动物营养学报    2021, Vol. 33 Issue (4): 2235-2244    PDF    
不同硒添加量对生茸期梅花鹿生产性能、营养物质表观消化率及血清生化指标的影响
史鸿鹏 , 陈丽红 , 司华哲 , 刘可园 , 南韦肖 , 王金铭 , 杨乾龙 , 李光玉 , 孙伟丽     
中国农业科学院特产研究所, 长春 130112
摘要: 本试验旨在研究不同硒添加量对生茸期梅花鹿生产性能、营养物质表观消化率及血清生化指标的影响。选取20头体况相近、5岁的健康生茸期梅花鹿,随机分为4组(每组5个重复,每个重复1头),分别饲喂在基础饲粮基础上添加0(Ⅰ组,作为对照组)、0.3(Ⅱ组)、1.2(Ⅲ组)和4.8 mg/kg硒(Ⅳ组)的饲粮,硒来源为酵母硒(硒含量为2 000 mg/kg)。预试期7 d,正试期60 d。结果显示:1)Ⅲ组茸重和茸尺指标数值高于其他组,但差异未达显著水平(P>0.05);Ⅳ组硒体沉积量极显著高于其他各组(P < 0.01)。2)Ⅱ组粗蛋白质的表观消化率极显著高于Ⅲ组(P < 0.01);Ⅱ组干物质、钙、磷的表观消化率极显著高于Ⅰ组和Ⅲ组(P < 0.01);Ⅱ组干物质、粗蛋白质和磷的表观消化率显著高于Ⅳ组(P < 0.05);Ⅱ组硒的表观消化率极显著高于Ⅲ组和Ⅳ组(P < 0.01);Ⅲ组粗蛋白质的表观消化率极显著低于Ⅰ组(P < 0.01);Ⅳ组磷的表观消化率极显著高于Ⅰ组(P < 0.01)。饲粮硒添加量对粗脂肪的表观消化率无显著影响(P>0.05)。3)Ⅳ组血清胆固醇(CHO)含量显著高于Ⅰ组(P < 0.05);Ⅳ组血清高密度脂蛋白胆固醇(HDL-C)含量极显著高于Ⅰ组(P < 0.01);Ⅱ组、Ⅳ组血清乳酸脱氢酶(LDH)活性极显著高于Ⅰ组(P < 0.01);Ⅲ组血清LDH活性显著高于Ⅰ组(P < 0.05);饲粮硒添加量对血清甘油三酯(TG)、低密度脂蛋白胆固醇(LDH-C)、葡萄糖(GLU)含量无显著影响(P>0.05)。4)Ⅳ组血清总蛋白(TP)含量显著高于Ⅰ组、Ⅱ组(P < 0.05);Ⅲ组血清尿素氮(UN)含量显著高于Ⅱ组(P < 0.05)。各组血清白蛋白(ALB)、球蛋白(GLOB)含量以及白蛋白与球蛋白之比(A/G)无显著差异(P>0.05)。5)Ⅱ组和Ⅲ组血清碱性磷酸酶(ALP)活性极显著高于Ⅰ组(P < 0.01);Ⅰ组血清谷丙转氨酶(ALT)活性显著高于Ⅳ组(P < 0.05)。饲粮硒添加量对血清谷草转氨酶(AST)活性无显著影响(P>0.05),但是随着硒添加量的升高,血清AST活性有升高趋势。综合以上指标分析得出,在以酵母硒为硒源时,饲粮中硒添加量为0.3 mg/kg时可不同程度提高生茸期梅花鹿对饲粮中干物质、粗蛋白质、钙、磷和硒的表观消化率,因此推荐生茸期梅花鹿饲粮适宜的硒添加量为0.3 mg/kg。
关键词: 酵母硒    梅花鹿    生产性能    营养物质表观消化率    血清生化指标    
Effects of Different Selenium Additions on Performance, Nutrient Apparent Digestibility and Serum Biochemical Indexes of Sika Deer during Antler-Growing Period
SHI Hongpeng , CHEN Lihong , SI Huazhe , LIU Keyuan , NAN Weixiao , WANG Jinming , YANG Qianlong , LI Guangyu , SUN Weili     
Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
Abstract: The purpose of this experiment was to investigate the effects of different selenium additions on the performance, nutrient apparent digestibility and serum biochemical indexes of sika deer during antler-growing period. Twenty 5-year-old healthy sika deer with similar body condition were randomly divided into 4 groups with 5 replicates per group and 1 deer per replicate. They were fed the basal diet with selenium addition of 0 (group Ⅰ, as control group), 0.3 (group Ⅱ), 1.2 (group Ⅲ) and 4.8 mg/kg (group Ⅳ), respectively. Selenium source was yeast selenium (selenium content was 2 000 mg/kg). The pre-trial period was 7 days and the formal trial period was 60 days. The results showed as follows: 1) the values of antler weight and antler measurement indexes in group Ⅲ were the higher than those in the other groups, but the differences were not significant (P>0.05), and the body selenium deposition in group Ⅳ was extremely significantly higher than that in other groups (P < 0.01). 2) The apparent digestibility of crude protein in group Ⅱ was extremely significantly higher than that in group Ⅲ (P < 0.01); the apparent digestibility of dry matter, calcium and phosphorus in group Ⅱ was extremely significantly higher than that in groups Ⅰ and Ⅲ (P < 0.01); the apparent digestibility of dry matter, crude protein and phosphorus in group Ⅱ was significantly higher than that in group Ⅳ (P < 0.05); the apparent digestibility of selenium in group Ⅱ was extremely significantly higher than that in groups Ⅲ and Ⅳ (P < 0.01); the apparent digestibility of crude protein in group Ⅲ was extremely significantly lower than that in group Ⅰ (P < 0.01); the apparent digestibility of phosphorus in group Ⅳ was extremely significantly higher than that in group Ⅰ (P < 0.01). Dietary selenium addition had no significant effect on the ether extract apparent digestibility (P>0.05). 3) The content of serum cholesterol (CHO) in group Ⅳ were significantly higher than that in group Ⅰ (P < 0.05); the content of serum high density lipoprotein cholesterol (HDL-C) in group Ⅳ was extremely significantly higher than that in group Ⅰ (P < 0.01); the activity of serum lactate dehydrogenase (LDH) in groups Ⅱ and Ⅳ was extremely significantly higher than that in group Ⅰ (P < 0.01); the activity of serum LDH in group Ⅲ was significantly higher than that in group Ⅰ (P < 0.05). Dietary selenium addition had no significant effects on the contents of triglyceride (TG), low density lipoprotein cholesterol (LDH-C) and glucose (GLU) (P>0.05). 4) The content of serum total protein (TP) in group Ⅳ was significantly higher than that in groups Ⅰ and Ⅱ (P < 0.05); the content of serum urea nitrogen (UN) in group Ⅲ was significantly higher than that in group Ⅱ (P < 0.05). There were no significant differences in the contents of serum albumin (ALB), globulin (GLO) and the ratio of albumin to globulin (A/G). 5) The activity of serum alkaline phosphatase (ALP) in groups Ⅱ and Ⅲ was extremely significantly higher than that in group Ⅰ (P < 0.01); the activity of serum alanine aminotransferase (ALT) in group Ⅰ was significantly higher than that in group Ⅳ (P < 0.05). Dietary selenium addition had no significant effect on aspartate aminotransferase (AST) activity, but serum AST activity increased with the increase of dietary selenium addition. According to the analysis of the above indexes, using selenium yeast as the selenium source, the apparent digestibility of dry matter, crude protein, calcium, phosphorus and selenium can be significantly increased when the dietary selenium addition is 0.3 mg/kg. It is suggested that suitable dietary selenium addition of sika deer during antler-growing period is 0.3 mg/kg.
Key words: selenium yeast    sika deer    performance    nutrient apparent digestibility    serum biochemical indexes    

硒元素是动物生长发育必需的微量元素之一[1],硒缺乏将会引起机体免疫失调、氧化应激、生长迟缓等生理性反应[2-5]。有机硒的安全性比无机硒高,且容易被动物机体吸收利用[6-7]。研究表明,硒元素作为5′-脱碘酶的辅助因子,参与三碘甲状腺原氨酸的合成,而三碘甲状腺原氨酸可以通过控制动物机体能量代谢和蛋白质代谢来调节机体生长[8];硒元素可以通过促进瘤胃微生物生长,提高α-淀粉酶和蛋白酶活性,进而促进有机物质、蛋白质的消化吸收[9];硒元素经过小肠被吸收进入血液后与硒蛋白P结合,形成功能性硒蛋白和含硒酶类,进而影响动物健康和生长发育[10]。研究发现,鹿茸顶端出现硒元素富集现象[11-12],而关于鹿茸的生长是否受外源硒的影响,还未曾有学者研究。本试验拟通过探索不同硒(酵母硒形式)添加量对梅花鹿生长性能、产茸性能、血清生化指标和营养物质表观消化率的影响,得出生茸期梅花鹿饲粮适宜的硒添加量,旨在为硒元素在生茸期梅花鹿饲粮中合理利用提供科学依据。

1 材料与方法 1.1 试验设计

选取20头体况相近、5岁的健康生茸期梅花鹿,随机分为4组,每组5个重复,每个重复1头梅花鹿。其中,Ⅰ组为对照组,饲喂不额外添加硒的基础饲粮;Ⅱ组、Ⅲ组和Ⅳ组为试验组,饲喂在基础饲粮基础上添加酵母硒(硒含量为2 000 mg/kg)的饲粮,硒添加量分别为0.3、1.2和4.8 mg/kg。饲养试验在中国农业科学院特产研究所梅花鹿养殖场进行。试验从2020年4月23日开始至2020年6月30日结束,预试期7 d,正试期60 d。

1.2 基础饲粮

本试验采用试验基地原有基础饲粮配方配制,其组成及营养水平见表 1。根据国家农业科学数据共享中心公布的数据,查阅基础饲粮中各个原料中硒含量,计算得到基础饲粮中硒含量为0.04 mg/kg。

表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the basal diet (air-dry basis)  
1.3 饲养管理

试验前对所有梅花鹿进行耳钉编号,全面清理圈舍并消毒。每天饲喂3次(04:30、10:00和16:00)。正试期以预试期测定的采食量为基础,进行定量饲喂,每天饲喂前收集剩料,烘干计算采食量。保证锅内有清洁饮水,自由饮水。每天清晨打扫圈舍,各组梅花鹿饲养方式以及环境条件一致。

1.4 样品采集

试验开始和结束时对所有梅花鹿进行称重,并在试验第30、31和32天连续3 d于05:00—06:00在鹿圈内定点收粪,每个鹿圈定点5个,每个定点采集粪样200 g左右,去除明显杂质。试验第34天晨饲前麻醉试验鹿,然后由专业技术人员通过颈静脉采血10 mL,4 000 r/min离心10 min,将血清分装入1.5 mL离心管,置于-80 ℃保存待测。

1.5 指标检测 1.5.1 生长性能

根据试验前体重和锯茸时体重计算平均日增重,每天记录梅花鹿的采食量,计算干物质采食量和料重比。

1.5.2 产茸性能

锯茸前,使用软尺测量茸尺指标;锯茸后,称量茸重。所有茸尺指标和茸重数据均取鹿茸左、右支的平均值。

1.5.3 营养物质表观消化率

饲粮和粪样干物质(DM)含量参照GB/T 6435—2006,采用105 ℃烘干法测定;粗蛋白质(CP)含量参照GB/T 6432—1994,采用凯氏定氮法的测定;粗脂肪(EE)含量参照GB/T 6433—1994,采用索氏抽提法的测定;钙(Ca)含量参照GB/T 6436—1992,采用乙二胺四乙酸(EDTA)滴定法测定;磷(P)含量参照GB/T 6437—1992,采用钒钼酸铵比色法的测定。以盐酸不溶灰分(AIA)为指示剂,计算营养物质表观消化率[13],计算公式如下:

1.5.4 饲粮和粪便中硒含量的测定

根据GB 5009.93—2017的方法处理饲粮和粪便样品,使用吉天公司的原子荧光光度计(AFS-9130),采用原子吸收光谱法测定饲粮和粪便中硒含量,该方法的检出限为0.002 mg/kg。

1.5.5 血清生化指标的测定

血清中高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、葡萄糖(GLU)、总蛋白(TP)、白蛋白(ALB)、球蛋白(GLOB)、甘油三酯(TG)、总胆固醇(CHO)、尿素氮(UN)含量与碱性磷酸酶(ALP)、乳酸脱氢酶(LDH)、谷草转氨酶(AST)、谷丙转氨酶(ALT)活性采用中生北控生物科技股份公司提供的试剂盒,按照试剂盒说明书,使用SELECTRA-E全自动生化分析仪进行测定。

1.6 数据统计与分析

获得的试验数据通过Excel 2010进行整理,然后使用GraphpadPrism8.0的one-way ANOVA程序对数据进行统计分析,以P < 0.05表示差异显著,P < 0.01表示差异极显著。统计结果以“平均值±标准差”表示。

2 结果 2.1 不同硒添加量对生茸期梅花鹿生长性能的影响

表 2可知,饲粮硒添加量对生茸期梅花鹿的平均日增重和干物质采食量无显著影响(P>0.05);Ⅲ组料重比低于其他各组,但差异不显著(P>0.05);Ⅳ组硒体沉积量极显著高于Ⅱ组和Ⅲ组(P < 0.01)。

表 2 不同硒添加量对梅花鹿生长性能的影响 Table 2 Effects of different selenium additions on growth performance of sika deer
2.2 不同硒添加量对梅花鹿产茸性能的影响

表 3可知,饲粮硒添加量对梅花鹿茸重无显著影响(P>0.05),但Ⅲ组茸重相对于Ⅰ组和Ⅱ组提高0.24 kg,相对于Ⅳ组提高0.37 kg。Ⅲ组的各茸尺指标也高于其他组,但差异均未达显著水平(P>0.05)。

表 3 不同硒添加量对梅花鹿产茸性能的影响 Table 3 Effects of different selenium additions on antler producing performance of sika deer
2.3 不同硒添加量对梅花鹿营养物质表观消化率的影响

表 4可知,Ⅱ组梅花鹿对干物质、钙、磷的表观消化率极显著高于Ⅰ组和Ⅲ组(P < 0.01),同时干物质和磷的表观消化率显著高于Ⅳ组(P < 0.05);Ⅱ组梅花鹿对粗蛋白质的表观消化率与Ⅰ组无显著差异(P>0.05),但极显著高于Ⅲ组(P < 0.01),显著高于Ⅳ组(P < 0.05);Ⅱ组梅花鹿对硒的表观消化率极显著高于Ⅲ组和Ⅳ组(P < 0.01);各组梅花鹿对粗脂肪的表观消化率无显著差异(P>0.05)。

表 4 不同硒添加量对梅花鹿营养物质表观消化率的影响 Table 4 Effects of different selenium additions on nutrient apparent digestibility of sika deer  
2.4 不同硒添加量对梅花鹿血清生化指标的影响

表 5表 6表 7可知,Ⅱ组梅花鹿血清乳酸脱氢酶和碱性磷酸酶活性极显著高于Ⅰ组(P < 0.01);Ⅳ组梅花鹿血清总胆固醇和总蛋白含量显著高于Ⅰ组(P < 0.05);Ⅳ组梅花鹿血清高密度脂蛋白胆固醇含量和乳酸脱氢酶活性极显著高于Ⅰ组和Ⅲ组(P < 0.01);Ⅲ组梅花鹿血清碱性磷酸酶活性极显著高于Ⅰ组和Ⅳ组(P < 0.01);Ⅲ组梅花鹿血清尿素氮含量显著高于Ⅱ组(P < 0.05);Ⅲ组梅花鹿血清谷丙转氨酶活性显著高于Ⅳ组(P < 0.05)。

表 5 不同硒添加量对梅花鹿血清糖脂代谢指标的影响 Table 5 Effects of different selenium additions on serum glucose and lipid metabolism indexes of sika deer
表 6 不同硒添加量对梅花鹿血清蛋白质代谢指标的影响 Table 6 Effects of different selenium additions on serum protein metabolism indexes of sika deer
表 7 不同硒添加量对梅花鹿血清肝功能指标的影响 Table 7 Effects of different selenium levels on serum liver function indexes of sika deer  
3 讨论 3.1 不同硒添加量对生茸期梅花鹿生长性能的影响

动物对有机硒的利用率高于无机硒[14-15],硒元素可以通过硒蛋白参与动物生长发育的调节[16]。本试验发现,在生茸期梅花鹿饲粮中添加酵母硒,硒添加量为1.2 mg/kg时能降低料重比,平均日增重随着硒添加的增加出现先增高后下降的趋势。研究表明,硒可以提高雌性梅花鹿、湖羊和杜寒杂交羊的平均日增重,降低料重比,提高饲料转化率[10, 15]。硒对妊娠母猪的生长性能无显著影响,但可以提高仔猪的平均日增重,降低料重比[17-19]。这可能是因为硒元素与脱碘酶作用,参与三碘甲状腺原氨酸的合成,进而影响机体能量代谢和蛋白质代谢,促进动物的生长发育[8]。本试验发现硒体沉积量随着饲粮硒添加量的增加而增加,硒添加量为4.8 mg/kg的组梅花鹿硒体沉积量极显著高于硒添加量为0.3和1.2 mg/kg的组。

3.2 不同硒添加量对梅花鹿产茸性能的影响

硒元素可以调节鹿茸生长,生茸期马鹿血清硒含量显著高于其他时期[20]。研究表明,鹿茸顶端出现硒元素富集现象[12],而鹿茸的生长中心位于鹿茸顶端[21-22]。NRC(2000)认为当饲粮硒含量超过5 mg/kg时,反刍动物会发生中毒现象。基于此,本试验设置不同硒添加量组,观察硒元素对梅花鹿鹿茸生长及机体代谢的影响。研究表明,硒蛋白通过参与调节胰岛素样生长因子-1(IGF-1)的分泌[23-24],进而促进鹿茸生长[25]。本试验发现,硒添加量为1.2 mg/kg时,梅花鹿的茸重有增加趋势。有研究表明,硒添加量的增加可以提高奶牛的生产性能[26-27],与本试验结果相似,这可能是因为硒元素在动物体内发挥抗氧化作用,有效缓解动物的氧化应激状态,进而使生产性能得到提高[28]

3.3 不同硒添加量对梅花鹿营养物质表观消化率的影响

生茸期梅花鹿对营养物质需求量高,以满足鹿茸快速生长的需要。本试验发现,饲粮中硒添加量为0.3 mg/kg时,梅花鹿对干物质、粗蛋白质、粗脂肪、钙、磷和硒的表观消化率均得到不同程度的提高。Bao等[10]研究发现,随着硒添加量从0.2 mg/kg提高到0.3 mg/kg,梅花鹿对粗蛋白质和粗脂肪的表观消化率显著提高。这可能是因为硒元素可以改变瘤胃菌群结构,将不易消化的营养物质转化为反刍动物容易吸收的状态[17, 29-30]。硒参与抗氧化酶谷胱甘肽过氧化物酶的生物合成,可以保护机体免受活性氧和自由基的侵害[31-33],对消化器官起到保护作用,进而影响机体α-淀粉酶和蛋白酶活性,促进淀粉和蛋白质的消化、吸收和利用[9]

3.4 不同硒添加量对梅花鹿血清生化指标的影响

营养物质被动物机体消化吸收后,通过血液运输到达各个组织器官,用以维持动物机体生长发育和功能的发挥。外源饲喂的酵母硒经过瘤胃到达小肠,然后通过主动运输方式穿过肠壁进入血液。血浆中硒元素的传输先经过白蛋白,然后经过球蛋白运输到各个组织。血清中总蛋白含量高是蛋白质代谢增强的标志[34];血清中碱性磷酸酶活性是反映细胞再生能力强弱的指标,在发育迅速的组织中碱性磷酸酶活性高代表细胞再生能力强[35];谷草转氨酶和谷丙转氨酶是存在于反刍动物线粒体中的2种转氨酶,参与动物机体的蛋白质代谢[36]。本试验发现,饲粮中添加4.8 mg/kg硒显著提高血清中总蛋白、总胆固醇含量,极显著提高血清乳酸脱氢酶活性,添加1.2 mg/mg硒显著或极显著提高血清碱性磷酸酶和谷丙转氨酶活性,而添加0.3 mg/kg则对绝大部分血清生化指标没有显著影响。Bao等[10]的研究显示低剂量添加硒对雌性梅花鹿对血清生化指标没有显著影响,本试验结果与此一致,王建[26]的研究也得出相似结果,不同硒添加量对泌乳中期的奶牛血清生化指标无显著影响。

4 结论

综上所述,在以酵母硒为硒源时,饲粮中硒添加量为0.3 mg/kg时可不同程度提高生茸期梅花鹿对饲粮中干物质、粗蛋白质、钙、磷和硒的表观消化率,因此推荐生茸期梅花鹿饲粮适宜的硒添加量为0.3 mg/kg。

参考文献
[1]
余青, 秦乐蓉, 丽蕊, 等. 硒的生理功能及其对畜禽动物性能和肉质的影响研究进展[J]. 肉类研究, 2020, 34(3): 94-99.
YU Q, QIN L R, LI R, et al. Recent advances in understanding the physiological functions of selenium and its effects on animal performance and meat quality[J]. Meat Research, 2020, 34(3): 94-99 (in Chinese).
[2]
CHAO Y M, YU B, HE J, et al. Effects of different levels of dietary hydroxy-analogue of selenomethionine on growth performance, selenium deposition and antioxidant status of weaned piglets[J]. Archives of Animal Nutrition, 2019, 73(5): 374-383. DOI:10.1080/1745039X.2019.1641368
[3]
XUN W J, SHI L G, YUE W B, et al. Effect of high-dose nano-selenium and selenium-yeast on feed digestibility, rumen fermentation, and purine derivatives in sheep[J]. Biological Trace Element Research, 2012, 150(1): 130-136.
[4]
MATEO R D, SPALLHOLZ J E, ELDER R, et al. Efficacy of dietary selenium sources on growth and carcass characteristics of growing-finishing pigs fed diets containing high endogenous selenium[J]. Journal of Animal Science, 2007, 85(5): 1177-1183. DOI:10.2527/jas.2006-067
[5]
HEMINGWAY R G. The influences of dietary intakes and supplementation with selenium and vitamin E on reproduction diseases and reproductive efficiency in cattle and sheep[J]. Veterinary Research Communications, 2003, 27(2): 159-174. DOI:10.1023/A:1022871406335
[6]
TINGGI U. Essentiality and toxicity of selenium and its status in Australia: a review[J]. Toxicology Letters, 2003, 137(1/2): 103-110.
[7]
于英杰, 许晓婧, 李元亮, 等. 富硒酵母安全性试验研究[J]. 畜牧与兽医, 2006, 38(9): 38-40.
YU Y J, XU X J, LI Y L, et al. Study on the safety of selenium-rich yeast[J]. Animal Husbandry & Veterinary Medicine, 2006, 38(9): 38-40 (in Chinese).
[8]
ANDREA L M, MILLER L, EVANS A L, et al. Biochemical and hematologic reference values for free-ranging, chemically immobilized wild Norwegian reindeer (Rangifer tarandus tarandus) during early winter[J]. Journal of Wildlife Diseases, 2013, 49(2): 221-228. DOI:10.7589/2012-04-115
[9]
LIU Y, WANG C, LIU Q, et al. Effects of sodium selenite addition on ruminal fermentation, microflora and urinary excretion of purine derivatives in Holstein dairy bulls[J]. Journal of Animal Physiology and Animal Nutrition, 2019, 103(6): 1719-1726. DOI:10.1111/jpn.13193
[10]
BAO K, WANG X X, WANG K Y, et al. Effects of dietary supplementation with selenium and vitamin E on growth performance, nutrient apparent digestibility and blood parameters in female Sika deer (Cervus nippon)[J]. Biological Trace Element Research, 2020, 195(2): 454-460. DOI:10.1007/s12011-019-01856-7
[11]
孙伟丽, 赵海平, 张国坤, 等. 不同加工方式对梅花鹿三叉茸不同区段矿物质元素含量的影响研究[J]. 中草药, 2018, 49(16): 3821-3828.
SUN W L, ZHAO H P, ZHANG G K, et al. Effects of different processing methods on content of mineral elements in cervi cornu pantotrichum of cervus nippon[J]. Chinese Traditional and Herbal Drugs, 2018, 49(16): 3821-3828 (in Chinese). DOI:10.7501/j.issn.0253-2670.2018.16.014
[12]
SUTTIE J M, FENNESSY P F. Recent advances in the physiological control of velvet antler growth[M]//BROWN R D. The biology of deer. New York: Springer-Verlag, 1992: 471-486.
[13]
谭占坤, 高瑞玲, 商振达, 等. 盐酸不溶灰分作为指示剂测定藏猪饲粮养分的表观消化率[J]. 高原农业, 2019, 3(2): 153-158.
TAN Z K, GAO R L, SHANG Z D, et al. Acid-insoluble ash as a marker to determine apparent digestibility in Tibetan pigs[J]. Journal of Plateau Agriculture, 2019, 3(2): 153-158 (in Chinese).
[14]
朱翱翔. 不同硒源对育成湖羊生长、繁殖性能、瘤胃发酵和组织中硒含量的影响[D]. 硕士学位论文. 南京: 南京农业大学, 2017.
ZHU A X. Effects of different dietary selenium supplement on growth, selenium retention in tissues, rumen fermen tation and reproductive performance in growing ewes[D]. Master's Thesis. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
[15]
ZHANG K, ZHAO Q Y, ZHAN T F, et al. Effect of different selenium sources on growth performance, tissue selenium content, meat quality, and selenoprotein gene expression in finishing pigs[J]. Biological Trace Element Research, 2020, 196(4): 463-471.
[16]
AGHWAN Z A, SAZILI A Q, KADHIM K K, et al. Effects of dietary supplementation of selenium and iodine on growth performance, carcass characteristics and histology of thyroid gland in goats[J]. Animal Science Journal, 2016, 87(5): 690-696. DOI:10.1111/asj.12484
[17]
徐高骁, 卢丽枝, 段赛星, 等. 不同水平硒源对妊娠母猪生长性能、繁殖性能及血液生理指标的影响研究[J]. 饲料工业, 2017, 38(12): 16-20.
XU G X, LU L Z, DUAN S X, et al. Effect of different levels of selenium source on growth performance, reproductive performance and hematological indexes of pregnancy sows[J]. Feed Industry, 2017, 38(12): 16-20 (in Chinese).
[18]
曹雪瑾. 不同硒源及水平对断奶仔猪生长性能、血液生化指标和抗氧化指标的影响[D]. 硕士学位论文. 南宁: 广西大学, 2011.
CAO X J. Effect of different selenium sources and level on growth performmance, blood biochemical parameters and antioxidant indexes of weanling piglets[D]. Master's Thesis. Nanning: Guangxi University, 2011. (in Chinese)
[19]
AMMERMAN C B, BAKER D H, LEWIS A J. Bioavailability of nutrients for animals: amino acids, minerals, and vitamins[M]. San Diego: Elsevier Inc., 1995: 1411-1420.
[20]
KUBA J, BŁASZCZYK B, STANKIEWICZ T, et al. Analysis of annual changes in the concentrations of selected macro- and microelements, thyroxine, and testosterone in the serum of red deer (Cervus elaphus) stags[J]. Biological Trace Element Research, 2015, 168(2): 356-361. DOI:10.1007/s12011-015-0368-6
[21]
LI C Y. Deer antler regeneration: a stem cell-based epimorphic process[J]. Birth Defects Research, Part C: Embryo Today: Reviews, 2012, 96(1): 51-62. DOI:10.1002/bdrc.21000
[22]
CLARK D E, LI C Y, WANG W Y, et al. Vascular localization and proliferation in the growing tip of the deer antler[J]. The Anatomical Record Part A, 2006, 288A(9): 973-981. DOI:10.1002/ar.a.20364
[23]
REEVES M A, HOFFMANN P R. The human selenoproteome: recent insights into functions and regulation[J]. Cellular and Molecular Life Sciences, 2009, 66(15): 2457-2478. DOI:10.1007/s00018-009-0032-4
[24]
张庆, 张伦理, 向天新, 等. 人工肝系统联合131I治疗甲状腺功能亢进症合并肝衰竭研究[J]. 中华肝脏病杂志, 2016, 24(10): 778-782.
ZHANG Q, ZHANG L L, XIANG T X, et al. A study on artificial liver system combined with 131I in treatment of hype-rthyroidism complicated by liver failure[J]. Chinese Journal of Hepatology, 2016, 24(10): 778-782 (in Chinese).
[25]
XU L T, WANG Q, WANG Q J, et al. Concerted actions of insulin-like growth factor 1, testosterone, and estradiol on peripubertal bone growth: a 7-year longitudinal study[J]. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research, 2011, 26(9): 2204-2211. DOI:10.1002/jbmr.422
[26]
王建. 不同硒源对泌乳中期奶牛生产性能、血液指标及硒含量的影响[D]. 硕士学位论文. 北京: 中国农业科学院, 2017.
WANG J. Effects of different selenium sources on performance, blood indexes and selenium concentrations in mid-lactation dairy cows[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[27]
WALKER G P, DUNSHEA F R, HEARD J W, et al. Output of selenium in milk, urine, and feces is proportional to selenium intake in dairy cows fed a total mixed ration supplemented with selenium yeast[J]. Journal of Dairy Science, 2010, 93(10): 4644-4650. DOI:10.3168/jds.2010-3186
[28]
孙玲玲. 蛋氨酸硒羟基类似物或酵母硒对泌乳奶牛血清及乳中硒浓度、生产性能及抗氧化能力的影响[D]. 硕士学位论文. 北京: 中国农业科学院, 2018.
SUN L L. Effects of hydroxy-analogue of selenomethionine or selenium yeast on selenium concentration in milk and serum, performance and antioxidant status in lactating dairy cows[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[29]
朱翱翔, 王锋, 冯旭, 等. 不同硒源对育成湖羊生长性能、组织硒含量和瘤胃发酵的影响[J]. 南京农业大学学报, 2017, 40(4): 718-724.
ZHU A X, WANG F, FENG X, et al. Effects of different dietary selenium supplementation on growth, selenium retention in tissues and rumen fermentation in growing Hu sheep[J]. Journal of Nanjing Agricultural University, 2017, 40(4): 718-724 (in Chinese).
[30]
SHI L G, XUN W J, YUE W B, et al. Effect of elemental nano-selenium on feed digestibility, rumen fermentation, and purine derivatives in sheep[J]. Animal Feed Science and Technology, 2011, 163(2/3/4): 136-142.
[31]
ZOU Z Z, CHANG H C, LI H L, et al. Induction of reactive oxygen species: an emerging approach for cancer therapy[J]. Apoptosis, 2017, 22(11): 1321-1335.
[32]
LEI X G, CHENG W H. New roles of glutathione peroxidase-1 in oxidative stress and diabetes[M]//HATFIELD D L, BERRY M J, GLADYSHEV V N. Selenium. Boston, MA: Springer, 2006.
[33]
ŽAJA I Ž, SAMARD ŽIJA M, VINCE S, et al. Influence of different periods of the year and age on the parameters of antioxidative status and oxidative stress in the blood serum of breeding bulls[J]. Reproductive Biology, 2016, 16(2): 157-164.
[34]
DENG P, ZHOU C C, ALVAREZ R, et al. Inhibition of IKK/NF-κB signaling enhances differentiation of mesenchymal stromal cells from human embryonic stem cells[J]. Stem Cell Reports, 2019, 12(1): 180-181.
[35]
PETROVSKI B É, PATAKI V, JENEI T, et al. Selenium levels in men with liver disease in Hungary[J]. Journal of Trace Elements in Medicine and Biology, 2012, 26(1): 31-35.
[36]
张永翠, 程光民, 何孟莲, 等. 酵母硒对杜寒杂交羊生长性能、血常规和血清生化指标的影响[J]. 动物营养学报, 2019, 31(6): 2907-2914.
ZHANG Y C, CHENG G M, HE M L, et al. Effects of selenium yeast on growth performance, blood routine and serum biochemical indexes of Dorper×thin-tailed Han crossbred sheep[J]. Chinese Journal of Animal Nutrition, 2019, 31(6): 2907-2914 (in Chinese).