动物营养学报    2021, Vol. 33 Issue (3): 1663-1674    PDF    
11S球蛋白通过核因子-κB、诱导型一氧化氮合酶、c-Jun N端激酶、p38丝裂原活化蛋白激酶信号通路诱导猪小肠上皮细胞损伤的研究
王蕾 , 孙智峰 , 彭成璐 , 丁红研 , 王志 , 李思婷 , 王承智 , 李玉 , 王希春 , 吴金节     
安徽农业大学动物科技学院, 合肥 230061
摘要: 本研究旨在利用细胞体外培养技术,分析11S球蛋白通过核因子-кB(NF-κB)、诱导型一氧化氮合酶(iNOS)、c-Jun N端激酶(JNK)和p38丝裂原活化蛋白激酶(p38 MAPK)信号通路诱导猪小肠上皮细胞(IPEC-J2细胞)损伤的作用差异。试验随机分为6组:A组(对照组)无添加;B组添加5 mg/mL的11S球蛋白;C、D、E和F组分别添加1 μmol/L的NF-κB抑制剂二硫氨基甲酸肽吡咯烷(PDTC)、iNOS抑制剂Nω-硝基-L-精氨酸甲酯(L-NAME)、JNK抑制剂SP600125和p38 MAPK抑制剂SB202190预处理后,分别添加5 mg/mL的11S球蛋白。培养24 h后,CCK-8检测细胞活性,酶联免疫吸附测定(ELISA)法检测一氧化氮(NO)、肿瘤坏死因子-α(TNF-α)、干扰素-γ(INF-γ)和白细胞介素-10(IL-10)含量,苏木精-伊红(HE)染色法观察细胞及细胞核形态,用透射电子显微镜观察细胞超微结构,实时荧光定量PCR检测NF-κBiNOSJNKp38 MAPK mRNA相对表达量,Western blot检测NF-κB、iNOS、JNK、p38 MAPK蛋白表达水平。结果显示:1)与A组相比,B组细胞活性极显著降低(P < 0.01);与B组相比,C、D、E和F组细胞活性极显著升高(P < 0.01),且C组细胞活性显著高于D、E和F组(P < 0.05)。2)与A组相比,B组TNF-α、INF-γ和NO含量极显著升高(P < 0.01),IL-10含量极显著降低(P < 0.01);与B组相比,C、D、E和F组TNF-α、INF-γ和NO含量极显著降低(P < 0.01),IL-10含量极显著升高(P < 0.01)。3)与A组相比,B组NF-κB、iNOS、JNK和p38 MAPK蛋白表达水平和mRNA相对表达量极显著升高(P < 0.01)。4)与B组相比,C和F组NF-κBiNOSJNKp38 MAPK mRNA相对表达量显著或极显著降低(P < 0.05或P < 0.01),D组NF-κBiNOSJNK mRNA相对表达量极显著降低(P < 0.01),E组NF-κBJNKp38 MAPK mRNA相对表达量显著或极显著降低(P < 0.05或P < 0.01)。5)与B组相比,C、E和F组NF-κB、iNOS、JNK和p38 MAPK蛋白表达水平极显著降低(P < 0.01),D组NF-κB、iNOS和JNK蛋白表达水平极显著降低(P < 0.01)。6)HE染色及透射电镜观察可见,B组细胞损伤、胞质空泡化、核染色质聚集,C、D、E和F组细胞损伤受到抑制,且C组细胞结构形态的完整性优于D、E和F组。由此可见,11S球蛋白通过JNK/p38 MAPK/NF-κB/iNOS信号通路诱导IPEC-J2细胞损伤,且NF-κB信号通路在诱导细胞损伤的过程中发挥关键作用。
关键词: 大豆球蛋白    IPEC-J2细胞    信号通路    细胞损伤    
Research on IPEC-J2 Cell Injury Induced by 11S Globulin via Signal Pathway of Nuclear Factor-κB, Inducible Nitric Oxide Synthase, c-Jun N-Terminal Kinase and p38 Mitogen Activated Protein Kinase
WANG Lei , SUN Zhifeng , PENG Chenglu , DING Hongyan , WANG Zhi , LI Siting , WAGN Chengzhi , LI Yu , WANG Xichun , WU Jinjie     
College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
Abstract: The present study aimed to analyze the discrepancies in 11S glycinin induced porcine intestinal epithelial cell (IPEC-J2 cell) injury via signal pathways of nuclear factor-κB (NF-κB), inducible nitric oxide synthase (iNOS), c-Jun N-terminal kinase (JNK) and p38 mitogen activated protein kinase (p38 MAPK) using cell culture technology in vitro. The experiment was randomly divided into 6 groups: group A (control group) was no added; group B was added 5 mg/mL 11S glycinin; groups C, D, E and F were pretreated with 1 μmol/L NF-κB inhibitor of pyrrolidine dithiocarbamte (PDTC), iNOS inhibitor of Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), JNK inhibitor of SP600125) and p38 MAPK inhibitor of SB202190, respectively, and then were added 5 mg/mL 11S glycinin. After 24 hours culture, cell viability was detected by CCK-8. The contents of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ) and interleukin-10 (IL-10) were measured by enzyme-linked immunosorbent assay (ELISA) method. The morphology of cells and nuclei were observed by hematoxylin-eosin (HE)staining. The ultrastructure of cells was observed by transmission electron microscope. The mRNA relative expression levels of NF-κB, iNOS, JNK and p38 MAPK were determined by real-time quantitative PCR. The protein expression levels of NF-κB, iNOS, JNK and p38 MAPK were detected by Western blot. The results showed as follows: 1) compared with group A, the cell viability of group B was significantly decreased (P < 0.01); compared with group B, the cell viability of groups C, D, E and F were significantly increased (P < 0.01), and the cell viability of group C was significantly higher than that of groups D, E and F (P < 0.05). 2) Compared with group A, the contents of TNF-α, INF-γ and NO of group B were significantly increased (P < 0.01), but the IL-10 content was significantly decreased (P < 0.01); compared with group B, the contents of TNF-α, INF-γ and NO of groups C, D, E and F were significantly decreased (P < 0.01), but the IL-10 content was significantly increased (P < 0.01). 3) Compared with group A, the protein expression levels and the mRNA relative expression levels of NF-κB, iNOS, JNK and p38 MAPK of group B were significantly increased (P < 0.01). 4) Compared with group B, the mRNA relative expression levels of NF-κB, iNOS, JNK and p38 MAPK of group C and F were significantly decreased (P < 0.05 or P < 0.01), the mRNA relative expression levels of NF-κB, iNOS and JNK of group D were significantly decreased (P < 0.01), the mRNA relative expression levels of NF-κB, JNK and p38 MAPK of group E were significantly decreased (P < 0.05 or P < 0.01). 5) Compared with group B, the protein expression levels of NF-κB, iNOS, JNK and p38 MAPK of group C, E and F were significantly decreased (P < 0.01), the protein expression levels of NF-κB, iNOS and JNK of group D were significantly decreased (P < 0.01). 6) Observation of the HE staining and transmission electron microscope showed cells damage, cytoplasmic vacuolation and aggregation of nuclear chromatin in group B, the injury of cells were inhibited in groups C, D, E and F, and the integrity of cell structure and morphology in group C was better than that in groups D, E and F. In conclusion, the 11S glycinin can induce IPEC-J2 cell damage via JNK/p38 MAPK/NF-κB/iNOS signaling pathways, and the NF-κB signaling pathway plays a critical role in the process of inducing cell damage.
Key words: glycinin    IPEC-J2 cells    signal pathway    cell damage    

大豆贮藏蛋白主要由球蛋白组成,球蛋白按沉淀系数分为2S、7S、11S和15S 4种主要类型。11S球蛋白是大豆球蛋白的主要成分之一,其质量百分数占大豆籽实总蛋白的19.5%~23.1%和总球蛋白的40.0%,易引起幼龄动物免疫球蛋白E(IgE)型过敏反应[1]。11S球蛋白含有5个亚基,约20 ku的碱性多肽和约40 ku的酸性多肽(由二硫键相连)组成每个亚基的结构。根据蛋白质在动物肠道中的吸收规律,大豆球蛋白主要吸收部位在小肠,小部分见于胃和大肠中[2-3]。11S球蛋白经幼龄动物采食进入肠道后,肠道出现明显炎症浸润,诱导肠黏膜细胞凋亡,使小肠通透性升高,损坏肠黏膜屏障[4]。肠上皮对环境起着动态屏障的作用,整合了多种信号,包括来自代谢物、共生微生物区系、免疫反应和衰老应激源的信号。肠上皮细胞通过不断地增殖更新来替换受损的细胞,以维持肠道上皮的正常屏障功能。

仔猪小肠上皮细胞(IPEC-J2细胞)处于小肠第1层,保存了大部分细胞的原有上皮特性,在构成完整的管腔环境过程中发挥重要作用。体外研究表明,11S球蛋白降低IPEC-J2细胞的跨膜电阻值,提高细胞通透性,抑制细胞增殖,诱导肠细胞损伤凋亡[5]。本课题组前期研究证实,11S球蛋白分别通过核因子-κB(NF-κB)、诱导型一氧化氮合酶(iNOS)、c-Jun N端激酶(JNK)和p38丝裂原活化蛋白激酶(p38 MAPK)信号通路引起IPEC-J2细胞损伤和凋亡[6-7]。p38 MAPK抑制剂SB202190与腺嘌呤核苷三磷酸竞争抑制p38 MAPK活性,降低肿瘤坏死因子-α(TNF-α)含量[8]。JNK抑制剂SP600125可以抑制JNK mRNA的表达[9]。二硫氨基甲酸肽吡咯烷(PDTC)是NF-κB的一种强效抑制剂,它既能抵抗自由基的毒性作用,也能抑制促炎性细胞因子的生成[10]。Nω-硝基-L-精氨酸甲酯(L-NAME)是一种非特异性的一氧化氮合酶(NOS)抑制剂,能同时抑制神经元型一氧化氮合酶(nNOS)、内皮型一氧化氮合酶(eNOS)和iNOS的表达[11]。本试验在前期研究的基础上,构建IPEC-J2细胞体外模型,测定NF-κB、iNOS、JNK和p38 MAPK分别在各自抑制剂作用下,IPEC-J2细胞活性以及相关炎性因子含量和蛋白表达水平,并在透射电镜下观察IPEC-J2细胞结构形态的完整性,分析11S球蛋白通过JNK、p38 MAPK、NF-κB和iNOS信号通路诱导IPEC-J2细胞损伤的差异,为11S球蛋白引起IPEC-J2细胞损伤的分子机制提供科学依据。

1 材料与方法 1.1 试验材料

11S球蛋白购自中国农业大学食品工程学院,并进一步提纯至91.8%。IPEC-J2细胞购自武汉市农业科学院细胞库,RPMI 1640培养基由美国Thermo公司提供,BCA蛋白浓度测定试剂盒购自Biosharp公司,β-肌动蛋白(β-actin)由爱必信(上海)生物科技有限公司提供,HPR辣根酶标记山羊抗兔免疫球蛋白G(IgG)二抗和山羊抗鼠二抗购自Biosharp公司,PDTC、L-NAME、SP600125和SB202190购自碧云天生物技术公司。一氧化氮(NO)、TNF-α、干扰素-γ(INF-γ)、白细胞介素-6(IL-6)和白细胞介素-10(IL-10)酶联免疫吸附测定(ELISA)试剂盒购自南京建成生物工程研究所。

1.2 试验分组与设计

将对数生长期中的IPEC-J2细胞,按照1×105个/mL的密度接种在6孔细胞板后,置于37 ℃、5% CO2恒温培养箱中培养24 h贴壁后,随机分为6组:A组(对照组)无添加,B组添加5 mg/mL的11S球蛋白,C组添加5 mg/mL的11S球蛋白+1 μmol/L的PDTC,D组添加5 mg/mL的11S球蛋白+1 μmol/L的L-NAME,E组添加5 mg/mL的11S球蛋白+1 μmol/L的SP600125,F组添加5 mg/mL的11S球蛋白+1 μmol/L的SB202190,每组设置3个重复。

1.3 细胞活性测定

按照5 000个/孔的密度将对数生长期中的IPEC-J2细胞悬液(100 μL/孔)接种在96孔板中,细胞贴壁后,按照试验设计分别添加11S球蛋白和抑制剂,培养24 h后,每孔加入10 μL的CCK-8溶液,在细胞培养箱内继续孵育至出现明显的颜色反应。用酶标仪测定450 nm处的光密度(optical density,OD)值,检测细胞活性。

1.4 NO、TNF-α、INF-γ和IL-10含量测定

按照试验设计,将各组细胞培养24 h后,收集细胞,1 000 r/min离心5 min,磷酸盐缓冲液(PBS)洗涤3次。随后在每组样品中加入500 μL含0.1%聚乙二醇辛基苯基醚(TritonX-100)的0.1 mol/L Tris-HCl(pH=7.4),超声裂解各组样品(冰水中)。收集细胞裂解液,1 000 r/min离心10 min后,吸取上清液,依据ELISA试剂盒说明进行试验,检测NO、TNF-α、INF-γ和IL-10含量。

1.5 苏木精-伊红(HE)染色

按照试验分组与设计,培养24 h后,收集细胞,制作切片。依次将切片放入二甲苯Ⅰ 10 min,二甲苯Ⅱ 10 min,无水乙醇Ⅰ3 min,无水乙醇Ⅱ 3 min,乙醇Ⅰ(95%) 3 min,乙醇Ⅱ(95%) 3 min,乙醇(80%)3 min,蒸馏水1 min。切片放入苏木素染液中染色细胞核1~3 min,切片放入伊红染液中染色细胞质1~3 min,流水清洗后脱水封片,显微镜镜检,分析图像。

1.6 透射电子显微镜观察细胞形态及内部结构

按照试验设计,将各组细胞培养24 h后,收集细胞,1 000 r/min离心5 min,弃上清液,每管加入1 mL的4%多聚甲醛4 ℃下固定12 h后,PBS洗涤3次(4 ℃、5 000 r/min、15 min)之后用2%锇酸渗透酸固定4 h。PBS缓冲液冲洗后,用30%~100%酒精梯度脱水,渗透包埋,切割超薄切片染色,在JEM-1230透射电子显微镜(transmission electron microscopy,TEM)下拍摄图片。

1.7 实时荧光定量PCR(qRT-PCR)检测NF-κBiNOSJNKp38 MAPK mRNA相对表达量

按照试验设计,将各组细胞培养24 h后,收集细胞,使用TRIzol试剂(Invitrogen TRIzol®plus RNA purification kit)进行RNA分离,利用紫外分光光度计和电泳测定其含量、纯度及质量后贮存在-80 ℃备用。每个PCR反应混合物包含200 nmol/L的引物,10 μL的2×SYBR-green PCR master混合物(Roche公司,货号:4913914001),5 μL的cDNA和不含核糖核酸酶(RNase)的水,总体积为20 μL。以β-actin为内参,基因引物参数如表 1所示。

表 1 基因引物参数 Table 1 Primer parameters of genes
1.8 Western blot检测NF-κB、iNOS、JNK和p38 MAPK蛋白表达水平

按照试验设计,将各组细胞培养24 h后,收集细胞,将IPEC-J2细胞进行Western Blot印迹处理。每个十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)(12%)泳道加入20 μg的总蛋白电泳并转移至聚偏二氟乙烯(PVDF)膜上。PVDF膜4 ℃下与一抗孵育过夜后用TBST缓冲液清洗3次,进行二抗孵育。洗膜3次,放入凝胶成像系统显影拍摄。

1.9 数据处理

试验数据用平均值±标准差表示,采用SPSS 17.0软件的ANOVA程序进行方差分析,LSD法进行显著性比较,P < 0.05表示差异显著,P < 0.01表示差异极显著。使用Graph Pad Prism 7.0软件绘制柱状图,使用Quantity One软件分析Western blot结果。

2 结果 2.1 11S球蛋白、PDTC、L-NAME、SP600125和SB202190对IPEC-J2细胞活性的影响

图 1所示,与A组相比,B组细胞活性极显著下降(P < 0.01)。与B组相比,分别添加1 μmol/L的PDTC、L-NAME、SP600125和SB202190后,C、D、E和F组细胞活性极显著上升(P < 0.01)。C组细胞活性显著高于D、E和F组(P < 0.05)。

不同组别之间,数据点标不同小写字母表示差异显著(P < 0.05),不同大写字母表示差异极显著(P < 0.01),相同或无字母表示差异不显著(P>0.05)。 Among different groups, data points with different small letters mean significant difference (P < 0.05), and with different capital letters mean significant difference (P < 0.01), while with the same or no letters mean no significant difference (P>0.05). 图 1 CCK8检测IPEC-J2细胞活性 Fig. 1 Viability of IPEC-J2 cell detected by CCK8
2.2 11S球蛋白、PDTC、L-NAME、SP600125和SB202190对IPEC-J2细胞因子和NO含量的影响

图 2所示,与A组相比,B组NO、TNF-α和INF-γ含量均极显著升高(P < 0.01)。与B组相比,C、D、E和F组NO、TNF-α和INF-γ含量均极显著降低(P < 0.01)。与A组相比,B组IL-10含量极显著降低(P < 0.01)。与B组相比,C、D、E和F组IL-10含量极显著升高(P < 0.01)。

*表示与A组相比差异显著(P < 0.05),* *表示与A组相比差异极显著(P < 0.01)。#表示与B组相比差异显著(P < 0.05),##表示与B组相比差异极显著(P < 0.01)。下图同。 * mean significant difference compared with group A (P < 0.05), * * mean significant difference compared with group A (P < 0.01). # mean significant difference compared with group B (P < 0.05), ## mean significant difference compared with group B (P < 0.01). The same as below. 图 2 ELISA检测细胞中NO、TNF-α、INF-γ和IL-10含量 Fig. 2 Contents of NO, TNF-α, INF-γ and IL-10 in cells detected by ELISA
2.3 IPEC-J2细胞的HE染色图像

HE染色图像如图 3所示,A组的细胞膜完整,核仁饱满;B组的细胞肿胀或破裂,细胞外形结构异形,核仁皱缩。与B组相比,C、D、E和F组的细胞损伤情况明显减轻,细胞外形及细胞膜相对完整;与D、E和F组相比,C组的细胞形态及细胞膜更加规则完整,核仁皱缩现象明显改善。

图 3 HE染色观察IPEC-J2细胞的细胞形态和结构 Fig. 3 Cell morphology and structure of IPEC-J2 cell observed by HE staining (1 000×)
2.4 透射电镜观察结果

图 4所示,A组的细胞外形结构及细胞器形态完整,胞浆致密,核染色质分布均匀;B组的细胞核周围出现空泡,细胞浆减少,细胞核增大异形、边界不整齐,核层退化,染色质皱缩,细胞质凝结。分别添加1 μmol/L的PDTC、L-NAME、SP600125和SB202190后,C、D、E和F组的细胞结构趋于完整且细胞质空泡化减少;与D、E和F组相比,C组细胞膜形态更加规则完整,细胞浆增多,细胞核大小正常、形态规则,染色质分布更加致密均匀。

图 4 透射电镜观察IPEC-J2细胞的超微结构 Fig. 4 Ultrastructural structure of IPEC-J2 cells observed by transmission electron microscope (20 000×, 80.0 kV)
2.5 PDTC、L-NAME、SP600125和SB202190对NF-κBiNOSJNKp38 MAPK mRNA相对表达量的影响

图 5所示,与A组相比,B组的NF-κBiNOSJNKp38 MAPK mRNA相对表达量极显著升高(P < 0.01)。与B组相比,分别添加1 μmol/L的PDTC、L-NAME、SP600125和SB202190后,C和F组的NF-κBiNOSJNKp38 MAPK mRNA相对表达量显著或极显著下降(P < 0.05或P < 0.01),D组的NF-κBiNOSJNK mRNA相对表达量极显著下降(P < 0.01),E组的NF-κBJNKp38 MAPK mRNA相对表达量显著或极显著下降(P < 0.05或P < 0.01)。

图 5 qRT-PCR检测细胞中NF-κBiNOSJNKp38 MAPK mRNA相对表达量 Fig. 5 Relative expression levels of NF-κB , iNOS, JNK and p38 MAPK mRNA in cells detected by qRT-PCR
2.6 11S、PDTC、L-NAME、SP600125和SB202190对NF-кB、iNOS、JNK和p38 MAPK蛋白表达水平的影响

图 6所示,与A组相比,B组的NF-κB、iNOS、JNK和p38 MAPK蛋白表达水平极显著升高(P < 0.01)。与B组相比,分别添加1 μmol/L的PDTC、L-NAME、SP600125和SB202190后,C、E和F组的NF-κB、iNOS、JNK和p38 MAPK蛋白表达水平极显著下降(P < 0.01),D组的NF-κB、iNOS和JNK蛋白表达水平极显著下降(P < 0.01)。

图 6 Western blot检测细胞中NF-κB、iNOS、JNK和p38 MAPK蛋白表达水平 Fig. 6 Expression levels of NF-κB, iNOS, JNK and p38 MAPK proteins in cells detected by Western blot
3 讨论

Stokes等[12]研究发现,大豆抗原蛋白介导T淋巴细胞免疫应答产生过量细胞因子引起猪肠上皮结构损伤。细胞因子IL-10主要由辅助性T细胞2(Th2)产生,在过敏性炎症反应中发挥重要作用。敲除IL-10的小鼠结肠黏膜增厚,肠道炎性细胞浸润明显,炎症相关基因表达量上升,自发形成慢性小肠炎症[13]。刘欣[14]用11S球蛋白灌胃小鼠建立体内试验模型,qRT-PCR检测小鼠小肠组织,发现IL-10 mRNA的相对表达量降低。本试验中,添加5 mg/mL的11S球蛋白后,IL-10含量极显著下降;添加1 μmol/L的PDTC、L-NAME、SP600125和SB202190后,IL-10含量极显著上升。这提示在11S球蛋白诱导的肠道过敏炎症反应中,IL-10是重要的免疫调节剂。IL-10参与的免疫抑制反应是由p38 MAPK途径介导的[15],p38 MAPK、JNK和细胞外信号调节激酶(ERK)是丝裂原活化蛋白激酶(MAPK)信号通路下游的3个信号级联通路,MAPK信号通路调控肠道细胞的增殖和免疫反应,在炎症反应中发挥重要作用[16]。Peng等[17]采用11S球蛋白饲喂断奶仔猪构建体内试验模型发现,11S球蛋白诱导肠道组织JNK和p38 MAPK蛋白过度表达。张瑜[18]通过体外培养IPEC-J2细胞发现,随11S球蛋白浓度增加,IPEC-J2细胞磷酸化c-Jun N端激酶(p-JNK)和磷酸化p38(p-p38)蛋白表达水平逐渐增加,细胞活性显著下降,细胞损伤程度逐渐加重;添加SP600125和SB202190后,p-JNK和p-p38蛋白表达水平显著下降,且能够抑制细胞损伤。本试验中,添加5 mg/mL的11S球蛋白后,IPEC-J2细胞活性极显著下降,JNK和p38 MAPK蛋白表达水平及mRNA相对表达量极显著升高;添加SP600125和SB202190后,细胞活性极显著上升,JNK和p38 MAPK蛋白表达水平及mRNA相对表达量极显著降低,说明11S球蛋白通过JNK和p38 MAPK信号通路介导IPEC-J2细胞损伤。

11S球蛋白诱导的仔猪过敏反应主要是Th2型免疫反应[1],TNF-α和INF-γ是Th2型免疫反应的重要产物[19]。在卵蛋白致敏的小鼠模型中,TNF-α和INF-γ共同诱导细胞产生炎性介质,促进炎症反应[20]。这与本试验11S球蛋白处理IPEC-2细胞后,ELISA检测显示TNF-α和INF-γ含量极显著上升结果一致。TNF-α和INF-γ共同诱导细胞NF-κB抑制蛋白α的磷酸化和降解,导致NF-κB/p65的磷酸化及其核转位[21],激活NF-κB信号通路。在细胞核中,NF-κB促进炎症反应的基因表达,引起细胞凋亡[22]。体内和体外研究发现,11S球蛋白激活NF-κB信号通路诱导IPEC-J2细胞凋亡,损伤断奶仔猪肠道组织[17-18]。Yi等[23]研究发现,断奶导致的仔猪空肠炎症与空肠IFN-γ mRNA相对表达量升高与NF-κB信号通路激活有关。本试验用5 mg/mL的11S球蛋白处理IPEC-J2细胞后,细胞活性极显著下降,HE染色可见细胞膜破裂和细胞核皱缩,透射电镜观察发现胞质空泡化、染色质边集,NF-κB蛋白表达水平和mRNA相对表达量显著提高;添加1 μmol/L的PDTC预处理IPEC-J2细胞后,细胞活性极显著升高,NF-κB蛋白表达水平和mRNA相对表达量显著下降,这表明11S球蛋白通过NF-κB信号通路介导IPEC-J2细胞损伤。

大豆富含的L-精氨酸是NO的前体,NO在iNOS催化L-精氨酸的过程中产生,是一种细胞炎性介质[24]。p38 MAPK通路增加细胞内NO的产生[15],NO除激活细胞死亡受体途径和线粒体途径诱导细胞凋亡外,还能调节其他炎症因子(如TNF-α)的释放进而加强炎症反应[25]。本试验中,添加5 mg/mL的11S球蛋白处理IPEC-J2细胞,结果发现细胞活性极显著下降,NO和TNF-α含量极显著升高,iNOS蛋白表达水平和mRNA相对表达量显著或极显著升高;添加L-NAME后,NO和TNF-α含量极显著降低,细胞活性极显著上升,iNOS蛋白表达水平和mRNA相对表达量显著降低,表明L-NAME能够通过调节iNOS的表达减少炎症介质,抑制细胞损伤。Kaji等[26]研究发现,肠道平滑肌细胞和巨噬细胞中过量表达的iNOS引起细胞损伤,L-NAME预处理可以阻止细胞损伤。Leitão等[27]在甲氨蝶呤(MTX)诱导的肠黏膜炎症中发现iNOS mRNA相对表达量显著增加,添加L-NAME后可减轻小肠绒毛和隐窝损伤、细胞凋亡现象。

细胞信号转导是多通路、多环节、多层次高度复杂的可控反应,信号的启动、放大和终止是相互作用的正负反馈机制。1种或几种信号通路的异常表达,即可能造成整个信号转导系统的失调,进而引发病变。MAPK和NF-κB信号通路的异常激活促进炎症反应,是导致炎症性肠病(inflammatory bowel disease,IBD)的重要原因[28]。研究表明,IBD患者肠组织中的JNK、p38 MAPK和NF-κB蛋白表达水平显著上升[29-30]。Berghe等[31]研究表明,p38 MAPK通路的激活有助于NF-κB调节其p65亚基的反式激活能力。NF-κB是典型的促炎性信号通路,炎性细胞因子激活NF-κB通路[21],持续激活的NF-κB编码促炎细胞因子及iNOS[32],形成炎症反应的正反馈回路。Rogler等[33]在溃疡性结肠炎和克罗恩病患者的黏膜活检标本中,发现NF-κB蛋白表达水平与肠上皮细胞的活性和炎症的严重程度显著相关。体内试验发现,SP600125、SB202190和PDTC均能显著缓解肠道炎症[34-36],这与本试验添加抑制剂后能够显著抑制IPEC-J2细胞损伤的结果相符。本试验中,与分别添加1 μmol/L的L-NAME、SP600125和SB202190组相比,添加1 μmol/L PDTC组的细胞活性显著高于上述3组,HE染色可见细胞折光性强、胞质饱满、核质清晰,透射电镜观察细胞形态与对照组细胞形态相近,细胞核结构完整、核染色质分布更均匀且胞质空泡化明显减少。这说明PDTC能够抑制11S球蛋白介导的IPEC-J2细胞损伤,且抑制细胞损伤效果优于L-NAME、SP600125和SB202190。这表明NF-κB信号通路在11S球蛋白通过JNK/p38 MAPK/NF-κB/iNOS信号通路介导IPEC-J2细胞损伤的过程中发挥关键作用,这可能与持续上调的NF-κB信号通路激活其他促炎途径,使炎症反应级联放大有关。

4 结论

① 11S球蛋白通过JNK/p38 MAPK/NF-κB/iNOS信号通路诱导IPEC-J2细胞损伤,促进NO、TNF-α和INF-γ分泌,抑制IL-10分泌,提高NF-κBiNOSJNKp38 MAPK mRNA相对表达量,增加NF-κB、iNOS、JNK和p38 MAPK蛋白表达水平,添加PDTC、L-NAME、SP600125和SB202190后,均能抑制IPEC-J2细胞损伤。

② 添加PDTC组的IPEC-J2细胞的活性、细胞形状和细胞器结构的完整性均优于添加L-NAME、SP600125和SB202190组。NF-κB信号通路在11S球蛋白通过JNK/p38 MAPK/NF-κB/iNOS信号通路介导IPEC-J2细胞损伤的过程中发挥关键作用。

参考文献
[1]
SUN P, LI D F, LI Z J, et al. Effects of glycinin on IgE-mediated increase of mast cell numbers and histamine release in the small intestine[J]. Journal of Nutritional Biochemistry, 2008, 19(9): 627-633. DOI:10.1016/j.jnutbio.2007.08.007
[2]
李进杰, 宋志甫. β-伴大豆球蛋白在仔猪胃肠组织中分布规律的研究[J]. 中国畜牧兽医, 2014, 41(5): 176-179.
LI J J, SONG Z F. Study on the distribution of β-conglycinin in gastro-intestinal tissue of piglets[J]. China Animal Husbandry and Veterinary Medicine, 2014, 41(5): 176-179 (in Chinese).
[3]
童深广, 郝红江, 李洪波, 等. 豆粕蛋白在小鼠胃肠道内的吸收与分布研究[J]. 食品与生物技术学报, 2019, 38(8): 53-59.
TONG S G, HAO H J, LI H B, et al. Absorption and distribution of soybean meal protein in mice gastrointestinal tract[J]. Journal of Food Science and Biotechnology, 2019, 38(8): 53-59 (in Chinese).
[4]
刘欣, 曹广添, 陶菲, 等. 基于动物模型的大豆球蛋白诱导肠黏膜过敏反应机理研究[J]. 中国食品学报, 2020, 20(3): 31-37.
LIU X, CAO G T, TAO F, et al. Studies on mechanism of mucosal immune-mediated intestinal allergic reaction Induced by soybean protein based on animal model[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(3): 31-37 (in Chinese).
[5]
韩蕊. 大豆球蛋白对仔猪小肠上皮细胞机械屏障功能的影响[D]. 硕士学位论文. 长春: 吉林农业大学, 2013: 18-31.
HAN R.Effects of glycinin on the mechanical barrier function of porcine intestinal epithelial cells[D].Master's Thesis.Changchun: Jilin Agricultural University, 2013: 18-31.(in Chinese)
[6]
彭成璐, 张瑜, 丁雪东, 等. 11S通过NF-κB信号通路引起猪小肠上皮细胞损伤[J]. 浙江农业学报, 2019, 31(3): 384-391.
PENG C L, ZHANG Y, DING X D, et al. 11S triggered porcine intestinal epithelial cellsdamage through NF-κB signaling pathway[J]. Acta Agriculturae Zhejiangensis, 2019, 31(3): 384-391 (in Chinese).
[7]
彭成璐, 张瑜, 舒迎霜, 等. 大豆球蛋白通过p38丝裂原活化蛋白激酶/c-Jun氨基端激酶信号通路引起猪小肠上皮细胞损伤[J]. 动物营养学报, 2019, 31(4): 1718-1724.
PENG C L, ZHANG Y, SHU Y S, et al. Glycinin induced porcine intestinal epithelial cell damage through p38 MAPK mitogen activated protein kinase/c-Jun N-terminal kinase signaling pathway[J]. Chinese Journal of Animal Nutrition, 2019, 31(4): 1718-1724 (in Chinese).
[8]
吴建龙, 巨积辉, 周广良, 等. SB202190对皮瓣缺血再灌注损伤时TNF-α和IL-10影响的实验研究[J]. 中国临床解剖学杂志, 2014, 32(6): 698-703, 707.
WU J L, JU J H, ZHOU G L, et al. Experimental study on the influence of P38MAPK inhibitor SB202190 on cytokines in flap ischemic reperfusion injury[J]. Chinese Journal of Clinical Anatomy, 2014, 32(6): 698-703, 707 (in Chinese).
[9]
罗新乐, 胡亚威, 周建华. JNK抑制剂SP600125对脊髓损伤的影响[J]. 中国矫形外科杂志, 2020, 28(12): 1122-1126.
LUO X D, HU Y W, ZHOU J H. Effect of JNK inhibitor SP600125 on spinal cord injury[J]. Orthopedic Journal of China, 2020, 28(12): 1122-1126 (in Chinese).
[10]
雷蕊绮, 蒋力, 辜刚凤, 等. PDTC对急性CO中毒迟发性脑病大鼠海马区NF-κBC-myc表达的影响[J]. 中国免疫学杂志, 2020, 36(5): 517-522.
LEI R Q, JIANG L, GU G F, et al. Effects of PDTC on expression of NF-κB and C-myc in hippocampus of rats with delayed encephalopathy after carbon monoxide poisoning[J]. Chinese Journal of Immunology, 2020, 36(5): 517-522 (in Chinese).
[11]
宋红梅. 一氧化氮合酶抑制剂L-NAME对慢性脑缺血大鼠行为学及海马iNOS表达的影响[D]. 硕士学位论文. 长春: 吉林大学, 2007.
SONG H M.Effects of nitnic oxide synthase inhibitor L-NAME on congnitive behaviour and the expression of iNOS in hippocampus of chronic cerebral ischemia rats[D].Master's Thesis.Changchun: Jilin University, 2007.(in Chinese)
[12]
STOKES C R, MILLER B G, BAILEY M, et al. The immune response to dietary antigens and its influence on disease susceptibility in farm animals[J]. Veterinary Immunology and Immunopathology, 1987, 17(1/2/3/4): 413-423.
[13]
JUNG K J, LEE G W, PARK C H, et al. Mesenchymal stem cells decrease oxidative stress in the bowels of interleukin-10 knockout mice[J]. Gut and Liver, 2020, 14(1): 100-107. DOI:10.5009/gnl18438
[14]
刘欣. 大豆球蛋白glycinin和β-conglycinin引发Balb/c小鼠过敏反应及其机理的研究[D]. 博士学位论文. 杭州: 浙江大学, 2008: 84-85.
LIU X.Research on mechanism of allergic reactions caused by soybean glycinin and β-conglycinin in balb/c mice[D].Master's.Thesis.Hangzhou: Zhejiang Univercity, 2008: 84-85.(in Chinese)
[15]
张频捷, 朱立新, 耿小平. p38 MAPK信号传导通路及其抑制剂的研究现状[J]. 安徽医药, 2010, 14(5): 596-598.
ZHANG P J, ZHU L X, GENG X P. p38 MAPK mitogen activated protein kinase pathway and it inhibitor[J]. Anhui Medical and Pharmaceutical Journal, 2010, 14(5): 596-598 (in Chinese).
[16]
DENT P, YACOUB A, FISHER P B, et al. MAPK pathways in radiation responses[J]. Oncogene, 2003, 22(37): 5885-5896. DOI:10.1038/sj.onc.1206701
[17]
PENG C L, CAO C M, HE M C, et al. Soybean glycinin-and β-conglycinin-induced intestinal damage in piglets via the p38/JNK/NF-κB signaling pathway[J]. Journal of Agricultural and Food Chemistry, 2018, 66(36): 9534-9541. DOI:10.1021/acs.jafc.8b03641
[18]
张瑜. 大豆抗原蛋白引起猪小肠上皮细胞损伤的机制研究[D]. 硕士学位论文. 合肥: 安徽农业大学, 2018: 34-35.
ZHANG Y.The mechanism of porcine small intestinal epithelial cells damage induced by soybean protein[D].Master's Thesis.Hefei: Anhui Agricultural University, 2018: 34-35.(in Chinese)
[19]
CHOI J H, JIN S W, PARK B H, et al. Cultivated ginseng inhibits 2, 4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in NC/Nga mice and TNF-α/IFN-γ-induced TARC activation in HaCaT cells[J]. Food and Chemical Toxicology, 2013, 56: 195-203. DOI:10.1016/j.fct.2013.02.037
[20]
JUNG J K, KANG S Y, KIM J, et al. Effects of platycodi radix ethanol extract on ovalbumin-induced allergic responses in mice[J]. The Korea Journal of Herbology, 2012, 27(6): 123-129. DOI:10.6116/kjh.2012.27.6.123
[21]
KANG G J, DANG H T, HAN S C, et al. Methyl 5-chloro-4, 5-didehydrojasmonate (J7) inhibits macrophage-derived chemokine production via down-regulation of the signal transducers and activators of transcription 1 pathway in HaCaT human keratinocytes[J]. Chemical & Pharmaceutical Bulletin, 2013, 61(10): 1002-1008.
[22]
JEONG S I, CHOI B M, JANG S I. Sulforaphane suppresses TARC/CCL17 and MDC/CCL22 expression through heme oxygenase-1 and NF-κB in human keratinocytes[J]. Archives of Pharmacal Research, 2010, 33(11): 1867-1876. DOI:10.1007/s12272-010-1120-6
[23]
YI H B, JIANG D H, ZHANG L, et al. Developmental expression of STATs, nuclear factor-κB and inflammatory genes in the jejunum of piglets during weaning[J]. International Immunopharmacology, 2016, 36: 199-204. DOI:10.1016/j.intimp.2016.04.032
[24]
CHEN F, HAO Y, PIAO X S, et al. Soybean-derived β-conglycinin affects proteome expression in pig intestinal cells in vivo and in vitro[J]. Journal of Animal Science, 2011, 89(3): 743-753. DOI:10.2527/jas.2010-3146
[25]
ALMEIDA A, BOLAÑOS J P. A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons[J]. Journal of Neurochemistry, 2010, 77(2): 676-690.
[26]
KAJI N, HORIGUCHI K, ⅡNO S, et al. Nitric oxide-induced oxidative stress impairs pacemaker function of murine interstitial cells of Cajal during inflammation[J]. Pharmacological Research, 2016, 111: 838-848. DOI:10.1016/j.phrs.2016.07.030
[27]
LEITÃO R F, BRITO G A, ORIÁ R B, et al. Role of inducible nitric oxide synthase pathway on methotrexate-induced intestinal mucositis in rodents[J]. BMC Gastroenterology, 2011, 11: 90. DOI:10.1186/1471-230X-11-90
[28]
WEI J, FENG J X. Signaling pathways associated with inflammatory bowel disease[J]. Recent Patents on Inflammation & Allergy Drug Discovery, 2010, 4(2): 105-117.
[29]
SCALDAFERRI F, SANS M, VETRANO S, et al. The role of MAPK in governing lymphocyte adhesion to and migration across the microvasculature in inflammatory bowel disease[J]. European Journal of Immunology, 2009, 39(1): 290-300. DOI:10.1002/eji.200838316
[30]
WAETZIG G H, SEEGERT D, ROSENSTIEL P, et al. p38 mitogen-activated protein kinase is activated and linked to TNF-α signaling in inflammatory bowel disease[J]. The Journal of Immunologye, 2002, 168(10): 5342-5351. DOI:10.4049/jimmunol.168.10.5342
[31]
BERGHE W V, PLAISANCE S, BOONE E, et al. p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-κB p65 transactivation mediated by tumor necrosis factor[J]. Journal of Biological Chemistry, 1998, 273(6): 3285-3290. DOI:10.1074/jbc.273.6.3285
[32]
RULAND J. Return to homeostasis: downregulation of NF-κB responses[J]. Nature Immunology, 2011, 12(8): 709-714. DOI:10.1038/ni.2055
[33]
ROGLER G, BRAND K, VOGL D, et al. Nuclear factor κB is activated in macrophages and epithelial cells of inflamed intestinal mucosa[J]. Gastroenterology, 1998, 115(2): 357-369. DOI:10.1016/S0016-5085(98)70202-1
[34]
DOCENA G, ROVEDATTI L, KRUIDENIER L, et al. Down-regulation of p38 mitogen-activated protein kinase activation and proinflammatory cytokine production by mitogen-activated protein kinase inhibitors in inflammatory bowel disease[J]. Clinical and Experimental Immunology, 2010, 162(1): 108-115. DOI:10.1111/j.1365-2249.2010.04203.x
[35]
MITSUYAMA K, SUZUKI A, TOMIYASU N, et al. Pro-inflammatory signaling by Jun-N-terminal kinase in inflammatory bowel disease[J]. International Journal of Molecular Medicine, 2006, 17(3): 449-455.
[36]
张悦. NF-κB抑制剂治疗溃疡性结肠炎的动物实验研究[D]. 硕士学位论文. 哈尔滨: 哈尔滨医科大学, 2012.
ZHANG Y.Treatment of UC in rats by NF-κB inhibitor PDTC[D].Master's Thesis.Harbin: Harbin Medical University, 2012. (in Chinese)