动物营养学报    2021, Vol. 33 Issue (4): 2390-2400    PDF    
低鱼粉饲料中添加苏氨酸对三倍体虹鳟生长性能、体成分及肌肉氨基酸组成的影响
王亚玲1,2 , 王常安1 , 刘红柏1 , 陆绍霞1 , 张颖1 , 徐喆3     
1. 中国水产科学研究院黑龙江水产研究所, 哈尔滨 150070;
2. 上海海洋大学水产与生命学院, 上海 201306;
3. 南京农业大学无锡渔业学院, 无锡 214000
摘要: 本试验旨在研究低鱼粉饲料中添加苏氨酸对三倍体虹鳟生长性能、体成分及肌肉氨基酸组成的影响。以初始体质量为(18.42±0.20)g的三倍体虹鳟(Oncorhynchus mykiss)为研究对象,在水温(15±1)℃的室内200 L流水水族箱中进行56 d摄食生长试验。在基础饲料中添加L-苏氨酸,配制苏氨酸水平分别为0.45%(对照)、0.76%、1.09%、1.29%和1.64%的5种等氮等脂饲料。将450尾三倍体虹鳟随机分为5组,每组3个重复,每个重复30尾。结果表明:饲料中苏氨酸水平为0.76%~1.64%时,虹鳟的饲料系数和蛋白质效率与对照组无显著差异(P>0.05);而终末质量、增重率和特定生长率均显著增加(P < 0.05);以特定生长率、蛋白质效率为评价指标,经过二次回归分析可得,虹鳟对苏氨酸的需要量为1.2%~1.3%(占饲料蛋白质的2.89%~3.13%)。随着饲料中苏氨酸水平的增加,全鱼水分含量显著减少(P < 0.05);粗脂肪含量在0.75%组显著低于对照组(P < 0.05);粗蛋白质含量随着饲料苏氨酸水平的增加呈现先升高后降低的变化趋势;粗灰分含量各组间无显著差异(P>0.05)。随着饲料中苏氨酸水平的增加,三倍体虹鳟肌肉中苏氨酸、蛋氨酸、异亮氨酸、苯丙氨酸、赖氨酸、天冬氨酸、丙氨酸、脯氨酸含量无显著变化(P>0.05),但缬氨酸、亮氨酸、组氨酸、精氨酸、丝氨酸、谷氨酸、甘氨酸、半胱氨酸、酪氨酸含量有显著变化(P < 0.05),在1.29%组显著高于对照组(P < 0.05),因此,在低鱼粉饲料中补充苏氨酸可以提高体蛋白含量。综上所述,低鱼粉饲料(15%)中添加苏氨酸对三倍体虹鳟有明显的促生长效应,且对苏氨酸的最佳需要量为1.2%~1.3%。
关键词: 苏氨酸    三倍体虹鳟    需要量    
Effects of Dietary Threonine in Low Fish Meal Diet on Growth Performance, Body Composition, Amino Acid Composition in Muscle of Triploid Oncorhynchus mykiss
WANG Yaling1,2 , WANG Chang'an1 , LIU Hongbai1 , LU Shaoxia1 , ZHANG Yin1 , XU Zhe3     
1. Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China;
2. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
3. Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214000, China
Abstract: The purpose of this study was to investigate the effects of dietary threonine in low fish meal diet on growth performance, body composition and amino acid composition in muscle of triploid rainbow trout. The triploid rainbow trout (Oncorhynchus mykiss) with an initial body weight of (18.42±0.20) g was used to the feeding trial for 56 d. Fish reared in a 200 L water aquarium with a water temperature of (15±1)℃. Five kinds of isonitrogenic and isolipidic diets with dietary L-threonine levels of 0.45% (control), 0.76%, 1.09%, 1.29% and 1.64% were prepared based on a basal diet. A total of 450 triploid rainbow trout were randomly divided into 5 groups with 3 replicates per group and 30 replicates per group. The results showed as follows: dietary threonine (0.76% to 1.64%) levels did not significantly affect the feed conversion rate and the protein efficiency compared with the control group (P>0.05). The final body weight, weight gain rate and specific growth rate had significant effects (P < 0.05). Based on a quadratic regression analysis between the specific growth rate and protein efficiency, the optimum level was 1.2% to 1.3%(2.89% to 3.13% of dietary crude protein). With the increase of dietary threonine levels, the moisture content of the whole body decreased significantly (P < 0.05), and crude lipid contents in 0.75% group was significantly lower than that in the control group (P < 0.05). Crude protein contents first increased and then decreased with the increase of threonine level. There were no significant differences in ash contents (P>0.05). The profiles of threonine, methionine, isoleucine, phenylalanine, lysine, aspartic acid, alanine, proline in muscle had no significant difference among the groups (P>0.05), while the contents of valine, leucine, histidine, arginine, serine, glutamic, glycine, cysteine, tyrosine changed significantly, especially those in 1.29% group were significantly higher compared with the control (P < 0.05). Therefore, the supplementation of threonine in low fish meal diet can significantly enhance body protein content of triploid rainbow trout. In conclusion, the addition of threonine in low fish meal feed (15%) has the significant growth-promoting effect on triploid rainbow trout, and the optimum requirement is 1.2% to 1.3%.
Key words: threonine    triploid Oncorhynchus mykiss    requirement    

蛋白质是鱼类饲料中最重要也是最昂贵的成分[1]。从本质上讲,动物对蛋白质的需求实质是对氨基酸的需求,蛋白质中的氨基酸主要影响鱼类的生长发育、正常的生理功能、氮的代谢和排泄以及鱼类的健康[2-3]。而氨基酸只能直接或间接从食物中获取,当饲料蛋白质中的1种或数种必需氨基酸不足时,鱼类利用饲料蛋白质的效率降低,正常的生理功能受阻,影响生长和发育[4]。鱼粉因其具有蛋白质含量高,长链脂肪酸、必需氨基酸、维生素和矿物质含量丰富等优点,一直以来都是水生动物的优质蛋白质源之一[5],但是近几年来,由于日益高涨的价格和有限的鱼粉资源,使得水生动物的鱼粉用量不得不减少[6-7]。常用植物蛋白质源替代鱼粉,如玉米蛋白粉、小麦面筋、豆粕、菜籽粕等,但往往出现必需氨基酸缺乏或含量很低,容易引起饲料中氨基酸不平衡,从而导致水生动物不能高效利用饲料蛋白质或氨基酸,影响机体的相关代谢[8-9]。苏氨酸为高梁[10]和小麦粉[11]的第二限制性氨基酸,玉米的第三限制性氨基酸[12],逐渐成为影响鱼类生长性能的限制性氨基酸。当缺乏苏氨酸造成氨基酸不平衡时,即使添加其他氨基酸,也很难提高生长性能[13-15]。在鲤鱼(Cyprinus carpio)[16]、遮目鱼(Chanos chanos)[17]的研究中发现苏氨酸缺乏时,死亡率升高;在乳猪苏氨酸不足或缺乏时,会引起生理失衡以及与蛋白质合成和能量代谢相关基因的变化;在陆生动物如家禽、猪和牛上也有大量苏氨酸缺乏症相关报道[18-20]。因此,进一步研究苏氨酸显得尤为重要[21]

虹鳟(Oncorhynchus mykiss)属鲑形目(Salmoniformes), 鲑科(Salmonidae), 大麻哈鱼属(Oncorhynchus), 因其富含不饱和脂肪酸、蛋白质含量较高、易加工、无肌间刺等特点,成为各国受欢迎的健康食品。三倍体虹鳟是基于遗传特性和生产实践而产生的多倍体虹鳟,与普通二倍体相比具有生长速度快、个体大、抗病性强、肉质细腻和养殖周期短等优势,成为世界上最为广泛的养殖鱼类之一,国内占世界虹鳟养殖量的80%以上[22-23]。目前,虹鳟和鲑鳟对苏氨酸的需求量已有研究报道[24-25],研究发现虹鳟和大西洋鲑在鱼苗阶段对苏氨酸的需求量相似[26],然而在低鱼粉饲料中添加苏氨酸对三倍体虹鳟的研究较少。因此,本试验旨在研究低鱼粉饲料中添加苏氨酸对三倍体虹鳟生长性能、体成分及氨基酸组成的影响,为三倍体虹鳟人工高效配合饲料的配制提供理论依据。

1 材料与方法 1.1 试验饲料

基础饲料为半纯化饲料,以糊精为糖源,鱼粉、豆粕、明胶为蛋白质源,鱼油、豆油和磷脂为脂肪源配制粗蛋白质水平为41.54%,粗脂肪水平为18.68%的基础饲料[27]。在基础饲料中分别添加不同水平的L-苏氨酸(Sigma,纯度98%),配制苏氨酸水平分别达到0.45%(G1,对照)、0.76%(G2)、1.09%(G3)、1.29%(G4)、1.64%(G5)的5种等氮等脂的试验饲料,其组成及营养水平见表 1,其中苏氨酸水平的增减用等量的甘氨酸代替,试验饲料氨基酸组成见表 2。所有原料粉碎后经过80目筛,按照配方称重,逐级混合均匀后经小型制粒机HKJ-218(无锡同力粮机有限公司)加工成直径为3 mm的颗粒饲料,风干后装袋,置于-20 ℃冰箱中保存备用。

表 1 试验饲料组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of experimental diets (DM basis)  
表 2 试验饲料氨基酸组成(干物质基础) Table 2 Amino acid composition of experimental diets (DM basis)  
1.2 试验鱼及养殖条件

试验在中国水产科学研究院黑龙江水产研究所进行。在试验开始时,选取同一批鱼苗,放入水族箱中适应2周,在适应期间,基础饲料(G1)饱食投喂,使之能够逐渐适应养殖环境和试验饲料。试验开始时,试验鱼饥饿24 h,选取初始体质量为(18.42±0.20) g、规格一致的健康三倍体虹鳟随机分配到15个200 L的流水水族箱中。试验分为5组,每组3个重复,每个重复30尾试验鱼,分别饲喂G1、G2、G3、G4、G5饲料,每天投喂2次(09:00和16:00),达饱食,养殖周期56 d。试验期间自然光照,水源为曝气自来水,水温(15±1) ℃,溶氧含量>6.0 mg/L,氨氮含量 < 0.2 mg/L,pH 7.0~7.2,每天记录投饲量,如有死鱼称重并记录数量。

1.3 采样及测定 1.3.1 采样

养殖试验结束后,虹鳟饥饿24 h,分别从每个水族箱中随机取3尾虹鳟,每组9尾,用100 mg/L MS-222麻醉,测体长,称量体重,用于全鱼常规养分含量的测定;再从每个水族箱中随机取4尾鱼,放置冰盘上,取背肌于速冻管中,放置到液氮中用于肌肉氨基酸组成的测定,采样编好号后置于-80 ℃超低温冰箱中保存备用。

1.3.2 生长性能的测定

生长性能指标计算公式如下:

式中:W0为鱼初始体质量(g);Wt为鱼终末体质量(g);Lt试验鱼终末体长(cm);Wf为饲料摄入量(g);t为试验天数(d)。

1.3.3 营养成分含量的测定

采用烘干法(GB/T 6435—2014),在(105±1) ℃、1个大气压下,在烘箱中烘干直至恒重,测定样品中水分的含量;采用半自动微量凯氏定氮法(GB/T 6432—2018)测定粗蛋白质含量;采用索氏抽提法(GB/T 6433—2006),以乙醚为抽提剂测定粗脂肪含量;采用灼烧法(GB/T 6438—2007),在马弗炉(550 ℃)充分灼烧测定粗灰分含量。

1.3.4 肌肉氨基酸组成的测定

鱼体肌肉中氨基酸组成采用全自动氨基酸分析仪(日立L-8900)测定。称量冷冻干燥好的肌肉样品40~50 mg(精确至0.1 mg),放置50 mL的安瓿瓶中并做好标记;加入6 mol/L盐酸10 mL,迅速封管后放置恒温干燥箱(110±1) ℃中水解24 h,冷却后打开安瓿瓶;用超净水定容到150 mL旋转蒸发瓶内,在旋转蒸发器(60 ℃)中抽真空,蒸发至干;用0.02 mol/L的盐酸冲洗蒸发瓶数次,洗涤液转至10 mL容量瓶中,最后用0.02 mol/L的盐酸定溶,充分混匀后即为试样水解液。吸取试样水解液及混合氨基酸标准液2~3 mL,经过滤至自动进样瓶中并加盖,通过全自动氨基酸分析仪进行氨基酸含量的检测。

1.4 统计分析

使用统计软件SPSS 23.0进行单因素方差分析,经过单因素方差分析后,使用Duncan氏法对数据之间的差异性进行多重比较,所有的试验数据结果采用平均值±标准差表示,以P < 0.05为显著差异性标准。使用Excel 2013软件,以特定生长率、蛋白质效率为评价指标进行二次回归分析,确定三倍体虹鳟对苏氨酸的最佳需要量范围。

2 结果与分析 2.1 饲料中添加苏氨酸对三倍体虹鳟生长性能的影响

表 3可见,试验结束时,各组间虹鳟的饲料系数、蛋白质效率差异不显著(P>0.05),3个试验组虹鳟的终末体质量、增重率和特定生长率相比对照组显著升高(P < 0.05),肥满度在G4组最低,G1组最高,2组间差异显著(P < 0.05)。

表 3 饲料中添加苏氨酸对虹鳟鱼生长性能的影响 Table 3 Effects of dietary threonine on growth performance of Oncorhynchus mykiss (n=3)

图 1图 2所示,以饲料中不同苏氨酸水平为自变量(X), 分别以特定生长率和蛋白质效率进行二次回归分析,得出:特定生长率与苏氨酸水平之间的回归方程为y=-0.193 7x2+0.509 6x+1.573 9(R2=0.984 7);蛋白质效率与苏氨酸水平之间的回归方程为y=-0.1x2+0.239 6x+1.957 8(R2=0.882 0)。如图 1图 2所示,当饲料苏氨酸水平低于1.3%时,三倍体虹鳟的特定生长率随饲料苏氨酸水平的提高呈上升的趋势,当饲料苏氨酸水平高于1.3%时,特定生长率呈下降的趋势;当饲料苏氨酸水平低于1.2%时,三倍体虹鳟的蛋白质效率随饲料苏氨酸水平的提高呈上升的变化趋势,当饲料苏氨酸水平高于1.2%时,蛋白质效率呈下降的变化趋势;当苏氨酸水平为1.2%、1.3%时,三倍体虹鳟的特定生长率和蛋白质效率均有最大值,分别为1.91 %/d、2.10%。

图 1 饲料苏氨酸水平和虹鳟特定生长率的回归分析 Fig. 1 Regression analysis between dietary threonine level and SGR of Oncorhynchus mykiss
图 2 饲料苏氨酸水平和虹鳟蛋白质效率的回归分析 Fig. 2 Regression analysis between dietary threonine level and PER of Oncorhynchus mykiss
2.2 饲料中添加苏氨酸对三倍体虹鳟体成分的影响

表 4可见,随着饲料苏氨酸水平的增加,虹鳟全鱼水分含量有显著变化(P < 0.05),其中G5组显著低于对照组(P < 0.05);粗蛋白质含量随着饲料苏氨酸水平的升高呈先升高后降低的变化趋势;G4组的粗脂肪含量显著低于其余各组(P < 0.05);粗灰分含量各组间无显著差异(P>0.05)。

表 4 饲料中添加苏氨酸对虹鳟体成分的影响 Table 4 Effects of dietary threonine on body composition of Oncorhynchus mykiss (n=3)  
2.3 饲料中添加苏氨酸对三倍体虹鳟肌肉氨基酸组成的影响

表 5可见,三倍体虹鳟体内氨基酸组成十分丰富,共检测到17种氨基酸,饲料中苏氨酸水平对三倍体虹鳟肌肉苏氨酸(Thr)、蛋氨酸(Met)、异亮氨酸(Ile)、苯丙氨酸(Phe)、赖氨酸(Lys)、天冬氨酸(Asp)、丙氨酸(Ala)、脯氨酸(Pro)含量无显著影响(P>0.05)外,对缬氨酸(Val)、亮氨酸(Leu)、组氨酸(His)、精氨酸(Arg)、丝氨酸(Ser)、谷氨酸(Glu)、甘氨酸(Gly)、半胱氨酸(Cys)、酪氨酸(Tyr)含量有显著影响(P < 0.05),其中谷氨酸的含量最高,天冬氨酸含量次之,其他氨基酸在G4组的含量相对较高,丝氨酸含量显著增高(P < 0.05),半胱氨酸含量显著降低(P < 0.05)。

表 5 饲料中添加苏氨酸对虹鳟肌肉氨基酸组成的影响(干物质基础) Table 5 Effects of dietary threonine on amino acid composition in muscle of Oncorhynchus mykiss (DM basis)  
3 讨论 3.1 饲料中添加苏氨酸对三倍体虹鳟生长性能的影响

本试验中,投喂苏氨酸缺乏的饲料(苏氨酸水平为0.45%)后发现,三倍体虹鳟的生长缓慢,类似的现象在大西洋鲑(Salmo salar)[28]、尼罗罗非鱼(Oreochromis niloticus)[29]、欧洲鲈鱼(Dicentrarchus labrax)[30]、南亚野鳞(Catla catla)[31]等鱼类上都有报道。当饲料中苏氨酸水平不足时,虹鳟的生长受阻,导致增重率和特定生长率的数值相比均偏低,当饲料中的苏氨酸水平提高到1.29%,虹鳟的生长状况将得到改善,增重率、特定生长率有显著提高。这说明当饲料中苏氨酸缺乏时会导致蛋白质合成受阻,影响正常的生长发育,也有可能影响抗氧化产物的减少,导致生长进一步加剧停滞。在低鱼粉且苏氨酸缺乏的条件下,将苏氨酸补充到适宜水平可以改善三倍体虹鳟的生长性能。以特定生长率、蛋白质效率为评价指标,得出三倍体虹鳟对苏氨酸的最适需要量为1.35%~1.48%(占饲料蛋白质的2.89%~3.13%),按其占蛋白质含量的比较,这一结果与鲑科鱼类如狗大马哈鱼(Oncorhynchus keta)[32]和大西洋鲑(Salmo salar)[33]的3.0%~3.2%相似,高于鲑科鱼类的大鳞大马哈鱼(Oncorhynchus tshawytscha)[34]、银大马哈鱼(Oncorhynchus kisutch)[35]的2.0%~2.2%;但低于印度鲤鱼(Cirrhinus mrigala)[36]、印鲮(Labeo rohita)[37]、遮目鱼(Chanos chanos)[17]、尼罗罗非鱼(Oreochromis niloticus)[38]的研究结果(4.30%~4.66%),有研究学者通过生长试验指出虹鳟的苏氨酸需要量为1.52%(占饲料蛋白质的3.4%)[39],与本试验相比,三倍体虹鳟苏氨酸需要量(2.89%~3.13%)比虹鳟的需要量略低,上述研究所得苏氨酸需要量不同可能是由于试验鱼的种类和大小、基础饲料组成(纯化、半纯化、实用饲料等)、晶体氨基酸、试验设计和养殖条件等多个原因造成差异[40-41]。例如,本试验中的试验鱼是三倍体虹鳟,饲料中添加的是15%的鱼粉,另外,苏氨酸的吸收率、添加形式和生物利用效率也会影响其需要量[42]。当饲料中苏氨酸水平达到或超过1.29%时,之后在饲料中进一步添加苏氨酸,三倍体虹鳟的增重率、肥满度、特定生长率和蛋白质效率的增加速率将有所降低,这与草鱼(Ctenopharyngodon idella)[43]、团头鲂(Megalobrama amblycephala)[44]的研究结果一致。推测可能是苏氨酸过量时因排泄和脱氨作用使饲料氨基酸模式不平衡,导致鱼类生长与蛋白质沉积降低,此外,氨对生物体有毒,脱去的氨需要排出体外,消耗额外的能量,引起特定生长率下降[45-46]。然而,也有研究报道,饲料苏氨酸水平升高到适宜水平后鱼体的特定生长率显著增加,继续升高苏氨酸水平,特定生长率基本保持不变,后趋于平稳的趋势[47]

3.2 饲料中添加苏氨酸对三倍体虹鳟体成分的影响

本试验中,随着饲料苏氨酸水平的增加,虹鳟全鱼的水分含量显著降低, 在G5组的水分含量最低;G4组的粗脂肪含量最低;粗蛋白质含量随着饲料苏氨酸水平的增加呈现先增加后降低的变化趋势;粗灰分含量随着饲料苏氨酸水平的增加无显著变化。胡晓霞等[48]对生长中期草鱼(Ctenophyngodon idellus)投喂含不同水平苏氨酸的饲料,发现苏氨酸水平能显著降低生长中期草鱼的水分和粗脂肪含量,极显著提高粗蛋白质的含量。周兴华等[49]对吉富罗非鱼(Oreochromis niloticus)的研究发现,饲料中苏氨酸水平适宜时,不同水平的苏氨酸会显著降低吉富罗非鱼的水分含量,而粗蛋白质含量显著增高,对粗脂肪和粗灰分含量影响不显著,这与建鲤(Cyprinus carpio var jian)[50]、印度鲶鱼(Silurus asotus)[51]、日本对虾(Penaeus semisulcatus)[52]的研究结果一致,随着饲料苏氨酸水平的增加,体蛋白质含量增加,当苏氨酸水平为1.58%时,体蛋白质含量最高。本试验与其结果相似,说明饲料苏氨酸水平添加不足时,饲料中氨基酸模式出现失衡的现象,使体蛋白质合成受阻,最终导致三倍体虹鳟限制利用其他氨基酸的能力,加重多余氨基酸的脱氨基作用,主要利用蛋白质而不是脂肪作为能源,而添加适宜水平的苏氨酸后,增加了三倍体虹鳟对苏氨酸的利用,促进了体蛋白质的合成,使更多的脂肪用于能量消耗。

3.3 饲料中添加苏氨酸对三倍体虹鳟肌肉氨基酸组成的影响

鱼类对蛋白质的积累实质是通过饲料氨基酸的合成来实现的,饲料的氨基酸模式不同,对鱼类蛋白质的合成、体蛋白质结合态氨基酸的组成以及鱼类生长的影响都不同。牙鲆(Paralichthys olivaceus)饲料添加苏氨酸的研究发现,饲料苏氨酸水平与全身精氨酸、苏氨酸和缬氨酸含量呈正相关关系[53]。虹鳟饲料苏氨酸水平升高后,降低了全身赖氨酸、半胱氨酸、丙氨酸和脯氨酸的含量,增加了全身组氨酸、蛋氨酸和苏氨酸的含量[26]。随着饲料中添加苏氨酸水平提高,增加了大西洋鲑全身精氨酸、苏氨酸、丝氨酸和酪氨酸的含量[28]。本试验结果与其相似,随着饲料中苏氨酸水平的增加,对肌肉缬氨酸、亮氨酸、组氨酸、精氨酸、丝氨酸、谷氨酸、甘氨酸、半胱氨酸、酪氨酸含量有显著影响,其中丝氨酸含量显著增加,半胱氨酸含量显著降低,其他氨基酸含量呈现先增加后降低的变化趋势。这表明摄入一种氨基酸可能会影响其他氨基酸含量的改变[42],饲料中必需氨基酸的某一种限制可能会增加其他必需氨基酸或非必需氨基酸的氧化来达到饲料中氨基酸的平衡[54]

4 结论

饲料中添加苏氨酸可以提高三倍体虹鳟的生长性能,以特定生长率、蛋白质效率为评价指标,经过二次回归分析可知,三倍体虹鳟对苏氨酸的最佳需要量为1.2%~1.3%。

参考文献
[1]
XU J, FENG L, JIANG W D, et al. Different dietary protein levels affect flesh quality, fatty acids and alter gene expression of Nrf2-mediated antioxidant enzymes in the muscle of grass carp (Ctenopharyngodon idella)[J]. Aquaculture, 2018, 493: 272-282. DOI:10.1016/j.aquaculture.2018.05.008
[2]
YAN J, LI Y, LIANG Y, et al. Effects of dietary protein and lipid levels on growth performance, fatty acid composition and antioxidant-related gene expressions in juvenile loach Misgurnus anguillicaudatus[J]. Aquaculture Research, 2017, 48(10): 5385-5393. DOI:10.1111/are.13352
[3]
ALAM M S, WATANABE W O, DANIELS H V. Effect of different dietary protein and lipid levels on growth performance and body composition of juvenile southern flounder, Paralichthys lethostigma, reared in a recirculating aquaculture system[J]. Journal of the World Aquaculture Society, 2009, 40(4): 513-521. DOI:10.1111/j.1749-7345.2009.00274.x
[4]
LEE S M, CHO S H, KIM K D. Effects of dietary protein and energy levels on growth and body composition of juvenile flounder Paralichthys olivaceus[J]. Journal of the World Aquaculture Society, 2000, 31(3): 306-315.
[5]
OLSEN R L, HASAN M R. A limited supply of fishmeal: impact on future increases in global aquaculture production[J]. Trends in Food Science & Technology, 2012, 27(2): 120-128.
[6]
LU F, HAGA Y, SATOH S. Effects of replacing fish meal with rendered animal protein and plant protein sources on growth response, biological indices, and amino acid availability for rainbow trout Oncorhynchus mykiss[J]. Fisheries Science, 2015, 81(1): 95-105. DOI:10.1007/s12562-014-0818-7
[7]
SHAN L L, LI X Q, ZHENG X M, et al. Effects of feed processing and forms of dietary methionine on growth and IGF-1 expression in Jian carp[J]. Aquaculture Research, 2015, 48(1): 56-67.
[8]
KEREMAH R I, ALFRED-OCKIY J F. Effects of dietary protein level on growth and body composition of mudfish, Heterobranchus longifilis fingerlings[J]. African Journal of Business Management, 2013, 12(9): 971-975.
[9]
VAN DEN INGH T S G A M, OLLI J J, KROGDAHL Å. Alcohol-soluble components in soybeans cause morphological changes in the distal intestine of Atlantic salmon, Salmo salar L.[J]. Journal of Fish Diseases, 2010, 19(1): 47-53.
[10]
COHEN R S, TANKSLEY T D, J r. Limiting amino acids in sorghum for growing and finishing swine[J]. Journal of Animal Science, 1976, 43(5): 1028-1034. DOI:10.2527/jas1976.4351028x
[11]
ECKERT T E, ALLEE G L. Limiting amino acids in milo for the growing pig[J]. Journal of Animal Science, 1974, 39(4): 694-698. DOI:10.2527/jas1974.394694x
[12]
GROSBACH D A, LEWIS A J, PEO E R, J r, et al. An evaluation of threonine and isoleucine as the third and fourth limiting amino acids in corn for growing swine[J]. Animal Sciences, 1985, 60(2): 487-494.
[13]
SHI M, LIU T, LI T, et al. Effects of deficiency and surplus dietary threonine on reproductive performance of primiparous pregnant gilts[J]. Journal of Animal Physiology and Animal Nutrition, 2018, 102(2): e964-e971. DOI:10.1111/jpn.12866
[14]
MATHAI J K, HTOO J K, THOMSON J E, et al. Effects of dietary fiber on the ideal standardized ileal digestible threonine: lysine ratio for twenty-five to fifty kilogram growing gilts[J]. Journal of Animal Science, 2016, 94(10): 4217-4230. DOI:10.2527/jas.2016-0680
[15]
ZHANG G J, XIE C Y, THACKER P A, et al. Estimation of the ideal ratio of standardized ileal digestible threonine to lysine for growing pigs (22 to 50 kg) fed low crude protein diets supplemented with crystalline amino acids[J]. Animal Feed Science and Technology, 2013, 180(1/2/3/4): 83-91.
[16]
RAVI J, DEVARAJ K V. Quantitative essential amino acid requirements for growth of catla, Catla catla (Hamilton)[J]. Aquaculture, 1991, 96(3/4): 281-291.
[17]
BORLONGAN I G. Arginine and threonine requirements of milkfish (Chanos chanos Forsskal) juveniles[J]. Aquaculture, 1991, 93(4): 313-322. DOI:10.1016/0044-8486(91)90223-T
[18]
THONG H T, LIEBERT F. Amino acid requirement of growing pigs depending on amino acid efficiency and level of protein deposition.2nd communication: threonine[J]. Archives of Animal Nutrition, 2004, 58(2): 157-168. DOI:10.1080/00039420410001667520
[19]
THONG H T, LIEBERT F. Potential for protein deposition and threonine requirement of modern genotype barrows fed graded levels of protein with threonine as the limiting amino acid[J]. Journal of Animal Physiology and Animal Nutrition, 2004, 88(5/6): 196-203.
[20]
孔凡林, 李媛, 唐梦琪, 等. 氨基酸缺乏对母犊牛生长和日粮养分消化代谢的影响[J]. 中国农业科学, 2020, 53(2): 418-430.
KONG F L, LI Y, TANG M Q, et al. Effects of amino acid deficiency on growth development, dietary nutrients digestion and metabolism in heifers[J]. Chinese Agricultural Science, 2020, 53(2): 418-430 (in Chinese).
[21]
DONG Y W, JIANG W D, LIU Y, et al. Threonine deficiency decreased intestinal immunity and aggravated inflammation associated with NF-κB and target of rapamycin signalling pathways in juvenile grass carp (Ctenopharyngodon idella) after infection with Aeromonas hydrophila[J]. British Journal of Nutrition, 2017, 118(2): 92-108. DOI:10.1017/S0007114517001830
[22]
王金娜, 邰定敏, 安苗. 虹鳟鱼养殖发展研究概况[J]. 河北渔业, 2015, 10(3): 62-65.
WANG J N, TAI D M, AN M. Overview on the development of rainbow trout culture[J]. Hebei Fisheries, 2015, 10(3): 62-65 (in Chinese). DOI:10.3969/j.issn.1004-6755.2015.03.022
[23]
朱龙, 袁聪, 朱成科, 等. 二倍体和三倍体虹鳟肌肉营养成分比较及分析[J]. 营养学报, 2018, 40(2): 206-208.
ZHU L, YUAN S, ZHU C K, et al. Comparison and analysis of muscle nutrition of diploid and triploid rainbow trout[J]. Journal of Nutrition, 2018, 40(2): 206-208 (in Chinese). DOI:10.3969/j.issn.0512-7955.2018.02.023
[24]
XAVIER P, WAUTERS J B, BODIN N, et al. Maintenance threonine requirement and efficiency of its use for accretion of whole-body threonine and protein in Atlantic salmon (Salmo salar L.) fry[J]. British Journal of Nutrition, 2007, 95(2): 234-245.
[25]
ABBOUDI T, OOGHE W, LARONDELLE Y, et al. Determination of the threonine requirement for maintenance in Atlantic salmon (Salmo salar L.) fry with the diet dilution procedure[J]. Aquaculture Nutritio, 2010, 13(4): 281-290.
[26]
BODIN N, MAMBRINI M, WAUTERS J B, et al. Threonine requirements for rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) at the fry stage are similar[J]. Aquaculture, 2008, 274(2/3/4): 353-365.
[27]
徐奇友. 虹鳟营养与饲料研究进展[J]. 饲料工业, 2010(增刊): 46-49.
XU Q Y. Research progress on nutrition and feed of rainbow trout[J]. Feed Industry, 2010(Suppl.): 46-49 (in Chinese).
[28]
GRISDALE-HELLAND B, LEMME A, HELLAND S J. Threonine requirement for maintenance and efficiency of utilization for threonine accretion in Atlantic salmon smolts determined using increasing ration levels[J]. Aquaculture, 2013, 372/373/374/375: 158-166.
[29]
YUE Y R, ZOU Z Y, ZHU J L, et al. Dietary threonine requirement of juvenile Nile tilapia, Oreochromis niloticus[J]. Aquaculture International, 2014, 22(4): 1457-1467. DOI:10.1007/s10499-014-9759-5
[30]
TIBALDI E, TULLI F. Dietary threonine requirement of juvenile European sea bass (Dicentrarchus labrax)[J]. Aquaculture, 1999, 175(1/2): 155-166.
[31]
ZEHRA S, KHAN M A. Dietary threonine requirement of fingerling Indian major carp, Catla catla (Hamilton) estimated by growth, protein retention efficiency, threonine deposition, haematological parameters and carcass composition[J]. Aquaculture Research, 2016, 47(1): 253-265. DOI:10.1111/are.12487
[32]
AKIYAMA T, ARAI S, MURAI T, et al. Threonine, histidine and lysine requirements of chum salmon fry[J]. Nippon Suisan Gakkaishi, 1985, 51(4): 635-639. DOI:10.2331/suisan.51.635
[33]
ROLLIN X. Critical study of the indispensable amino acids requirements in Atlantic salmon (Salmo salar L. ) fry[D]. Ph. D. Thesis. Belgium: Universite' de Louvain, Louvain-la-Neuve, 1999: 17-30.
[34]
DE LONG D C, HALVER J E, MERTZ E T. Nutrition of salmonoid fishes: X.Quantitative threonine requirements of chinook salmon at two water temperatures[J]. The Journal of Nutrition, 1962, 76(2): 174-178. DOI:10.1093/jn/76.2.174
[35]
OGATA H, ARAI S, NOSE T. Growth responses of cherry salmon Oncorhynchus masou and amago salmon O. rhodurus fry fed purified casein diets supplemented with amino acid[J]. Nippon Suisan Gakkaishi, 1983, 49(9): 1381-1385. DOI:10.2331/suisan.49.1381
[36]
AHMED I, KHAN M A, JAFRI A K. Dietary threonine requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton)[J]. Aquaculture Research, 2004, 35(2): 162-170. DOI:10.1111/j.1365-2109.2004.00997.x
[37]
MURTHY H S, VARGHESE T J. Quantitative dietary requirement of threonine for the growth of the Indian major carp, Labeo rohita (Hamilton)[J]. Journal of Aquaculture in the Tropics, 1996, 11(1): 1-7.
[38]
SANTIAGO C B, LOVELL R T. Amino acid requirements for growth of Nile tilapia[J]. The Journal of Nutrition, 1988, 118(12): 1540-1546. DOI:10.1093/jn/118.12.1540
[39]
RODEHUTSCORD M, JACOBS S, PACK M, et al. Response of rainbow trout (Oncorhynchus mykiss) growing from 50 to 170 g to supplements of either L-arginine or L-threonine in a semipurified diet[J]. The Journal of Nutrition, 1995, 125(4): 970-975.
[40]
周小秋, 杨凤, 刘安国, 等. 稚鳖赖氨酸营养的需要量[J]. 水产学报, 2001, 25(5): 454-459.
ZHOU X Q, YANG F, LIU A G, et al. The lysine requirement of juvenile soft shell turtle[J]. Journal of Fisheries, 2001, 25(5): 454-459 (in Chinese).
[41]
COLOSO R M, MURILLO-GURREA D P, BORLONGAN I G, et al. Sulphur amino acid requirement of juvenile asian sea bass Lates calcarifer[J]. Journal of Applied Ichthyology, 2010, 15(2): 54-58.
[42]
WILSON R P. Amino acids and proteins[M]//HALVER J E, HARDY R W. Fish nutrition. 3rd ed. New York: Elsevier Inc., 2003: 143-179.
[43]
GAO Y J, YANG H J, LIU Y J, et al. Effects of graded levels of threonine on growth performance, biochemical parameters and intestine morphology of juvenile grass carp Ctenopharyngodon idella[J]. Aquaculture, 2014, 424/425: 113-119. DOI:10.1016/j.aquaculture.2013.12.043
[44]
HABTE-TSION H M, REN M C, LIU B, et al. Threonine affects digestion capacity and hepatopancreatic gene expression of juvenile blunt snout bream (Megalobrama amblycephala)[J]. British Journal of Nutrition, 2015, 114(4): 533-543. DOI:10.1017/S0007114515002196
[45]
HABTE-MICHAEL HABTE-TSION ANDE-MICHAEL. 饲料苏氨酸对团头鲂幼鱼生长、消化及免疫的影响[D]. 博士学位论文. 南京: 南京农业大学, 2016.
HABTE-MICHAEL HABTE-TSION ANDE-MICHAEL. Effect of dietary threonine on the growth, digestion capacity and immunity of juvenile blunt snout bream(Megalobrama amblycephala)[D]. Ph. D. Thesis. Nanjing: Nanjing Agricultural University, 2016. (in Chinese)
[46]
BOREN R S, GATLIN Ⅲ D M. Dietary threonine requirement of juvenile red drum Sciaenops ocellatus[J]. Journal of The World Aquaculture Society, 1992, 26(3): 279-283.
[47]
封福鲜. 精氨酸、赖氨酸和苏氨酸对瓦氏黄颡鱼幼鱼生长、代谢及免疫力的影响[D]. 硕士学位论文. 青岛: 中国海洋大学, 2011.
FENG F X. Effects of dietary arginine, lysine and threonine on growth, metabolism and immune responses of juvenile darkarbel catfish(Peltebagrus vachelli)[D]. Master's Thesis. Qingdao: Ocean University of China, 2011. (in Chinese)
[48]
胡晓霞. 生长中期草鱼的苏氨酸需要量研究[D]. 硕士学位论文. 雅安: 四川农业大学, 2012.
HU X X. The dietary threonine requirement of young grass carp (Ctenopharyngodon idellus)[D]. Master's Thesis. Ya'an: Sichuan Agricultural University, 2012. (in Chinese)
[49]
周兴华, 向枭, 罗莉, 等. 吉富罗非鱼对饲料中苏氨酸的需要量[J]. 淡水渔业, 2014, 44(4): 83-89.
ZHOU X H, XIANG X, LUO L, et al. Dietary threonine requirement of GIFT Orechromis niloticus[J]. Freshwater Fishery, 2014, 44(4): 83-89 (in Chinese). DOI:10.3969/j.issn.1000-6907.2014.04.014
[50]
FENG L, PENG Y, WU P, et al. Threonine affects intestinal function, protein synthesis and gene expression of TOR in Jian carp (Cyprinus carpio var. Jian)[J]. PLoS One, 2013, 8(7): e69974. DOI:10.1371/journal.pone.0069974
[51]
AHMED I. Dietary amino acid L-threonine requirement of fingerling Indian catfish, Heteropneustes fossilis (Bloch) estimated by growth and biochemical parameters[J]. Aquaculture International, 2007, 15(5): 337-350. DOI:10.1007/s10499-007-9097-y
[52]
ALAM M S, TESHIMA S, KOSHIO S, et al. Effects of supplementation of coated crystalline amino acids on growth performance and body composition of juvenile kuruma shrimp Marsupenaeus japonicus[J]. Aquaculture Nutrition, 2015, 10(5): 309-316.
[53]
ALAM M S, TESHIMA S, KOSHIO S, et al. Optimum dietary threonine level for juvenile japanese flounder Paralichthys olivaceus[J]. Asian Fisheries Science, 2003, 16(2): 175-184.
[54]
ZHOU F, XIAO J X, HUA Y, et al. Dietary L-methionine requirement of juvenile black sea bream (Sparus macrocephalus) at a constant dietary cystine level[J]. Aquaculture Nutrition, 2011, 17(5): 469-481. DOI:10.1111/j.1365-2095.2010.00823.x