动物营养学报    2021, Vol. 33 Issue (2): 832-840    PDF    
杨木低聚木糖对肉鸡生长性能、肠道消化酶活性和短链脂肪酸含量及血清激素水平的影响
李淑珍1 , 刘娇1 , 陈志敏1 , 郑爱娟1 , 刘国华1 , 蔡辉益1 , 徐勇2 , 常文环1     
1. 中国农业科学院饲料研究所, 农业部生物饲料重点实验室, 北京 100081;
2. 南京林业大学化学工程学院, 南京 210037
摘要: 本试验以肉鸡为研究对象,对以杨木屑为原料、采用醋酸催化法制取的低聚木糖进行评价,研究低聚木糖对肉鸡生长性能、肠道消化酶活性和短链脂肪酸含量及血清激素水平的影响,探讨低聚木糖的促生长机制,为醋酸催化法生产低聚木糖的应用提供理论依据。选用120只1日龄爱拔益加肉公鸡,随机分为2个组,即对照组和低聚木糖组,每组6个重复,每个重复10只鸡。对照组饲喂基础饲粮,低聚木糖组以0.02%低聚木糖等量替代基础饲粮中的沸石,试验期为42 d。结果表明:1)与对照组相比,饲粮添加低聚木糖显著提高了肉鸡42日龄时的体重以及22~42日龄和1~42日龄的平均日增重(P < 0.05),显著降低了料重比(P < 0.05),对平均日采食量无显著影响(P>0.05);2)与对照组相比,饲粮添加低聚木糖显著提高了肉鸡十二指肠脂肪酶活性(P < 0.05),有提高十二指肠蛋白酶活性的趋势(P=0.056),但对空肠、回肠和盲肠脂肪酶和蛋白酶活性无显著影响(P>0.05);3)与对照组相比,饲粮添加低聚木糖对盲肠短链脂肪酸含量无显著影响(P>0.05);4)与对照组相比,饲粮添加低聚木糖显著增加了肉鸡血清生长激素和三碘甲腺原氨酸(T3)含量(P < 0.05),显著降低了血清甲状腺素(T4)含量(P < 0.05),显著降低了T4/T3值(P < 0.05)。综上所述,低聚木糖通过提高肠道消化酶活性,促进与生长相关的激素分泌,提高营养物质利用率,从而改善肉鸡的生长性能。
关键词: 肉鸡    低聚木糖    消化酶    短链脂肪酸    激素水平    
Effects of Xylo-Oligosaccharides from Poplar on Growth Performance, Intestinal Digestive Enzyme Activity and Short-Chain Fatty Acid Content and Serum Hormone Levels of Broilers
LI Shuzhen1 , LIU Jiao1 , CHEN Zhimin1 , ZHENG Aijuan1 , LIU Guohua1 , CAI Huiyi1 , XU Yong2 , CHANG Wenhuan1     
1. Key Laboratory of Feed Biotechnology of Agricultural Ministry, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
2. College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
Abstract: This study was to identify the effects of xylo-oligosaccharides (XOS) from poplar sawdust by acetic acid catalysis method on growth performance, intestinal digestive enzyme activity and short-chain fatty acid (SCFA) content and serum hormone levels of broilers, and investigate its growth-promoting mechanism, thus to provide theoretical basis for the application of acetic acid catalysis method to produce the XOS. One hundred and twenty 1-day-old male Arbor Acres broilers were randomly divided into 2 groups (control group and XOS group) with 6 replicates in each group and 10 birds in each replicate. The diets consisted of a basal diet for the control group and an experimental diet supplemented with 0.02% XOS to replace the zeolite in the basal diet with equal proportion for the XOS group. The trial lasted for 42 days. The results showed as follows: 1) compared with the control group, dietary XOS significantly increased the body weight of broilers at 42 days of age and the average daily gain of broilers from 22 to 42 and 1 to 42 days of age (P < 0.05), significantly decreased the feed to gain ratio (P < 0.05), but had no significant effects on the average daily feed intake (P>0.05). 2) Compared with the control group, dietary XOS significantly enhanced the lipase activity in duodenum of broilers (P < 0.05), tended to increase the protease activity in duodenum (P=0.056), but had no significant effects on the activities of lipase and protease in jejunum, ileum and cecum (P>0.05). 3) Compared with the control group, dietary XOS had no significant effects on SCFA content in cecum of broilers (P>0.05). 4) Compared with the control group, dietary XOS significantly increased the serum contents of growth hormone and triiodothyronine (T3) of broilers (P < 0.05), significantly decreased the serum thyroxine (T4) content (P < 0.05), and significantly decreased the T4 to T3 ratio (P < 0.05). In conclusion, XOS can improve the growth performance of broilers by enhancing the digestive enzyme activity, promoting the levels of hormones related to growth and then increasing the nutrient availability.
Key words: broilers    xylo-oligosaccharides    digestive enzyme    short-chain fatty acids    hormone levels    

低聚木糖是由2~7个木糖单元通过β-1, 4糖苷键连接而成的低聚糖,具有显著的益生元生物活性功能,被称为“最强双歧因子”。与其他益生元产品相似,低聚木糖是不可被宿主消化的碳水化合物,作为微生物发酵的底物,通过菌群发酵发挥促进畜禽生长的作用[1]。研究表明,饲粮添加2 g/kg的低聚木糖能够优化肠道微生物群落结构,改善肠道健康;饲粮添加0.2%和0.5%的低聚木糖都能显著提高饲料转化率,从而显著改善畜禽的生长性能;当低聚木糖添加量为2 mg/kg时,肠道菌群发酵低聚木糖产生的短链脂肪酸刺激有益菌的增殖并且抑制病原菌在肠道内的定植,最终建立稳定的肠道微生态环境,并提高畜禽免疫和抗氧化等生理功能[2-4]

现有的低聚木糖主要是从玉米芯、甘蔗渣等富含木聚糖的原料中通过酶定向水解法制备得到的,尚存生产工艺过程复杂、生产成本高以及污水负荷大的问题,这限制了其更大规模的推广应用[5-6]。目前,最新发展的醋酸催化法,不仅适用于农业秸秆,同时可以直接处理包括杨木屑的阔叶材原料,可实现“一步法”生产高得率低聚木糖的效果,产率较酶水解法提高1.2~1.5倍,具有显著的原料适用性、生产成本低以及环保等优势,对于拓展低聚木糖的生产原料也具有十分重要的现实意义[7-10]。目前,醋酸催化法催化阔叶材制得的低聚木糖产品的试验研究尚未见报道。因此,本研究以醋酸催化法从杨木屑中制得的低聚木糖作为添加剂,评价其对肉鸡生长性能、肠道消化酶活性、盲肠短链脂肪酸含量和血清激素水平的影响,为低聚木糖生产工艺的改进及其在饲料工业中的应用提供参考。

1 材料与方法 1.1 试验材料

试验所用低聚木糖产品来自南京林业大学,采用醋酸催化法(5%醋酸溶液)利用杨木屑(15%杨木屑提取物,170 ℃,25 min)制备而成,为液体状态,低聚木糖含量为67.6 g/L[11],pH为6.0,低聚木糖产品的组成见表 1

表 1 低聚木糖产品的组成 Table 1 Composition of xylo-oligosaccharide products  
1.2 试验设计

试验选用120只1日龄爱拔益加(AA)肉公鸡,随机分为2个组,即对照组和试验组(低聚木糖组),每组6个重复,每个重复10只鸡。对照组饲喂基础饲粮,试验组以0.02%的低聚木糖(即添加2.96 mL/kg低聚木糖提取液)等量替代基础饲粮中的沸石,试验期为42 d。

1.3 基础饲粮和饲养管理

基础饲粮参照《鸡饲养标准》(NY/T 33—2004)的肉鸡营养需要配制并制粒,其组成及营养水平见表 2。试验在中国农业科学院饲料研究所南口试验基地进行,采用3层立体笼养,整个试验期内肉鸡自由采食和饮水,1~3日龄每天光照24 h,4~42日龄每天光照23 h。试验分为前期(1~21日龄)和后期(22~42日龄)2个阶段。

表 2 基础饲粮组成及营养水平(风干基础) Table 2 Composition and nutrient levels of basal diets (air-dry basis) 
1.4 样品采集和检测 1.4.1 生长性能测定和样品采集

分别于21和42日龄时,空腹12 h后分别以重复为单位称量肉鸡体重和剩余饲粮,记录各日龄体重,计算各阶段平均日增重(ADG)、平均日采食量(ADFI)和料重比(F/G)。42日龄时,每个重复随机选取1只与平均体重接近的肉公鸡,空腹12 h并称重后,心脏采血于抗凝管中,静置后于3 500 r/min、4 ℃离心10 min,取上清并储存在-20 ℃条件下用于检测血清激素水平。采集血样后左颈静脉放血致死,屠宰后立即取出十二指肠、空肠、回肠和盲肠,分别收集各肠段食糜于2 mL冻存管,置于液氮中保存,按食糜:生理盐水=1 : 1(质量体积比)制备匀浆,在4 000 r/min、4 ℃下离心10 min后取上清,测定肠道食糜脂肪酶和蛋白酶活性。取盲肠食糜加入250 μL水和250 μL甲醇,制备匀浆,13 200 r/min离心取上清50 μL,加入50 μL内标、50 μL衍生试剂,常温衍生30 min,加入50 μL保护剂,混匀,在13 200 r/min下离心10 min,取上清检测短链脂肪酸含量。

1.4.2 肠道消化酶活性

肠道脂肪酶和蛋白酶活性用比色法利用A-6半自动生化仪(北京松上技术有限公司)进行检测,按说明书操作,试剂盒由北京华英生物技术研究所提供。

1.4.3 盲肠短链脂肪酸含量

采用液质联用外标法测定盲肠食糜短链脂肪酸含量,检测仪器为Waters ACQUITY UPLC I-CLASS超高效液相色谱和Xevo TQ-S Micro质谱仪[沃特世科技(上海)有限公司]。

1.4.4 血清激素水平

采用放射免疫分析法,利用GC-2010型免疫计数器(安徽中科中佳科学仪器有限公司)检测血清中生长激素(GH)、三碘甲腺原氨酸(T3)和甲状腺素(T4)的含量,试剂盒由天津九鼎医学生物工程有限公司提供,按说明书进行操作。

1.5 统计分析

试验数据采用SPSS 19.0的单因素方差分析(one-way ANOVA)进行分析,采用t检验比较组间差异显著性,结果以平均值和均值标准误表示,P < 0.05表示差异显著。

2 结果 2.1 低聚木糖对肉鸡生长性能的影响

表 3可知,各组之间肉鸡初始体重差异不显著(P>0.05)。与对照组相比,1~21日龄,低聚木糖组肉鸡F/G显著降低(P < 0.05),ADG、ADFI和21日龄时的体重无显著差异(P>0.05);22~42日龄,低聚木糖组肉鸡ADG显著增加(P < 0.05),F/G显著降低(P < 0.05),42日龄时的体重显著增加(P < 0.05),ADFI无显著差异(P>0.05);1~42日龄,低聚木糖组肉鸡ADG显著增加(P < 0.05),F/G显著降低(P < 0.05),ADFI无显著差异(P>0.05)。

表 3 低聚木糖对肉鸡生长性能的影响 Table 3 Effects of xylo-oligosaccharides on growth performance of broilers
2.2 低聚木糖对肉鸡肠道消化酶活性的影响

图 1可知,与对照组相比,低聚木糖组肉鸡十二指肠脂肪酶活性显著升高(P < 0.05), 但空肠、回肠和盲肠脂肪酶活性无显著差异(P>0.05)。由图 2可知,与对照组相比,低聚木糖组肉鸡十二指肠蛋白酶活性有升高趋势(P=0.056),而空肠、回肠和盲肠蛋白酶活性无显著差异(P>0.05)。

数据柱标注不同小写字母表示差异显著(P < 0.05)。 Value columns with different small letters mean significant difference (P < 0.05). 图 1 低聚木糖对42日龄肉鸡肠道脂肪酶活性的影响 Fig. 1 Effects of xylo-oligosaccharides on intestinal lipase activity of broilers at 42 days of age
图 2 低聚木糖对42日龄肉鸡肠道蛋白酶活性的影响 Fig. 2 Effects of xylo-oligosaccharides on intestinal protease activity of broilers at 42 days of age
2.3 低聚木糖对肉鸡盲肠短链脂肪酸含量的影响

表 4可知,与对照组相比,低聚木糖组肉鸡盲肠短链脂肪酸含量均有所提高,但差异不显著(P>0.05)。

表 4 低聚木糖对肉鸡盲肠短链脂肪酸含量的影响 Table 4 Effects of xylo-oligosaccharides on short-chain fatty acid contents in cecum of broilers 
2.4 低聚木糖对肉鸡血清激素水平的影响

表 5可知,与对照组相比,低聚木糖组肉鸡血清GH和T3含量显著增加(P < 0.05), 血清T4含量显著降低(P < 0.05),从而使得T4/T3值显著降低(P < 0.05)。

表 5 低聚木糖对肉鸡血清激素水平的影响 Table 5 Effects of xylo-oligosaccharides on serum hormone levels of broilers  
3 讨论 3.1 低聚木糖对肉鸡生长性能的影响

低聚木糖具有显著的益生元活性,并且可通过肠道微生物的利用发挥一系列益生作用,从而能够显著改善动物的生长性能[5]。本试验结果表明,饲粮添加低聚木糖能够显著提高肉鸡生长后期的ADG,并且显著降低生长期内的F/G,而ADFI无显著变化。Chen等[12]研究表明,饲粮添加150 mg/kg低聚木糖使得肉鸡ADG显著增加,生长后期的F/G显著降低;Liu等[13]研究表明,饲粮添加200 mg/kg低聚木糖可显著改善断奶仔猪肠道形态,并且通过提高营养物质的消化率显著降低了生长后期的F/G,从而改善生长性能。在本试验中,饲粮添加低聚木糖显著提高了肉鸡十二指肠脂肪酶活性,有提高十二指肠蛋白酶活性的趋势,这说明低聚木糖能显著提高肉鸡肠道的消化功能,而家禽主要的消化吸收部位在十二指肠,这验证了低聚木糖是通过促进饲料的转化而改善肉鸡生长性能的这一结论。不少研究证明,饲粮添加寡糖对肠道消化酶活性有显著影响,通过微生物产生的短链脂肪酸刺激肠上皮细胞的增殖,增加有益菌的数量并改善肠道健康,增强肠道蛋白酶、淀粉酶等酶的活性,从而提高营养物质的消化[14-15]。还有研究表明,低聚木糖通过竞争结合位点阻碍致病菌在肠黏膜上的附着,增加肠绒毛的高度从而改善肠道形态,促进消化酶的分泌,提高营养物质的利用率[4],这可以避免过多的未消化饲粮到达后肠造成异常发酵;低聚木糖也能够增加双歧杆菌和乳酸菌等有益菌的数量,而肠道内有益菌发酵可产生消化酶,其代谢产物也能够促进消化酶的分泌,同时肠道上皮感知微生物群落变化的信号后可调节肠道内环境的稳态[16],因此小肠消化酶活性变化与菌群结构的优化以及肠道形态与内环境的改善有关。研究显示,低聚木糖对小肠消化酶活性没有影响,但同样促进了营养物质消化,原因可能是食糜黏度降低,消化酶能与更多的底物接触[17]。由此可见,低聚木糖可能是促进了营养物质在肠道的消化吸收从而显著地改善了肉鸡的生长性能[12, 18-19]。此外,还有研究发现,生长性能的改善可能与肠道黏膜屏障功能的增强有关,并且会随着低聚木糖添加剂量的增加而更加显著[20]

3.2 低聚木糖对肉鸡盲肠短链脂肪酸含量的影响

短链脂肪酸是由不可被宿主消化的碳水化合物经微生物的发酵产生的,受到肠道内环境和肠道微生物的共同调控。研究发现由饲粮成分变化驱动的微生物群落多样性的改变会导致短链脂肪酸含量和组成结构的变化,短链脂肪酸可作为递质调节肠上皮屏障功能,以及进行宿主与微生物之间的信息交流,具有抗炎和提高免疫力的作用[21-22],因此短链脂肪酸对动物体有一定的积极影响。低聚木糖经过消化道前段进入盲肠后由微生物发酵可产生短链脂肪酸,已有研究得出低聚木糖能显著增加肉鸡肠道脂肪酸的含量,并且发现肉鸡盲肠短链脂肪酸的含量随饲粮中低聚木糖添加水平的提高而呈线性增加,尤其是乙酸盐和丁酸盐的含量[18]。本试验结果显示,饲粮添加0.02%的低聚木糖对肉鸡盲肠短链脂肪酸含量没有显著影响,但是低聚木糖组短链脂肪酸的含量高于对照组,有增加的趋势,这与McCafferty等[23]的研究结果相似,可能与低聚木糖的添加量有关[24]。研究发现,添加量依次为0、0.01%、0.02%、0.03%、0.04%和0.05%时,蛋鸡盲肠中乙酸、丁酸等含量随低聚木糖添加量的增加呈线性增加或者有增加的趋势[25];比较100、250和500 g/t 3种添加水平的饲喂效果,当添加量为100 g/t时,低聚木糖增加肠道食糜中乙酸、直链脂肪酸和总脂肪酸含量的效果最好[26],因此短链脂肪酸含量与低聚木糖添加水平之间可能具有剂量效应。体外试验发现,双歧杆菌、乳酸杆菌等益生菌通过与沙门氏菌等致病菌竞争底物和附着位点,能更好地利用低聚木糖进行生长繁殖,进而使得短链脂肪酸等益生菌的代谢产物大量积累[27],而微生物利用低聚木糖的能力与自身的降解酶系统有关,也与微生物的类群有关[28],研究发现盲肠短链脂肪酸含量的增加与一些特定菌属含量的增加有线性关系,而低聚木糖对肠道微生物总体多样性没有显著影响,但能够促进一些有益菌群的增殖[29],因此需要对肠道微生物做深入研究。短链脂肪酸能够降低肠道内食糜pH,抑制病原菌的增殖,有助于营养物质的消化吸收,低聚木糖不仅能改善动物体肠道健康[30],也能显著增加肠道短链脂肪酸含量[25],可考虑作为添加剂替代促生长类抗生素。

3.3 低聚木糖对肉鸡血清激素水平的影响

甲状腺激素通过信号的级联反应调节物质代谢,能够直接地反映机体的基础代谢率,并且GH的分泌与甲状腺激素的水平呈正相关[31]。本试验结果表明,饲粮添加低聚木糖能够显著增加肉鸡血清GH和T3的含量,表明低聚木糖能正向调控肉鸡的生长速率,而且体重的增加与甲状腺激素提高基础代谢率和GH促进机体的生长有显著关系[31],由此可知,低聚木糖在提高甲状腺机能的同时还能刺激GH的分泌,从而促进生长和代谢,可能是肠道菌群代谢低聚木糖后产生某种递质经肠上皮或肠内分泌细胞向神经传递,从而调节甲状腺激素和GH的分泌[32],其影响机理还需进一步研究。Sun等[33]研究发现,5、10和20 g/kg 3种低聚木糖添加水平都能显著增加肉鸡血清甲状腺激素和GH含量;孙镇平等[34]研究也显示低聚木糖添加水平为20 g/kg时,不但能显著增加肉鸡血清T3和T4含量,而且显著增加了GH和促肾上腺皮质激素含量,进而促进了机体的生长;也有研究显示,添加不同水平(100、150和200 mg/kg)的低聚木糖对淮南麻鸡血清GH和甲状腺激素含量都无显著影响,但有增加的趋势[35]。本试验中,低聚木糖组肉鸡血清T4含量较对照组显著降低,可能是由于在低聚木糖的作用下有一部分转化成了作用更显著的T3,并且总体上T3所占比例更多,Iqbal等[36]的试验也证明了寡糖能显著增加血清T3含量,而对血清T4含量无显著影响;Ding等[25]研究显示,不同添加水平的低聚木糖对血清降钙素、甲状旁腺素等激素水平均无显著影响。由此可见,低聚木糖对肉鸡血清激素水平影响的研究尚存在一定的差异,可能与低聚木糖的提取方法、添加水平等因素有关,需要更进一步的研究来解释。

4 结论

饲粮添加以杨木屑为原料、利用醋酸催化法生产的低聚木糖能够提高肉鸡肠道中消化酶的活性,促进肉鸡GH与甲状腺激素的分泌,提高营养物质利用率,从而改善肉鸡的生长性能。

参考文献
[1]
AMORIM C, SILVÉRIO S C, PRATHER K L J, et al. From lignocellulosic residues to market:production and commercial potential of xylooligosaccharides[J]. Biotechnology Advances, 2019, 37(7): 107397. DOI:10.1016/j.biotechadv.2019.05.003
[2]
DE MAESSCHALCK C, EECKHAUT V, MAERTENS L, et al. Effects of xylo-oligosaccharides on broiler chicken performance and microbiota[J]. Applied and Environmental Microbiology, 2015, 81(17): 5880-5888. DOI:10.1128/AEM.01616-15
[3]
YUAN L, LI W L, HUO Q Q, et al. Effects of xylo-oligosaccharide and flavomycin on the immune function of broiler chickens[J]. PeerJ, 2018, 6(3): e4435.
[4]
MIN Y N, YANG H L, XU Y X, et al. Effects of dietary supplementation of synbiotics on growth performance, intestinal morphology, sIgA content and antioxidant capacities of broilers[J]. Journal of Animal Physiology and Animal Nutrition, 2016, 100(6): 1073-1080. DOI:10.1111/jpn.12479
[5]
SAMANTA A K, JAYAPAL N, JAYARAM C, et al. Xylooligosaccharides as prebiotics from agricultural by-products:production and applications[J]. Bioactive Carbohydrates and Dietary Fibre, 2015, 5(1): 62-71. DOI:10.1016/j.bcdf.2014.12.003
[6]
POLETTO P, PEREIRA G N, MONTEIRO C R M, et al. Xylooligosaccharides:transforming the lignocellulosic biomasses into valuable 5-carbon sugar prebiotics[J]. Process Biochemistry, 2020, 91: 352-363.
[7]
ZHANG H Y, YONG X, YU S Y. Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis[J]. Bioresource Technology, 2017, 234: 343-349. DOI:10.1016/j.biortech.2017.02.094
[8]
GUO J M, HUANG K X, ZHANG S Z, et al. Optimization of selective acidolysis pretreatment for the valorization of wheat straw by a combined chemical and enzymatic process[J]. Journal of Chemical Technology and Biotechnology, 2020, 95(3): 694-701. DOI:10.1002/jctb.6251
[9]
ZHANG H Y, ZHOU X L, XU Y, et al. Production of xylooligosaccharides from waste xylan, obtained from viscose fiber processing, by selective hydrolysis using concentrated acetic acid[J]. Journal of Wood Chemistry and Technology, 2017, 37(1): 1-9. DOI:10.1080/02773813.2016.1214154
[10]
LAI C H, JIA Y, WANG J L, et al. Co-production of xylooligosaccharides and fermentable sugars from poplar through acetic acid pretreatment followed by poly (ethylene glycol) ether assisted alkali treatment[J]. Bioresource Technology, 2019, 288: 121569. DOI:10.1016/j.biortech.2019.121569
[11]
HUANG K X, LUO J, CAO R, et al. Enhanced xylooligosaccharides yields and enzymatic hydrolyzability of cellulose using acetic acid catalysis of poplar sawdust[J]. Journal of Wood Chemistry and Technology, 2018, 38(5): 371-384. DOI:10.1080/02773813.2018.1500608
[12]
CHEN Y P, WEN C, ZHOU Y M. Dietary synbiotic incorporation as an alternative to antibiotic improves growth performance, intestinal morphology, immunity and antioxidant capacity of broilers[J]. Journal of the Science of Food and Agriculture, 2018, 98(9): 3343-3350. DOI:10.1002/jsfa.8838
[13]
LIU J B, CAO S C, LIU J, et al. Effect of probiotics and xylo-oligosaccharide supplementation on nutrient digestibility, intestinal health and noxious gas emission in weanling pigs[J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(10): 1660-1669. DOI:10.5713/ajas.17.0908
[14]
XU Z R, HU C H, XIA M S, et al. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers[J]. Poultry Science, 2003, 82(6): 1030-1036.
[15]
SOUMEH E A, MOHEBODINI H, TOGHYANI M, et al. Synergistic effects of fermented soybean meal and mannan-oligosaccharide on growth performance, digestive functions, and hepatic gene expression in broiler chickens[J]. Poultry Science, 2019, 98(12): 6797-6807.
[16]
KAYAMA H, OKUMURA R, TAKEDA K. Interaction between the microbiota, epithelia, and immune cells in the intestine[J]. Annual Review of Immunology, 2020, 38: 23-48.
[17]
LIU W C, KIM I H. Effects of dietary xylanase supplementation on performance and functional digestive parameters in broilers fed wheat-based diets[J]. Poultry Science, 2017, 96(3): 566-573.
[18]
RIBEIRO T, CARDOSO V, FERREIRA L M A, et al. Xylo-oligosaccharides display a prebiotic activity when used to supplement wheat or corn-based diets for broilers[J]. Poultry Science, 2018, 97(12): 4330-4341.
[19]
SUO H Q, LU L, XU G H, et al. Effectiveness of dietary xylo-oligosaccharides for broilers fed a conventional corn-soybean meal diet[J]. Journal of Integrative Agriculture, 2015, 14(10): 2050-2057.
[20]
周建民.低聚木糖对产蛋鸡生产性能和肠道屏障的作用[D].硕士学位论文.北京: 中国农业科学院, 2019.
ZHOU J M.Effect of dietary xylooligosaccharide supplementation on performance and intestinal barrier of laying hens[D]. Master's Thesis.Beijing: Chinese Academy of Agricultural Sciences, 2019.(in Chinese)
[21]
MORRISON D J, PRESTON T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7(3): 189-200.
[22]
MCCARVILLE J L, CHEN G Y, CUEVAS V D, et al. Microbiota metabolites in health and disease[J]. Annual Review of Immunology, 2020, 38: 147-170.
[23]
MCCAFFERTY K W, BEDFORD M R, KERR B J, et al. Effects of cereal grain source and supplemental xylanase concentrations on broiler growth performance and cecal volatile fatty acid concentrations from 1 to 40 d of age[J]. Poultry Science, 2019, 98(7): 2866-2879.
[24]
郑雅文, 张丽元, 赵丽红, 等. 日粮果寡糖对肉鸡生长性能、消化酶活性和短链脂肪酸的影响[J]. 饲料工业, 2019, 40(22): 16-21.
ZHENG Y W, ZHANG L Y, ZHAO L H, et al. Effects of dietary fructooligosaccharide on growth performance, digestive enzyme activity and short-chain fatty acid in broilers[J]. Feed Industry, 2019, 40(22): 16-21 (in Chinese).
[25]
DING X M, LI D D, BAI S P, et al. Effect of dietary xylooligosaccharides on intestinal characteristics, gut microbiota, cecal short-chain fatty acids, and plasma immune parameters of laying hens[J]. Poultry Science, 2018, 97(3): 874-881.
[26]
PAN J, YIN J, ZHANG K, et al. Dietary xylo-oligosaccharide supplementation alters gut microbial composition and activity in pigs according to age and dose[J]. AMB Express, 2019, 9(1): 134.
[27]
DE FIGUEIREDO F C, DE BARROS RANKE F F, DE OLIVA-NETO P. Evaluation of xylooligosaccharides and fructooligosaccharides on digestive enzymes hydrolysis and as a nutrient for different probiotics and Salmonella typhimurium[J]. LWT, 2020, 118: 108761.
[28]
ZENG H Y, XUE Y M, PENG T T, et al. Properties of xylanolytic enzyme system in bifidobacteria and their effects on the utilization of xylooligosaccharides[J]. Food Chemistry, 2007, 101(3): 1172-1177.
[29]
POURABEDIN M, GUAN L L, ZHAO X. Xylo-oligosaccharides and virginiamycin differentially modulate gut microbial composition in chickens[J]. Microbiome, 2015, 3: 15.
[30]
冷智贤, 杨雪, 洑琴, 等. 低聚木糖和低聚壳聚糖及其复合制剂对肉鸡生产性能、免疫机能和盲肠菌群的影响[J]. 畜牧与兽医, 2014, 46(5): 13-18.
LENG Z X, YANG X, FU Q, et al. Effects of xylooligosaccharide and chitosan oligosaccharide alone or in combination on growth performance, immune function and cecal microflora of broilers[J]. Animal Husbandry & Veterinary Medicine, 2014, 46(5): 13-18 (in Chinese).
[31]
MULLUR R, LIU Y Y, BRENT G A. Thyroid hormone regulation of metabolism[J]. Physiological Reviews, 2014, 94(2): 355-382.
[32]
JAMESON K G, OLSON C A, KAZMI S A, et al. Toward understanding microbiome-neuronal signaling[J]. Molecular Cell, 2020, 78(4): 577-583.
[33]
SUN Z P, LV W T, YU R K, et al. Effect of a straw-derived xylooligosaccharide on broiler growth performance, endocrine metabolism, and immune response[J]. Canadian Journal of Veterinary Research, 2013, 77(2): 105-109.
[34]
孙镇平, 范艳平, 田树清, 等. 棉籽壳源低聚木糖菌糠对肉鸡生产性能及激素代谢的影响[J]. 中国家禽, 2009, 31(7): 27-30.
SUN Z P, FAN Y P, TIAN S Q, et al. Effects of dietary chaff of xylo-oligosaccharides from cottonseedhull (CXOC) on production performance and hormone metabolism of broiler chickens[J]. China Poultry, 2009, 31(7): 27-30 (in Chinese).
[35]
SI M X. The effect of xylo-oligosaccharides on the growth performance and immunity function in Huainan chicken[J]. Master's Thesis.Hefei:Anhui Agriculture University, 2008 (in Chinese).
[36]
IQBAL M A, ROOHI N, KHAN O. Dietary supplemented effects of mannan-oligosaccharides on biochemical parameters of 4 close-bred flocks of Japanese quail breeders[J]. Poultry Science, 2018, 97(10): 3718-3727.