饲粮中的谷物加工处理方式

谷物作为反刍动物主要的能量来源,其在反刍动物消化道的合理利用对调控反刍动物瘤胃健康和生产性能有着重要意义[45]。对谷物进行不同方式的加工处理,可通过改变瘤胃内的淀粉降解程度和消化位点,促进谷物在反刍动物消化道的发酵最大化,进而提高生产效益,同时避免消化紊乱(如酸中毒、瘤胃鼓气等)[46]

3.1 粉碎处理

谷物经过粉碎处理,破坏了阻碍其降解的淀粉-蛋白质基质结构,使更多的粉状胚乳暴露出来,增加了瘤胃微生物和消化酶与胚乳的接触几率[47-48],进而提高谷物在瘤胃中的消化率。大量研究表明,将玉米进行粉碎处理,可改善奶牛各消化器官对淀粉的消化率[49],并提高奶牛产奶量、乳脂率、乳蛋白率和饲料效率[50]。谷物粉碎粒度不同,与微生物接触的表面积就不同,饲喂反刍动物产生的效果也不同。Blasel等[51]发现,玉米粒平均粒径每增加100 μm,α-淀粉酶与淀粉的可接触性就会降低2.7%。如表 1所示,细粉碎能够使养分消化率提高[52-53],但其在瘤胃内的降解速度快,流通速率高,同时也不利于刺激反刍动物反刍,导致唾液量的分泌减少,对瘤胃的缓冲作用降低,同时瘤胃液乙酸比例降低、丙酸比例增加、pH降低,反而增加了患SARA的风险[54-55]。Maulfair等[55]研究表明,增加大麦颗粒的粉碎粒度会影响瘤胃对淀粉的降解和肠道对淀粉的消化,从而增加犊牛的干物质采食量和平均日增重。Ferraretto等[24]通过Meta分析发现,泌乳奶牛饲粮中的粉碎玉米的平均粒径从500~1 000 μm增加到3 500~4 000 μm,导致淀粉消化率从93.3%降低到77.7%。谷物粉碎粒度的增加也增加了过瘤胃淀粉的含量,促进了淀粉在小肠的消化,能够降低反刍动物发生SARA的几率[56]。因此,选择适宜的粉碎粒度是很有必要的,但目前关于谷物适宜粉碎粒度的相关研究还较少。Callison等[57]在未热处理的情况下,在泌乳奶牛的浓缩精料中测试了3种平均粒径分别为1.2、2.6和4.8 mm的粉碎玉米,得出平均粒径1.2 mm可以作为泌乳奶牛饲粮中玉米颗粒的理想平均粒径的结论。Maulfair等[58]研究发现,试验用玉米在没有进行热处理或蒸汽处理的情况下,以粉碎形式在精料中添加时的最佳平均粒径为0.7~1.0 mm。

表 1 谷物类型及其不同粉碎粒度对反刍动物消化和生产性能的影响 Table 1 Effects of cereal types and their different particle sizes on digestion and performance of ruminants

对谷物进行粉碎处理,经济成本低,可使谷物发生不完全糊化,谷物结构破裂,增加与瘤胃微生物接触的面积,加快谷物淀粉在瘤胃中降解。但谷物的粉碎粒度是影响谷物淀粉在瘤胃中降解的一个主导因素,总结发现:1)对谷物进行粉碎处理能提高淀粉在反刍动物瘤胃中的消化率;2)谷物粉碎的越细,淀粉在瘤胃中的降解速度就越快,这会降低瘤胃液pH,增加SARA发生的几率;3)谷物粉碎粒度的增加缓解了瘤胃淀粉降解率,促进了淀粉在小肠的消化,缓解了SARA的发生。最优谷物粉碎粒度的选择还需综合考虑动物类型、谷物种类以及生产要求等因素。

3.2 蒸汽压片

蒸汽压片是谷物常见的热处理方式,处理过程不仅会对谷物进行糊化,还能改变谷物的晶体结构,使谷物淀粉更好地被反刍动物利用。Xu等[61]用聚丙烯酰氨凝胶电泳(SDS-PAGE)检测γ-玉米醇溶蛋白模式,并用扫描电子显微镜和小角度X射线散射获得淀粉颗粒的形态,结果证明生玉米片和蒸汽压片玉米之间的玉米醇蛋白和淀粉颗粒理化结构具有差异,蒸汽压片通过改变玉米淀粉水解细菌的附着过程来提高淀粉瘤胃降解率和程度。张亚伟等[62]用蒸汽压片玉米替代粉碎玉米对鲁西阉黄牛进行了研究,结果显示,在饲粮中使用蒸汽压片玉米全部替代粉碎玉米可以在不影响屠宰性能和肉品质的基础上,显著提高鲁西阉黄牛的平均日增重和饲料转化效率,并在一定程度上能够提高牛肉的质量等级。Pérez等[63]认为与粉碎处理相比,蒸汽压片处理可实现更完全地糊化,增加淀粉的利用率,进一步显著增加瘤胃可降解淀粉的含量。Yarandi等[64]研究发现,蒸汽压片玉米比细粉碎玉米有较低的密度,较大的含水量和平均粒径,喂食蒸汽压片玉米奶牛的干物质和粗蛋白质的咀嚼时间长。与粉碎和膨化处理谷物相比,以蒸汽压片处理谷物饲喂反刍动物能够提高反刍动物的生产性能[62, 65-66],但对纤维消化率的影响却不一致[64, 66](如表 2所示),这可能是因为谷物来源不同。Ren等[67]使用16S rRNA测序技术,揭示了蒸汽压片玉米提高反刍动物生产性能的潜在机制,饲喂蒸汽压片玉米组母牛瘤胃微生物菌群内厚壁菌门(Firmicutes)和变形菌门(Proteobacteria)的相对丰度倾向于增加或显著增加,琥珀酸弧菌属(Succinivibrio)、罗氏菌属(Roseburia)和布劳特氏菌属(Blautia)等淀粉分解菌的相对丰度增加,降低了纤维分解菌的相对丰度。由此可见,对谷物进行蒸汽压片处理对反刍动物的养分消化和生产性能都有积极的作用,但该方式受多种因素的影响,如压片厚度、淀粉糊化度等[68],还需进一步考虑加工工艺。

表 2 蒸汽压片处理谷物对反刍动物消化和生产性能的影响 Table 2 Effects of cereals treated with steam-flaking on digestion and performance of ruminants
3.3 有机酸处理

采用适当的化学物质处理玉米,可破坏其纤维结构,增加其消化性和营养价值。目前诸多学者认为用有机酸等化学物质处理谷物能够影响淀粉的消化特性,如乳酸能减缓淀粉酶对淀粉的酶解作用[71],有降低饲粮瘤胃降解率的作用,这可能是因为乳酸处理改变了淀粉结构,使支链淀粉直链化,限制了淀粉酶酶解[72]。Iqbal等[73]用0.5%乳酸处理大麦后饲喂奶牛,发现乳酸处理可使大麦可溶性淀粉的比例降低8%,抗性淀粉的比例提高17.7%,从而降低瘤胃中总VFA的浓度;同时还发现,乳酸处理大麦能使其在瘤胃中的淀粉降解速度变慢,进而降低奶牛患SARA的风险,而且发现乳酸处理提高了过瘤胃淀粉的比例,使淀粉在小肠进一步消化,这促进了糖原化合物尤其是葡萄糖和丙酸的吸收[74]。Khol-Parisini等[75]发现,当乳酸浓度升高到5%时,乳酸处理显著降低瘤胃液pH,增加了瘤胃液pH < 6.0的时长,进而增加了奶牛患SARA的风险。汪水平等[12]分别用5和10 g/L乳酸溶液浸泡大麦,结果发现显著提高了奶牛瘤胃液pH,降低了瘤胃液短支链脂肪酸(SCFA)的浓度。由此可见,乳酸浸泡谷物能够改变谷物颗粒的化学结构,增加瘤胃抗性淀粉含量,有效降低瘤胃内淀粉降解速度,从而使瘤胃液pH维持在正常水平,这对反刍动物瘤胃健康的维持起到关键作用,但还需考虑乳酸处理浓度这一因素。Kazemi-Bonchenari等[10]发现,饲喂柠檬酸浸泡过的大麦能够显著提高后备荷斯坦奶牛的瘤胃液pH。由此可见,有机酸处理谷物颗粒:1)能够通过降低淀粉瘤胃降解速率,提高瘤胃液pH,降低患SARA等营养代谢病的风险;2)能够增加过瘤胃淀粉比例,改变淀粉的消化降解位置,促进淀粉在小肠消化,提高能量利用效率,更有利于反刍动物生长育肥,但后续还需考虑酸浓度、处理时间和成本等问题。

3.4 酶制剂处理

酶制剂因其绿色、环保等优点广泛应用于动物营养和饲料工业[76]。目前已有很多学者研究发现,酶制剂的添加可显著提高反刍动物瘤胃微生物菌群数量、养分消化和生产性能[77-78],酶制剂具有专一性、处理时间短的优点[79]。但目前酶制剂主要是应用于青贮饲料和粗饲料来源饲粮,在谷物颗粒上的应用还较少。扈添琴等[80]在以玉米和大麦为主的高精料饲粮中添加酶制剂(由纤维素酶、木聚糖酶、葡聚糖酶活性、甘露寡糖酶组成),发现当奶牛瘤胃液pH < 6.0时,酶制剂的添加不仅能提高其对纤维的降解,刺激瘤胃消化酶活性,还能打破细胞壁的屏障作用,使细胞内的淀粉、蛋白质和脂肪等养分从细胞中释放出来,更好地与内源消化酶作用,从而提高饲料的利用率。Tagawa等[54]以0、0.1、0.5、1.0和2.0 mg/g的纤维素酶处理大麦,发现大麦的离体干物质消失率随着纤维素酶剂量的增加而增加,发酵液pH则呈下降趋势。Nozière等[81]研究了外源性淀粉酶制剂对奶牛低、高淀粉饲粮的影响,结果表明,以玉米为淀粉来源的饲粮添加酶制剂后对瘤胃淀粉消化率有所提高,但对全消化道淀粉消化率无显著影响。由此可见,谷物饲粮中不论是添加外源纤维素酶还是淀粉酶,随着酶剂量的提高,其瘤胃淀粉消化率也在随之提高,但为了瘤胃健康,外源酶的添加剂量不应过高。近年来,学者还发现淀粉脱支酶起到了使淀粉脱支、增加抗性淀粉含量的作用[82],根据底物作用方式的不同,主要有普鲁兰酶和异淀粉酶。普鲁兰酶能够专一性地切开支链淀粉分支中的α-1, 6-糖苷键,形成直链淀粉[83]。王玉娟[84]用普鲁兰酶处理燕麦,测定燕麦淀粉的体外消化率,结果发现燕麦淀粉的抗性淀粉含量显著增加了17.83%,快速消化淀粉、缓慢消化淀粉含量降低。Li等[85]用转葡糖苷酶处理大米淀粉颗粒后发现淀粉颗粒的结晶度和糊化温度显著提高,转葡糖苷酶组抗性淀粉含量也增加。目前这些酶主要应用于以淀粉为原料的食品加工中,但也为减缓反刍动物瘤胃淀粉降解率提供了思路。Guo等[86]利用脱支酶和转糖酶组合对马铃薯淀粉进行修饰,发现短链淀粉的含量显著增加,晶体分布也更加均匀。随着人们对生物酶的认知,淀粉酶协同作用的优势渐渐凸显,其能够很大程度提高淀粉的利用率和动物的生产效率,应用前景较好。

4 小结与展望

谷物淀粉作为反刍动物饲粮必需的能量提供源,其消化程度影响着反刍动物的瘤胃健康、养分消化和生产性能等。对谷物进行加工处理,能够通过改变谷物结构或增加过瘤胃淀粉含量,促进谷物在反刍动物消化道内充分降解,使能量利用最大化并降低发生SARA的风险。粉碎是谷物最常见的加工处理方式,适宜的粉碎粒度会有效促进谷物消化,但适宜的粉碎粒度因谷物种类和动物类型等因素而难以界定。蒸汽压片处理相较粉碎处理有很大的优势,应用广泛,但加工工艺参数还有待进一步提高。利用有机酸和酶制剂处理谷物,可通过提高过瘤胃淀粉含量或改变谷物颗粒结构来减缓淀粉在瘤胃中的消化率,进而减缓瘤胃发酵,降低SARA的发生率。随着有机酸和酶制剂处理在反刍动物饲粮中应用的逐渐兴起,对谷物处理的方式也越来越简便、快捷,但还需综合考虑处理的剂量和成本等因素。

参考文献
[1]
BOERMAN J P, POTTS S B, VANDEHAAR M J, et al. Milk production responses to a change in dietary starch concentration vary by production level in dairy cattle[J]. Journal of Dairy Science, 2015, 98(7): 4698-4706. DOI:10.3168/jds.2014-8999
[2]
HATEW B, PODESTA S C, VAN LAAR H, et al. Effects of dietary starch content and rate of fermentation on methane production in lactating dairy cows[J]. Journal of Dairy Science, 2015, 98(1): 486-499. DOI:10.3168/jds.2014-8427
[3]
张智安, 牛骁麟, 李飞, 等. 反刍动物亚急性瘤胃酸中毒的易感性因素及生物标记物研究进展[J]. 草业科学, 2019, 36(8): 2142-2150.
ZHANG Z A, NIU X L, LI F, et al. Research advances on susceptibility factors and biomarkers of subacute ruminal acidosis in ruminants[J]. Pratacultural Science, 2019, 36(8): 2142-2150 (in Chinese).
[4]
李胜利, 姚琨, 曹志军, 等. 2016年奶牛产业技术发展报告[J]. 中国畜牧杂志, 2017, 53(1): 156-164.
LI S L, YAO K, CAO Z J, et al. 2016 dairy cattle industry technology development report[J]. Chinese Journal of Animal Science, 2017, 53(1): 156-164 (in Chinese).
[5]
KHAFIPOUR E, KRAUSE D O, PLAIZIER J C. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation[J]. Journal of Dairy Science, 2009, 92(3): 1060-1070. DOI:10.3168/jds.2008-1389
[6]
KLEEN J L, HOOIJER G A, REHAGE J, et al. Subacute ruminal acidosis (SARA):a review[J]. Journal of Veterinary Medicine Series A, 2003, 50(8): 406-414. DOI:10.1046/j.1439-0442.2003.00569.x
[7]
郭峻菲.亚急性瘤胃酸中毒(SARA)对反刍动物肝脏的炎性损伤与SARA的调控研究[D].博士学位论文.南京: 南京农业大学, 2017: 52-54.
GUO J F.Inflammatory injury in the liver of ruminant by subacute rumen acidosis (SARA) and manipulation of SARA[D]. Ph.D.Thesis.Nanjing: Nanjing Agricultural University, 2017: 52-54.(in Chinese)
[8]
ANDRÉS S, JARAMILLO E, BODAS R, et al. Grain grinding size of cereals in complete pelleted diets for growing lambs:effects on ruminal microbiota and fermentation[J]. Small Ruminant Research, 2018, 159: 38-44. DOI:10.1016/j.smallrumres.2017.12.009
[9]
董滢.玉米粒度对青年奶山羊生长性能及消化系统发育的影响[D].硕士学位论文.杨凌: 西北农林科技大学, 2006: 23-26.
DONG Y.Effects of corn particle size on growth performance and digestive tract development in young dairy goats[D]. Master's Thesis.Yangling: Northwest A&F University, 2006: 23-26.(in Chinese)
[10]
KAZEMI-BONCHENARI M, SALEM A Z M, LÓPEZ S. Influence of barley grain particle size and treatment with citric acid on digestibility, ruminal fermentation and microbial protein synthesis in Holstein calves[J]. Animal, 2017, 11(8): 1295-1302. DOI:10.1017/S1751731116002810
[11]
沈宜钊.日粮淀粉来源与有机酸预处理玉米对奶山羊瘤胃酸中毒的影响及机制[D].博士学位论文.扬州: 扬州大学, 2018: 60-64.
SHEN Y Z.Effect and mechanism of dietary starch source and organic acid pretreated corn on rumen acidosis in dairy goats[D]. Ph.D.Thesis.Yangzhou: Yangzhou University, 2018: 60-64.(in Chinese)
[12]
MANJARREZ X P, SANCHEZ M R, LOPEZ J, et al. Desarrollo folicular y tasa ovulatoria en cabras criollas después de un periodo corto de consumo de trigo protegido de la degradación ruminal[J]. Tecnica Pecuaria en Mexico, 2008, 46(4): 449-462.
[13]
DUPUIS J H, LIU Q, YADA R Y. Methodologies for increasing the resistant starch content of food starches:a review[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(6): 1219-1234. DOI:10.1111/1541-4337.12104
[14]
王红梅, 屠焰, 张乃锋, 等. 饲用酶制剂在反刍动物营养中的应用进展[J]. 草业学报, 2017, 26(3): 199-213.
WANG H M, TU Y, ZHANG N F, et al. Application of exogenous enzymes in ruminant nutrition[J]. Acta Prataculturae Sinica, 2017, 26(3): 199-213 (in Chinese).
[15]
CHRENKOVÁ M, FORMELOVA Z, CERESNAKOVA Z, et al. Rumen undegradable protein (RUP) and its intestinal digestibility after steam flaking of cereal grains[J]. Czech Journal of Animal Science, 2018, 63(4): 160-166. DOI:10.17221/74/2017-CJAS
[16]
PRATES L L, LEI Y G, REFAT B, et al. Effects of heat processing methods on protein subfractions and protein degradation kinetics in dairy cattle in relation to protein molecular structure of barley grain using advanced molecular spectroscopy[J]. Journal of Cereal Science, 2018, 80: 212-220. DOI:10.1016/j.jcs.2018.01.008
[17]
董瑞阳, 孙凯佳, 高腾云. 植物次生代谢产物调控反刍动物瘤胃发酵及甲烷产生的研究进展[J]. 家畜生态学报, 2013, 34(10): 1-5.
DONG R Y, SUN K J, GAO T Y. Research progress on plants secondary metabolites manipulating rumen fermentation and methane production in ruminants[J]. Journal of Domestic Animal Ecology, 2013, 34(10): 1-5 (in Chinese). DOI:10.3969/j.issn.1673-1182.2013.10.001
[18]
杨红建, 冯仰廉. 不同纤维素与淀粉比率等氮纯化日粮瘤胃发酵挥发性脂肪酸产生量[J]. 中国畜牧杂志, 2003(5): 9-11.
YANG H J, FENG Y L. Effects of cellulose to starch ratio in substrate on in vitro volatile fatty acids with equal-nitrogen purified substrate[J]. Chinese Journal of Animal Science, 2003(5): 9-11 (in Chinese). DOI:10.3969/j.issn.0258-7033.2003.05.004
[19]
刘玉洁.高谷物日粮对山羊瘤胃微生物区系和瘤胃、血清、肝脏中代谢物组成的影响[D].硕士学位论文.南京: 南京农业大学, 2015: 23-28.
LIU Y J.The impact of high-grain diets on rumen microbiota and metabolites in the rumen fluid, serum, liver in goats[D]. Master's Thesis.Nanjing: Nanjing Agricultural University, 2015: 23-28.(in Chinese)
[20]
TOSTA M R, PRATES L L, CHRISTENSEN D A, et al. Effect of processing methods (rolling, steam-flaking, pelleting) on protein molecular structure profile, rumen degradation, and intestinal digestion of cool-climate adapted oats grain in comparison with barley grain in western Canada[J]. Livestock Science, 2020, 232: 103901. DOI:10.1016/j.livsci.2019.103901
[21]
万峰, 孙春玉, 李闯, 等. 谷物胚乳中淀粉合成酶及其同工型的研究进展[J]. 分子植物育种, 2017, 15(11): 4423-4432.
WAN F, SUN C Y, LI C, et al. Progress of starch synthase and its isozyme in grain endosperm[J]. Molecular Plant Breeding, 2017, 15(11): 4423-4432 (in Chinese).
[22]
GIUBERTI G, GALLO A, MASOERO F. Technical note:quantification of zeins from corn, high-moisture corn, and corn silage using a turbidimetric method:comparative efficiencies of isopropyl and tert-butyl alcohols[J]. Journal of Dairy Science, 2012, 95(6): 3384-3389. DOI:10.3168/jds.2011-4995
[23]
HOFFMAN P C, ESSER N M, SHAVER R D, et al. Influence of ensiling time and inoculation on alteration of the starch-protein matrix in high-moisture corn[J]. Journal of Dairy Science, 2011, 94(5): 2465-2474. DOI:10.3168/jds.2010-3562
[24]
FERRARETTO L F, CRUMP P M, SHAVER R D. Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a Meta-analysis[J]. Journal of Dairy Science, 2013, 96(1): 533-550. DOI:10.3168/jds.2012-5932
[25]
张群. 淀粉基生物医用材料加工技术的研究[J]. 食品与生物技术学报, 2015, 34(5): 560.
ZHANG Q. Study on the processing technology of starch-based biomedical materials[J]. Journal of Food Science and Biotechnology, 2015, 34(5): 560 (in Chinese). DOI:10.3969/j.issn.1673-1689.2015.05.019
[26]
王丹丽, 蒋荣霞, 刘梦婕, 等. 冻结-高压湿热解冻对多种淀粉中支链淀粉断裂的影响[J]. 农业工程学报, 2018, 34(11): 284-292.
WANG D L, JIANG R X, LIU M J, et al. Effects of unfreezing by autoclaving during freeze-thaw treatment on amylopectin breaking in different gelatinized starches[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(11): 284-292 (in Chinese). DOI:10.11975/j.issn.1002-6819.2018.11.036
[27]
DOBLADO-MALDONADO A F, GOMAND S V, GODERIS G B, et al. Methodologies for producing amylose:a review[J]. Critical Reviews in Food Science and Nutrition, 2015, 57(2): 407-417.
[28]
TESTER R F, KARKALAS J, QI X. Starch-composition, fine structure and architecture[J]. Journal of Cereal Science, 2004, 39(2): 151-165. DOI:10.1016/j.jcs.2003.12.001
[29]
GOMEZ L M, POSADA S L, OLIVERA M. Starch in ruminant diets:a review[J]. Revista Colombiana de Ciencias Pecuarias, 2016, 29(2): 77-90.
[30]
SVIHUS B, UHLEN A K, HARSTAD O M. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch:a review[J]. Animal Feed Science and Technology, 2005, 122(3/4): 303-320.
[31]
SUN B L, PRATES L L, YU P Q. Interactive curve-linear relationship between alteration of carbohydrate macromolecular structure traits in hulless barley (Hordeum vulgare L.) grain and nutrient utilization, biodegradation and bioavailability[J]. International Journal of Molecular Sciences, 2019, 20(6): 1366. DOI:10.3390/ijms20061366
[32]
LE CORRE D, BRAS J, DUFRESNE A. Starch nanoparticles:a review[J]. Biomacromolecules, 2010, 11(5): 1139-1153. DOI:10.1021/bm901428y
[33]
YOO S H, JANE J L. Structural and physical characteristics of waxy and other wheat starches[J]. Carbohydrate Polymers, 2002, 49(3): 297-305. DOI:10.1016/S0144-8617(01)00338-1
[34]
SINGH S, SINGH N, ISONO N, et al. Relationship of granule size distribution and amylopectin structure with pasting, thermal, and retrogradation properties in wheat starch[J]. Journal of Agricultural and Food Chemistry, 2010, 58(2): 1180-1188. DOI:10.1021/jf902753f
[35]
AO Z H, JANE J L. Characterization and modeling of the A- and B-granule starches of wheat, triticale, and barley[J]. Carbohydrate Polymers, 2007, 67(1): 46-55. DOI:10.1016/j.carbpol.2006.04.013
[36]
CORNEJO-RAMÍREZ Y I, MARTÍNEZ-CRUZ O, DEL TORO-SÁNCHEZ C L, et al. The structural characteristics of starches and their functional properties[J]. CyTA-Journal of Food, 2018, 16(1): 1003-1017. DOI:10.1080/19476337.2018.1518343
[37]
张永春.玉米淀粉颗粒低温冻融特性的研究[D].硕士学位论文.齐齐哈尔: 齐齐哈尔大学, 2015: 12-14.
ZHANG Y C.Low temperature freeze-thawing behavior of corn starch granule[D]. Master's Thesis.Qiqihar: Qiqihar University, 2015: 12-14.(in Chinese)
[38]
乔富强.玉米、小麦、稻谷蒸汽压片处理对其化学成分、瘤胃发酵和能量价值的影响.博士学位论文.北京: 中国农业大学, 2014: 58-64.
QIAO F Q.Effect of steam-flaking on chemical compositions, in vitro ruminal fermentability or energetic values of maize, wheat and rice gains[D]. Ph.D.Thesis.Beijing: China Agricultural University, 2014: 58-64.(in Chinese)
[39]
严青.不完全糊化法研究淀粉颗粒的外壳和小体结构[D].硕士学位论文.西安: 陕西科技大学, 2015: 20-23.
YAN Q.Incomplete gelatinization method to study the shell and body structure of starch granules[D]. Master's Thesis.Xi'an: Shaanxi University of Science and Technology, 2015: 20-23.(in Chinese)
[40]
PU H Y, CHEN L, LI L, et al. Multi-scale structural and digestion resistibility changes of high-amylose corn starch after hydrothermal-pressure treatment at different gelatinizing temperatures[J]. Food Research International, 2013, 53(1): 456-463. DOI:10.1016/j.foodres.2013.05.021
[41]
DECKARDT K, METZLER-ZEBELI B U, ZEBELI Q. Processing barley grain with lactic acid and tannic acid ameliorates rumen microbial fermentation and degradation of dietary fibre in vitro[J]. Journal of the Science of Food and Agriculture, 2015, 96(1): 223-231.
[42]
FUENTES-ZARAGOZA E, SÁNCHEZ-ZAPATA E, SENDRA E, et al. Resistant starch as prebiotic:a review[J]. Starch, 2011, 63(7): 406-415. DOI:10.1002/star.201000099
[43]
REYNOLDS C K. Production and metabolic effects of site of starch digestion in dairy cattle[J]. Animal Feed Science and Technology, 2006, 130(1/2): 78-94.
[44]
张志转, 陈多璞, 沈希宏, 等. 抗性淀粉形成的影响因素[J]. 核农学报, 2008, 22(4): 483-487, 509.
ZHANG Z Z, CHEN D P, SHEN X H. Factors influencing the formation of resistant starch[J]. Journal of Nuclear Agriculture Sciences, 2008, 22(4): 483-487, 509 (in Chinese).
[45]
王志兰.非饲草纤维来源和淀粉水平对育肥湖羊生产性能和瘤胃功能的影响[D].硕士学位论文.兰州: 兰州大学, 2018: 32-36.
WANG Z L.Effect of dietary non-forage fiber sources and starch levels on performances and rumen function of finishing Hu sheep[D]. Master's Thesis.Lanzhou: Lanzhou University.2018: 32-36.(in Chinese)
[46]
BEAUCHEMIN K A, MCALLISTER T A.Digestive disturbances: acidosis, laminitis and bloat: 221-231 in Cattle Grain Processing Symposium[R]. Tulsa, OK: Oklahoma State University, 2006.
[47]
HUNTINGTON G B. Starch utilization by ruminants:from basics to the bunk[J]. Journal of Animal Science, 1997, 75(3): 852-867. DOI:10.2527/1997.753852x
[48]
LYKOS T, VARGA G A. Effects of processing method on degradation characteristics of protein and carbohydrate sources in situ[J]. Journal of Dairy Science, 1995, 78(8): 1789-1801. DOI:10.3168/jds.S0022-0302(95)76804-7
[49]
LUHMAN C M, LACOUNT D W. Effect of corn processing on milk production and dry matter intake of cows in early lactation[J]. Journal of Animal Science, 1998, 76(Suppl.1): 336.
[50]
KNOWLTON K F, ERDMAN R A, GLENN B P. Corn processing influences more than starch digestion[J]. Feedstuffs, 1999, 71(51): 11-13.
[51]
BLASEL H M, HOFFMAN P C, SHAVER R D. Degree of starch access:an enzymatic method to determine starch degradation potential of corn grain and corn silage[J]. Animal Feed Science and Technology, 2006, 128(1/2): 96-107.
[52]
RÉMOND D, CABRERA-ESTRADA J I, CHAMPION M, et al. Effect of corn particle size on site and extent of starch digestion in lactating dairy cows[J]. Journal of Dairy Science, 2004, 87(5): 1389-1399. DOI:10.3168/jds.S0022-0302(04)73288-9
[53]
顾剑新.不同破碎处理对玉米淀粉瘤胃降解、利用和湖羊生长的影响[D].硕士学位论文.杭州: 浙江大学, 2005: 78-89.
GU J X.Effects of different crushing treatments on the degradation and utilization of corn starch in the rumen and the growth of Hu sheep[D]. Master Thesis.Hangzhou: Zhejiang University, 2005: 78-89.(in Chinese)
[54]
TAGAWA S I, HOLTSHAUSEN L, MCALLISTER T A, et al. Effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro disappearance and gas production for feedlot cattle[J]. Asian-Australasian Journal of Animal Sciences, 2017, 30(4): 479-485.
[55]
MAULFAIR D D, HEINRICHS A J. Effects of varying forage particle size and fermentable carbohydrates on feed sorting, ruminal fermentation, and milk and component yields of dairy cows[J]. Journal of Dairy Science, 2013, 96(5): 89-102.
[56]
GIMENO A, AL ALAMI A, TORAL P G, et al. Effect of grinding or pelleting high grain maize-or barley-based concentrates on rumen environment and microbiota of beef cattle[J]. Animal Feed Science and Technology, 2015, 203: 67-78. DOI:10.1016/j.anifeedsci.2015.03.003
[57]
CALLISON S L, FIRKINS J L, EASTRIDGE M L, et al. Site of nutrient digestion by dairy cows fed corn of different particle sizes or steam-rolled[J]. Journal of Dairy Science, 2001, 84(6): 1458-1467. DOI:10.3168/jds.S0022-0302(01)70179-8
[58]
MAULFAIR D D, ZANTON G I, FUSTINI M, et al. Effect of feed sorting on chewing behavior, production, and rumen fermentation in lactating dairy cows[J]. Journal of Dairy Science, 2010, 93(10): 4791-4803. DOI:10.3168/jds.2010-3278
[59]
ANDRÉS S, JARAMILLO E, MATEO J, et al. Grain grinding size of cereals in complete pelleted diets for growing lambs:Effects on animal performance, carcass and meat quality traits[J]. Meat Science, 2019, 157: 107874. DOI:10.1016/j.meatsci.2019.107874
[60]
GIMENO A, AL ALAMI A, ABECIA L, et al. Effect of type (barley vs. maize) and processing (grinding vs. dry rolling) of cereal on ruminal fermentation and microbiota of beef calves during the early fattening period[J]. Animal Feed Science and Technology, 2015, 199: 113-126. DOI:10.1016/j.anifeedsci.2014.11.008
[61]
XU N N, WANG D M, LIU J X. Variance of zein protein and starch granule morphology between corn and steam flaked products determined starch ruminal degradability through altering starch hydrolyzing bacteria attachment[J]. Animals, 2019, 9(9): 626. DOI:10.3390/ani9090626
[62]
张亚伟, 魏曼琳, 吴浩, 等. 蒸汽压片玉米替代饲粮中不同比例粉碎玉米对鲁西阉黄牛生长性能、屠宰性能和肉品质与常规化学成分的影响[J]. 动物营养学报, 2017, 29(4): 1167-1174.
ZHANG Y W, WEI M L, WU H, et al. Effects of different proportions of steam-flaked corn substituted for milling corn in diets on growth performance, slaughter performance, beef quality and conventional chemical composition of Luxi crossbred cattle[J]. Chinese Journal of Animal Nutrition, 2017, 29(4): 1167-1174 (in Chinese). DOI:10.3969/j.issn.1006-267x.2017.04.011
[63]
PÉREZ S, BERTOFT E. The molecular structures of starch components and their contribution to the architecture of starch granules:a comprehensive review[J]. Starch-Stärke, 2010, 62(8): 48-56.
[64]
RAFIEE-YARANDI H, ALIKHANI M, GHORBANI G R, et al. Dietary protein level and corn processing method:intake, digestibility, and feeding behavior of lactating dairy cows[J]. Livestock Science, 2019, 221: 19-27. DOI:10.1016/j.livsci.2019.01.001
[65]
DE MELO A H F, MARQUES R S, GOUVÊA V N, et al. Effects of dietary roughage neutral detergent fiber levels and flint corn processing method on growth performance, carcass characteristics, feeding behavior, and rumen morphometrics of Bos indicus cattle[J]. Journal of Animal Science, 2019, 97(8): 3562-3577. DOI:10.1093/jas/skz197
[66]
WANG C, LIU Q, GUO G, et al. Effects of substituting corn with steam-flaked sorghum on growth, digestion and blood metabolites in young cattle fed feedlot diets[J]. Animal Production Science, 2018, 58(2): 299-306. DOI:10.1071/AN16265
[67]
REN H, SU X D, BAI H X, et al. Specific enrichment of microbes and increased ruminal propionate production:the potential mechanism underlying the high energy efficiency of Holstein heifers fed steam-flaked corn[J]. AMB Express, 2019, 9: 209. DOI:10.1186/s13568-019-0937-8
[68]
曹玉伟, 丁健, 李艳玲. 蒸汽压片玉米在奶牛生产中的应用研究进展[J]. 中国畜牧兽医, 2018, 45(5): 1211-1218.
CAO Y W, DING J, LI Y L. Research progress of steam-flaked corn and its application in dairy cattle production[J]. China Animal Husbandry and Veterinary Medicine, 2018, 45(5): 1211-1218 (in Chinese).
[69]
RAFIEE-YARANDI H, ALIKHANI M, GHORBANI G R, et al. Dietary protein level and corn processing method:lactation performance, milk fatty acid composition, rumen and blood parameters of lactation dairy cows[J]. Livestock Science, 2019, 221: 95-104. DOI:10.1016/j.livsci.2019.01.019
[70]
BUENABAD L, JACINTO A Y, MONTANO M, et al. Extruded corn meal as a partial replacement for steam flaked corn in finishing diets for feedlot cattle:growth performance and digestive function of feedlot cattle[J]. Open Journal of Animal Sciences, 2019, 9(2): 196-206. DOI:10.4236/ojas.2019.92017
[71]
HALLSTRÖM E, SESTILI F, LAFIANDRA D, et al. A novel wheat variety with elevated content of amylose increases resistant starch formation and may beneficially influence glycaemia in healthy subjects[J]. Food & Nutrition Research, 2011, 55(1): 7074.
[72]
DECKARDT K, KHIAOSA-ARD R, GRAUSGRUBER H, et al. Evaluation of various chemical and thermal feed processing methods for their potential to enhance resistant starch content in barley grain[J]. Starch, 2014, 66(5/6): 558-565.
[73]
IQBAL S, ZEBELI Q, MAZZOLARI A, et al. Feeding barley grain steeped in lactic acid modulates rumen fermentation patterns and increases milk fat content in dairy cows[J]. Journal of Dairy Science, 2009, 92(12): 6023-6032. DOI:10.3168/jds.2009-2380
[74]
IQBAL S, ZEBELI R, MAZZOLARI R, et al. Feeding rolled barley grain steeped in lactic acid modulated energy status and innate immunity in dairy cows[J]. Journal of Dairy Science, 2010, 93(11): 5147-5156. DOI:10.3168/jds.2010-3118
[75]
KHOL-PARISINI A, HUMER E, HARDER H, et al. Metabolic responses, performance, and reticuloruminal pH of early-lactating cows fed concentrates treated with lactic acid, with or without inorganic phosphorus supplementation[J]. Journal of Dairy Science, 2016, 99(8): 6237-6250. DOI:10.3168/jds.2016-11208
[76]
顾丰颖.α-半乳糖苷酶碳源诱导机制研究及复合酶制剂的开发[D].博士学位论文.杭州: 浙江大学, 2013: 11-18.
GU F Y.Research on the mechanism of α-galactosidase carbon source induction and development of complex enzyme preparations[D]. Ph.D.Thesis.Hangzhou: Zhejiang University, 2013: 11-18.(in Chinese)
[77]
LÓPEZ-AGUIRRE D, HERNÁNDEZ-MELÉNDEZ J, ROJO R, et al. Effects of exogenous enzymes and application method on nutrient intake, digestibility and growth performance of Pelibuey lambs[J]. SpringerPlus, 2016, 5: 1399. DOI:10.1186/s40064-016-3075-7
[78]
THAMMIAH V, SAMANTA A K, SENANI S, et al. Scope of exogenous enzymes in enhancing ruminant productivity[J]. Journal of Dairy, Veterinary & Animal Research, 2017, 5(2): 137-156.
[79]
赵芳芳, 王洪荣, 张营, 等. 谷物作为反刍动物能量饲料的营养特性及高谷物饲粮对消化道健康的影响[J]. 动物营养学报, 2020, 32(6): 2476-2482.
ZHAO F F, WANG H R, ZHANG Y, et al. Nutritional characteristics of grain as energy feed for ruminants and effects of high-grain diet on gastrointestinal tract health[J]. Chinese Journal of Animal Nutrition, 2020, 32(6): 2476-2482 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.06.005
[80]
扈添琴.日粮中添加不同水平酶制剂与植物甾醇复合物对奶牛生产性能和血液指标的影响[D].硕士学位论文, 南京: 南京农业大学, 2013: 78-82.
HU T Q.Effect of different levels of enzyme and phytosterol compounds on milk production and blood indexes in dairy cows[D]. Master's Thesis.Nanjing: Nanjing Agricultural University, 2013: 78-82.(in Chinese)
[81]
NOZIÈRE P, STEINBERG W, SILBERBERG M, et al. Amylase addition increases starch ruminal digestion in first-lactation cows fed high and low starch diets[J]. Journal of Dairy Science, 2014, 97(4): 2319-2328. DOI:10.3168/jds.2013-7095
[82]
BLENNOW A, SKRYHAN K, TANACKOVIC V, et al. Non-GMO potato lines, synthesizing increased-amylose and resistant starch, are mainly deficient in isoamylase debranching enzyme[J]. Plant Biotechnology Journal, 2020. DOI:10.1111/pbi.13367
[83]
吕金芝, 田健, 伍宁丰, 等. 普鲁兰酶基因工程研究进展[J]. 中国农业科技导报, 2015, 17(4): 85-91.
LYU J Z, TIAN J, WU N F, et al. Progress on pullulanase gene engineering[J]. Journal of Agricultural Science and Technology, 2015, 17(4): 85-91 (in Chinese).
[84]
王玉娟.生物酶解玉米淀粉和燕麦淀粉的消化性和回生性的研究[D].硕士学位论文.长春: 长春大学, 2017: 56-59.
WANG Y J.Research on the digestibility and retrogradation of corn starch and oat starch by hydrolyzed by enzymes[D]. Master's Thesis.Changchun: Changchun University, 2017: 56-59.(in Chinese)
[85]
LI H, LI J H, XIAO Y, et al. In vitro digestibility of rice starch granules modified by β-amylase, transglucosidase and pullulanase[J]. International Journal of Biological Macromolecules, 2019, 136: 1228-1236. DOI:10.1016/j.ijbiomac.2019.06.111
[86]
GUO L, DENG Y F, LU L, et al. Synergistic effects of branching enzyme and transglucosidase on the modification of potato starch granules[J]. International Journal of Biological Macromolecules, 2019, 130: 499-507. DOI:10.1016/j.ijbiomac.2019.02.160