动物营养学报    2021, Vol. 33 Issue (5): 2452-2460    PDF    
小麦青贮的营养价值及其在奶牛生产中的应用
蔡阿敏 , 范逸婷 , 李鹏涛 , 高腾云     
河南农业大学动物科技学院, 郑州 450046
摘要: 全株小麦在许多国家被用作主要的青贮饲料作物,小麦青贮是高产奶牛的优质粗饲料。小麦的营养组成随着成熟度的改变而改变,因此小麦的成熟度在一定程度上决定着小麦青贮的营养价值。此外,小麦的品种、施肥种类及用量、乳酸菌接种剂及青贮制作工艺均会影响小麦青贮的营养价值及发酵品质。本文简述了小麦青贮的营养价值、影响其营养价值与发酵品质的因素,以及小麦青贮在奶牛生产中的应用,以期为小麦青贮的应用推广提供参考。
关键词: 小麦青贮    营养价值    发酵品质    
Nutritional Value of Wheat Silage and Its Application in Dairy Cow Production
CAI Amin , FAN Yiting , LI Pengtao , GAO Tengyun     
College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
Abstract: Whole wheat is used as the main silage crop in many countries and can be used as high quality roughage for high yield dairy cows. The nutritional composition of wheat is changed with maturity changed, so the maturity determines the nutritional value of wheat silage to a certain extent. In addition, wheat varieties, fertilizer types and dosage, lactobacillus inoculant and silage production technology all affect the nutritional value and fermentation quality of wheat silage. The nutritional value of wheat silage, the influencing factors of its nutritional value and fermentation quality, and the application of wheat silage in dairy cow production were described in this paper with the aim to providing reference for the application and popularization of wheat silage.
Key words: wheat silage    nutritional value    fermentation quality    

小麦(Triticum aestivum L.)是世界上种植最广泛的禾本科植物,是三大谷物之一,也是人体所需碳水化合物的重要来源[1]。我国的小麦面积种植最广,但几乎全作食用,作为饲料使用的仅约占1/6[2]。随着全球范围内夏季雨水缺乏,冬季高温持续,造成反刍动物饲料来源匮乏,小麦以干草、青贮饲料或秸秆的方式,成为反刍动物的主要饲料来源[1]

随着饲料资源的缺乏,人们对小麦的饲用价值逐渐关注。目前,麦类被作为一种非常规饲料原料,在单胃动物饲粮中作为能量饲料原料在世界各国被广泛利用,如东欧、英国、北欧和北美等国家及地区普遍使用小麦作饲料,就连亚洲的日本,其进口小麦的1/4也用作饲料[3]。在以色列和世界许多地方,全作物小麦是制作青贮饲料的主要作物,因其适应性强、产量高、种植季节与玉米和大豆等其他重要作物不冲突,被广泛种植[4]。冬季谷类作物被认为是亚热带和温带地区的良好饲料来源,与其他冬播作物相比,由于小麦干物质含量较高及其青贮制作技术方案的可行性,而被广泛应用[5]。但小麦秸利用率低,难以处理,如果处理不当,易造成环境污染。因此,采用小麦青贮方式,既可解决饲料短缺问题,又可缓解麦秸带来的环境压力。另外,玉米价格持续上涨,而小麦价格较低,成为小麦青贮替代玉米青贮的另一推动力。

1 小麦青贮的营养价值

小麦主要以干草、青贮饲料或秸秆的形式喂给反刍动物[1]。与小麦干草相比,小麦青贮的非结构性碳水化合物(NSC)含量较高,中性洗涤纤维(NDF)含量较低,体外干物质消化率较高[6],且淀粉利用率高[7-8]。小麦青贮可作为高产奶牛或肉牛的优质粗饲料,其营养价值接近玉米青贮[9]。与玉米青贮相比,小麦青贮的NDF、酸性洗涤纤维(ADF)以及酸性洗涤木质素(ADL)含量较高,干物质瘤胃有效降解率相似,但淀粉含量远低于玉米青贮[10]

小麦主要刈割期有开花期、乳熟期、蜡熟期,这3个时期均能制作成优良的青贮饲料。然而,不同时期刈割的小麦营养价值不同,其对应青贮饲料的营养成分也存在较大差异。从开花期到蜡熟期,随着成熟度的增加,小麦的干物质含量和干物质产量增加,在蜡熟期达到最大值,这是由于蜡熟期小麦籽粒与生物量的比值增加[11-12];伴随着小麦的成熟,淀粉在小麦籽实中逐渐累积,水溶性碳水化合物(WSC)含量随成熟度的增加而减少[9, 13];而小麦中粗蛋白质的含量逐渐下降,这是由于随着小麦逐渐成熟,光合作用减弱,抑制了蛋白质的合成[14]。不同生育期全株小麦的营养特性[15-16]表 1所示。Ashbell等[17]的研究结果表明,从乳熟期到蜡熟期,小麦干物质产量的增幅约为40%。但也有研究表明[13],小麦乳熟期和蜡熟期的干物质产量没有显著差异,这可能与气候条件和小麦品种的差异有关。

表 1 不同生育期小麦的营养特性 Table 1 Nutritional characteristics of wheat at different growth stages[15-16] 
2 影响小麦青贮营养价值和发酵品质的因素 2.1 小麦的栽培模式

研究表明,小麦的播种量、施肥种类以及施肥时期,均会影响小麦青贮的营养价值与发酵品质[18]。pH、有机酸及氨态氮(NH3-N)含量等是评价青贮饲料发酵品质的主要指标,其中氨态氮与总氮的比值越低,表明青贮过程中蛋白质分解越少,发酵品质越高[19],徐赵红[18]研究表明,小麦播种量越高,小麦青贮中氨态氮比例越少,蛋白质分解较少,然而小麦青贮的有氧稳定性在中播种量时最高,且pH随播种量的增加呈先上升后降低的趋势,因此当播种量为385 kg/hm2时,小麦青贮的品质较好。拔节期是小麦干物质累积及养分利用的高效期[20],在苗期和拔节期施用尿素+复合肥,全株小麦干物质产量、营养价值、发酵品质和饲用安全性为最佳。

2.2 小麦的收获期

影响小麦青贮营养价值和发酵品质的主要因素有小麦植株的含水率以及WSC含量,而决定作物含水率及WSC含量的关键是作物的成熟期,一般适宜青贮发酵的含水率为60%~70%[13]。因此,小麦青贮的营养价值和发酵品质在很大程度上取决于小麦的成熟阶段[21]。在成熟早期,干物质含量低,青贮发酵过程中易产生丁酸发酵,造成可消化养分的大量流失。但过高的干物质含量则可能会影响青贮过程中的压实程度和发酵,易导致青贮物变质和养分流失[22]。青贮原料的WSC含量较低会限制乳酸菌的生长,从而抑制pH的迅速降低,而pH降低速度缓慢就会给其他杂菌(如梭菌等)足够的生长时间,影响发酵品质[23]。秦梦臻等[15]的研究显示,供试小麦植株乳熟期水分、WSC、粗蛋白质、粗灰分含量高于蜡熟期,淀粉含量、体外干物质消化率(IVDMI)低于蜡熟期,ADF含量略高于蜡熟期,NDF含量与蜡熟期接近,由于乳熟期小麦中WSC含量较高,导致乳熟期小麦青贮的发酵品质较高,但饲用价值低于蜡熟期小麦青贮。研究指出,虽然蜡熟期小麦中WSC含量较低,但其青贮中可以产生足够的乳酸以保证其发酵品质,因为内源淀粉酶水解小麦籽粒中的淀粉可以作为蜡熟期青贮发酵的基质[7]。另有研究表明,在蜡熟早期及籽粒由软变硬时收获的小麦,其青贮品质总体较好,但氨态氮含量较高,分别为155、117 g/kg,高于一般青贮饲料推荐的最大值(100 g/kg)[9],然而以4 L/t的甲酸+丙酸进行处理,其氨态氮含量明显降低[11],乙醇含量(14~20 g/kg DM)高于一般标准(8 g/kg DM)[9],但是使用基于丙酸等化学物质的高剂量防腐剂(如亚硝酸钠、乌洛托品、苯甲酸盐等)处理可降低乙醇含量[24]。另外,相比于蜡熟早期,在籽粒由软变硬的蜡熟期收获的小麦,其青贮能够提高奶牛的产奶量[12],且随着成熟度的增加,全株小麦青贮淀粉含量越高,奶牛乳蛋白含量随之增高[25-26]。然而,Arieli等[27]通过对泌乳奶牛NDF消化率和产奶量进行研究发现,开花期收获的小麦的青贮品质优于其他成熟期。Weinberg等[28]发现,从产量、营养成分和发酵品质来看,制作小麦青贮的最佳时间是乳熟期。也有研究表明,小麦的含水率随收获时间的推迟而降低,而植株高度差异不显著,抽穗后40和45 d收获的小麦干物质产量和总可消化养分(TDN)产量显著高于抽穗后35 d收获的小麦,不同收获时间的小麦青贮pH相似,乳酸含量随收获时间的延长降低[29]。从小麦青贮的干物质含量和发酵品质考虑,小麦用来制作全株青贮饲料的最佳收获时间为抽穗期后的40~45 d。不同生育期小麦青贮营养价值[13, 21]表 2所示,发酵品质[4, 13, 15]表 3所示。

表 2 不同生育期小麦青贮的营养价值(干物质基础) Table 2 Nutritional value of wheat silage at different growth stages (DM basis)[13, 21] 
表 3 不同生育期小麦青贮的发酵品质 Table 3 Fermentation quality of wheat silage at different growth stages[4, 13, 15]
2.3 乳酸菌

在影响饲料作物青贮品质的各种因素中,乳酸菌和WSC含量是2个关键因素,当它们不足时往往会限制理想发酵。然而,在大多数情况下,作物本身附着的乳酸菌不足,其中许多乳酸菌在青贮早期繁殖缓慢,导致发酵品质不佳。乳酸菌接种剂,主要是同型发酵乳酸杆菌,常被用作青贮添加剂,刺激乳酸发酵,降低pH,从而抑制有害微生物和青贮饲料的蛋白质水解[30],当青贮窖开仓时,厌氧环境变为有氧环境,在无氧条件下保持休眠状态的微生物大量繁殖,导致青贮物变质,特别是在适宜温度下。Ashbell等[31]研究发现,好氧菌、酵母菌和霉菌利用残留的WSC和乳酸大量繁殖,导致有氧变质,使得青贮饲料pH上升并损失能量,甚至产生有害物质[32]。因此,开仓后pH变化越小,说明青贮饲料的好氧稳定性越好。Xie等[13]在全株小麦青贮过程中添加同型乳酸菌菌剂后显著降低了小麦青贮的pH和NH3-N含量,而添加异型乳酸菌菌剂则降低了乳酸含量,升高了乙酸含量,与对照小麦青贮相比pH无显著差异,且提高了不同成熟阶段小麦青贮的好氧稳定性。在小麦青贮过程中接种植物乳杆菌和乳酸片球菌后增加了干物质、有机物和总碳水化合物含量,但由于稀释作用使得粗蛋白质含量降低。从发酵品质上看,接种乳酸菌降低了小麦青贮中乙酸和丁酸的含量,而提高了丙酸的含量[33]。与异型乳酸菌相比,同型乳酸菌具有更高的葡萄糖利用效率,同型乳酸菌发酵能促进乳酸的积累和pH的下降,从而更有效地抑制有害微生物的生长[34]。Addah等[35-36]研究发现,用同型乳酸菌接种会降低青贮饲料的丙酸含量,而用异型乳酸菌接种则丙酸含量不受影响。乳酸菌接种剂除了能够提高青贮品质外,对提高动物生产性能同样有着显著影响[37],Ben-Meir等[38]用不同接种菌制作裹包小麦青贮并饲喂奶牛,结果表明,使用不同接种菌均能提高奶牛的泌乳性能,其中布氏乳杆菌(Lacobacillus buchneri)40788接种剂效果最佳,这可能与接种菌在胃肠道的存活及发挥作用有关[39]

2.4 好氧稳定性

好氧稳定性是青贮饲料的一个重要特性,它决定了青贮饲料暴露在空气中的安全性和质量[4]。小麦品种、收获期、萎蔫和青贮时添加乳酸菌制剂对小麦青贮的好氧稳定性均有一定的影响。Weinberg等[4]研究了2个品种的小麦,在初花期和乳熟期收获,直接切段或萎蔫后切段,并贮存在微型青贮窖中,贮存2~7个月后,对青贮饲料进行7 d有氧稳定性试验,测定青贮饲料的干物质和NDF消化率、温度,以及干物质损失量和二氧化碳(CO2)产生量,结果表明,小麦品种和乳酸菌接种对青贮饲料营养成分和好氧稳定性有影响,成熟期对好氧损失有影响,而萎蔫对好氧腐坏指标无影响。Chen等[5]研究表明,在有氧环境下,在乳熟期收获的小麦制备的青贮饲料不稳定,而在初花期和蜡熟期收获的小麦制备的青贮饲料较稳定。好氧稳定性通常与挥发性脂肪酸的存在有关,挥发性脂肪酸可以抑制酵母菌和霉菌腐败,同型接种剂减少了挥发性脂肪酸的形成和发酵损失,但使贮藏在青贮仓内的小麦青贮的好氧稳定性下降[40]

2.5 青贮添加剂

青贮添加剂往往被用于提高青贮品质,以提高青贮饲料的营养价值。青贮过程中添加甲酸能迅速降低青贮饲料的pH以及丁酸和氨态氮浓度[41],丙酸能够抑制好气型腐败菌的发酵、降低氨态氮的生成[42],在全株小麦青贮中添加甲丙混合酸(13∶7),不仅降低了小麦青贮中的乳酸、乙酸以及氨态氮的比例,还提高了WSC含量及小麦青贮的干物质、NDF体外消化率,其中以添加0.3%的甲丙混合酸效果最佳[43]。亚硝酸盐及乌洛托品能够抑制梭状芽孢杆菌和梭状芽孢杆菌孢子的生长,因此常被用作青贮添加剂。König等[44]在青贮过程中添加亚硝酸钠、乌洛托品亚硝酸钠混合物及甲酸,结果表明,单独添加亚硝酸钠显著降低了青贮饲料的NH3-N含量,而添加二者混合物对青贮品质并无明显改善,且随着混合物中乌洛托品添加量的增加,青贮饲料的pH呈线性上升,乳酸含量呈下降趋势。亚硝酸钠添加剂在预防丁酸生成方面比甲酸更有效。Arican等[45]在小麦-匈牙利野豌豆混合青贮中分别添加0、0.02%、0.04%、0.08%和0.16%的黑种草油(Nigella sativa),结果表明,与对照组相比,添加黑种草油能显著提高小麦-匈牙利野豌豆混合青贮的干物质和有机质含量,且添加0.16%时乳酸含量增加,但各组的粗蛋白质、粗脂肪、粗灰分、NDF、ADF含量以及pH、丙酸含量、代谢能(ME)、有机物体外消化率(IVOMD)、泌乳净能(NEL)无显著差异,即添加黑种草油能够提高小麦-匈牙利野豌豆混合青贮的发酵品质,且以添加0.16%时效果更佳。

3 小麦青贮在奶牛生产中的应用

在美国东北部地区,小麦作为冬季生长的覆盖作物,可以防止在玉米青贮收获后裸地被侵蚀。覆盖作物能够有效利用秋季施用的肥料及减少硝酸盐的浸出[46],种植小麦需要较多劳动力、设备和其他投入,作为抵消种植成本、增加每亩每年饲料产量、从同一土地基地收获更多饲料的一种方式,利用小麦替代玉米青贮等饲料的做法越来越受欢迎[47]。Turan[48]研究了土耳其野豌豆与小麦以不同比例混合青贮,结果表明,土耳其野豌豆与小麦以4∶1比例混合青贮的ADF、NDF、可消化干物质采食量、干物质采食量及相对饲喂价值(RFV)均显著高于全小麦青贮,但干物质含量显著低于全小麦青贮,且随着混合青贮中小麦比例的减少,混合青贮的干物质含量降低,这主要与小麦的干物质含量显著高于土耳其野豌豆有关。

Shaani等[6]分别以小麦青贮、小麦长干草(搅拌机中搅拌5 min)、小麦短干草(搅拌机中搅拌30 min)作为奶牛唯一粗饲料来源,研究了其对奶牛生产性能的影响,结果发现,与小麦干草相比,小麦青贮具有低NDF含量、高干物质体外消化率的特点,这主要是由于小麦青贮与小麦长干草的物理有效纤维(peNDF)相似,高于小麦短干草,但小麦青贮的非纤维性碳水化合物(NFC)含量较高,因此以小麦青贮为主的全混合日粮(TMR)的干物质体外消化率高于小麦干草;小麦青贮组TMR的干物质、粗蛋白质、粗脂肪及NSC表观消化率高于小麦干草组,而NDF表观消化率与小麦青贮组相似,最终体现在3组瘤胃pH相近;此外,小麦青贮组TMR中各营养物质的较高消化率,使得饲喂小麦青贮TMR的奶牛日均产奶量、4%乳脂校正乳(4%FCM)及能量校正乳(ECM)、乳脂含量和饲料转化效率均显著高于饲喂小麦干草TMR的奶牛。

Harper等[10]以小麦青贮替代饲粮中10%的玉米青贮,奶牛的干物质采食量无显著差异,但产奶量降低,这可能是由于小麦青贮的纤维含量高于玉米青贮,而淀粉含量低于玉米青贮。另有研究指出,当小麦青贮等覆盖作物替代玉米青贮作为奶牛粗饲料来源时,淀粉含量会降低,随之降低奶牛饲粮中的可利用能量[49],因此导致小麦青贮替代组奶牛虽具有相似的干物质采食量,但产奶量降低。Harper等[10]研究指出,当以小麦青贮替代玉米青贮时,奶牛日均乳蛋白产量降低,虽然小麦青贮的过瘤胃蛋白(RUP)含量高于玉米青贮,但用于瘤胃微生物蛋白合成的能量较少,所以小麦青贮组奶牛的乳蛋白产量低于玉米青贮组;另外,小麦青贮组牛奶中脂肪酸C4∶0和C6∶0含量增加,硬脂酸(C18∶0)含量也有增加趋势,而t-10 C18∶1含量显著降低,但总反式脂肪酸含量增加。乳脂中t-10 C18∶1是瘤胃中的微生物将脂肪酸氢化的一种中间产物,与乳脂合成抑制有关[50-51]。与玉米青贮相比,小麦青贮的纤维含量较高,淀粉含量较低,可能是造成瘤胃生物加氢的原因之一。由于小麦青贮低淀粉、高纤维、高木质素的营养特性,其体外干物质有效降解率较玉米青贮低,饲粮干物质和有机物的表观消化率也较低。在Harper等[10]的试验中,由于小麦青贮组饲粮的粗蛋白质含量高于玉米青贮组,导致饲粮蛋白质供应过量,其尿素氮排泄量较高,乳氮效率较低,这为减少小麦青贮组饲粮中蛋白质饲料添加量,降低饲料成本提供了可能。袁文焕等[52]以小麦青贮替代20%的玉米青贮,结果显示,2组泌乳奶牛的干物质采食量、产奶量、乳成分、营养物质消化率均无显著差异,表明在泌乳奶牛饲粮中小麦青贮可以替代部分玉米青贮而对其生产性能无显著影响。

有研究表明,用玉米青贮或小麦青贮替代牧草青贮,奶牛干物质采食量增加,但对产奶量无显著影响[53-54]。通常当奶牛饲喂高淀粉和高纤维饲粮时,干物质采食量的增加常常伴随着产奶量的增加[55-56],然而饲喂玉米青贮、小麦青贮或牧草青贮时,奶牛产奶量无显著变化,可能是由于玉米青贮和小麦青贮中淀粉含量增加,可导致瘤胃pH降低,丙酸产量增加,不利于纤维分解菌生长,从而降低NDF和ADF的消化率[54, 57]。与玉米青贮和牧草青贮相比,小麦青贮的单位干物质甲烷(CH4)排放量最低[54]。但也有研究表明,用玉米青贮或小麦青贮替代牧草青贮,奶牛的干物质采食量无显著变化[58-59]

在以小麦青贮替代小麦短干草时,易导致瘤胃pH下降,增加奶牛患亚急性瘤胃酸中毒(SARA)的风险;干物质采食量无显著差异,干物质和NDF表观消化率相似;小麦青贮组瘤胃液体外培养的甲烷产量低于小麦干草组,且饲喂前1 h的甲烷产量显著高于饲喂后6 h[60]。也有研究表明,当奶牛饲喂小麦青贮TMR与小麦干草TMR时,奶牛瘤胃pH及NDF表观消化率无显著差异,但小麦青贮组奶牛的干物质消化率显著高于小麦干草组,并且饲喂小麦青贮能够显著提高奶牛的产奶量、4%FCM和ECM[7]。另外,Bikel等[61]比较了小麦青贮与大麦青贮的营养价值,结果表明,相同条件下,小麦的干物质生物产量比大麦低19%,但二者营养成分含量及青贮TMR的体外消化率无显著差异;饲喂小麦青贮TMR的奶牛干物质采食量高于饲喂大麦青贮TMR的奶牛,但小麦青贮组奶牛的采食时间较短,且体内消化率较低,这可能与大麦NDF含量较高致使瘤胃反刍时间增加有关,反刍时间越长,体内干物质消化率越高,生产效率越高;另外,小麦青贮组奶牛的泌乳性能以及乳脂量要低于大麦青贮组,这可能与小麦青贮组奶牛瘤胃pH较低有关,pH较低(低于6.0)会对瘤胃中的微生物活性产生负面影响[62],瘤胃中乙酸的生成量会减少,随之乳腺中的脂肪酸合成量也会降低[63]。因此,在今后生产中,采用小麦、大麦混合青贮方式是否会提高奶牛的干物质采食量,同时改善瘤胃发酵状况,降低奶牛患SARA的风险,提高小麦青贮的饲料利用率,还有待进一步研究。

4 小结

众多研究表明,小麦青贮可替代部分玉米青贮用于奶牛生产中,其营养价值及发酵品质与生育期密切相关,不同生育期小麦青贮的养分消化率及可利用率不同,各有优劣。奶牛不同生理阶段的营养需求不同,那么能否针对其营养需求特点,结合各生育期小麦青贮的营养特性,制作高利用率的TMR,还有待进一步研究。探究小麦青贮营养利用的限制性因子,以及寻找更适于青贮的小麦品种,提高小麦青贮单产,降低成本,是小麦青贮推广应用亟待解决的问题。

参考文献
[1]
FAO. Food outlook biannual report on global food markets[EB/OL]. [2020-10-01]. http://www.fao.org/3/a-i5003e.pdf.
[2]
李春江, 徐赵红, 施清平, 等. 冬闲田种植3种小麦的产量营养价值及青贮效果[J]. 中国农业科学, 2016, 49(2): 399-406.
LI C J, XU Z H, SHI Q P, et al. The yield, nutritional value and silage quality of three wheat varieties planted on the winter fallow field[J]. Scientia Agricultura Sinica, 2016, 49(2): 399-406 (in Chinese). DOI:10.3864/j.issn.0578-1752.2016.02.020
[3]
刘世杰, 刘国华, 蔡辉益, 等. 饲用小麦在家禽日粮中的应用[J]. 饲料研究, 2009(7): 19-22.
LIU S J, LIU G H, CAI H Y, et al. Application of feeding wheat in poultry diet[J]. Feed Research, 2009(7): 19-22 (in Chinese).
[4]
WEINBERG Z G, KHANAL P, YILDIZ C, et al. Effects of stage of maturity at harvest, wilting and LAB inoculant on aerobic stability of wheat silages[J]. Animal Feed Science and Technology, 2010, 158(1/2): 29-35.
[5]
CHEN Y, WEINBERG Z G. Changes during aerobic exposure of wheat silages[J]. Animal Feed Science and Technology, 2009, 154(1/2): 76-82.
[6]
SHAANI Y, NIKBACHAT M, YOSEF E, et al. Effect of feeding long or short wheat hay v. wheat silage in the ration of lactating cows on intake, milk production and digestibility[J]. Animal, 2017, 11(12): 2203-2210. DOI:10.1017/S1751731117001100
[7]
WALSH K, O'KIELY P, MOLONEY A P, et al. Intake, performance and carcass characteristics of beef cattle offered diets based on whole-crop wheat or forage maize relative to grass silage or ad libitum concentrates[J]. Livestock Science, 2008, 116(1/2/3): 223-236.
[8]
RANDBY Å T, NADEAU E, KARLSSON L, et al. Effect of maturity stage at harvest and kernel processing of whole crop wheat silage on digestibility by dairy cows[J]. Animal Feed Science and Technology, 2019, 253: 141-152. DOI:10.1016/j.anifeedsci.2019.04.016
[9]
ADAMSON A H, REEVE A. Nutritional evaluation of whole-crop wheat[M]//STARK B A, WILKINSON J M. Whole-crop cereals. Aberystwyth, UK: Chalcombe Publications, 1992: 85-96.
[10]
HARPER M T, OH J, GIALLONGO F, et al. Inclusion of wheat and triticale silage in the diet of lactating dairy cows[J]. Journal of Dairy Science, 2017, 100(8): 6151-6163. DOI:10.3168/jds.2017-12553
[11]
NADEAU E. Effects of plant species, stage of maturity and additive on the feeding value of whole-crop cereal silage[J]. Journal of the Science of Food and Agriculture, 2007, 87(5): 789-801. DOI:10.1002/jsfa.2773
[12]
JAAKKOLA S, SAARISALO E, HEIKKILÄ T. Formic acid treated whole crop barley and wheat silages in dairy cow diets: effects of crop maturity, proportion in the diet, and level and type of concentrate supplementation[J]. Agricultural and Food Science, 2009, 18(3/4): 234-256.
[13]
XIE Z L, ZHANG T F, CHEN X Z, et al. Effects of maturity stages on the nutritive composition and silage quality of whole crop wheat[J]. Asian-Australasian Journal of Animal Sciences, 2012, 25(10): 1374-1380. DOI:10.5713/ajas.2012.12084
[14]
THROOP H L. Nitrogen deposition and herbivory affect biomass production and allocation in an annual plant[J]. Oikos, 2005, 111(1): 91-100. DOI:10.1111/j.0030-1299.2005.14026.x
[15]
秦梦臻, 沈益新. 生育期对小麦全株青贮发酵品质的影响[J]. 中国农业科学, 2012, 45(8): 1661-1666.
QIN M Z, SHEN Y X. Effects of maturity stage on fermentation quality of whole crop wheat silage[J]. Scientia Agricultura Sinica, 2012, 45(8): 1661-1666 (in Chinese). DOI:10.3864/j.issn.0578-1752.2012.08.023
[16]
王金新. 全株小麦生产加工利用技术研究[D]. 硕士学位论文. 泰安: 山东农业大学, 2016: 17-18.
WANG J X. Study on the production and processing utilization technology of whole crop wheat[D]. Master's Thesis. Tai'an: Shandong Agricultural University, 2016: 17-18. (in Chinese)
[17]
ASHBELL G, WEINBERG Z G, BRUCKENTAL I, et al. Wheat silage: effect of cultivar and stage of maturity on yield and degradability in situ[J]. Journal of Agricultural and Food Chemistry, 1997, 45(3): 709-712. DOI:10.1021/jf960336l
[18]
徐赵红. 冬闲田小麦的种植与全株饲用价值研究[D]. 硕士学位论文. 广州: 华南农业大学, 2016: 15-18.
XU Z H. Study on planting management and feeding value of whole-crop silage[D]. Master's Thesis. Guangzhou: South China Agricultural University, 2016: 15-18. (in Chinese)
[19]
申瑞瑞, 李秋凤, 李运起, 等. 不同添加剂对薯渣与玉米秸秆混贮饲料发酵品质及牛瘤胃降解率的影响[J]. 草业学报, 2018, 27(11): 200-208.
SHEN R R, LI Q F, LI Y Q, et al. Effect of additives on fermentation quality and cattle rumen degradability of mixed potato pulp and corn straw silage[J]. Acta Prataculturae Sinica, 2018, 27(11): 200-208 (in Chinese). DOI:10.11686/cyxb2017510
[20]
LIU L L, JI H T, AN J P, et al. Response of biomass accumulation in wheat to low-temperature stress at jointing and booting stages[J]. Environmental and Experimental Botany, 2019, 157: 46-57. DOI:10.1016/j.envexpbot.2018.09.026
[21]
FILYA I. Nutritive value of whole crop wheat silage harvested at three stages of maturity[J]. Animal Feed Science and Technology, 2003, 103(1/2/3/4): 85-95.
[22]
万里强, 李向林, 张新平, 等. 苜蓿含水量与添加剂组分浓度对青贮效果的影响研究[J]. 草业学报, 2007, 16(2): 40-45.
WAN L Q, LI X L, ZHANG X P, et al. The effect of different water contents and additive mixtures on Medicago sativa silage[J]. Acta Prataculturae Sinica, 2007, 16(2): 40-45 (in Chinese). DOI:10.3321/j.issn:1004-5759.2007.02.006
[23]
MEESKE R, BASSON H M, CRUYWAGEN C W. The effect of a lactic acid bacterial inoculant with enzymes on the fermentation dynamics, intake and digestibility of Digitaria eriantha silage[J]. Animal Feed Science and Technology, 1999, 81(3/4): 237-248.
[24]
GISMERVIK K, RANDBY Å T, R∅RVIK L M, et al. Effect of invasive slug populations (Arion vulgaris) on grass silage.Ⅱ: microbiological quality and feed safety[J]. Animal Feed Science and Technology, 2015, 199: 20-28. DOI:10.1016/j.anifeedsci.2014.09.024
[25]
SINCLAIR L A, WILKINSON R G, FERGUSON D M R. Effects of crop maturity and cutting height on the nutritive value of fermented whole crop wheat and milk production in dairy cows[J]. Livestock Production Science, 2003, 81(2/3): 257-269.
[26]
SINCLAIR L A, BOND A J, HUNTINGTON J A, et al. Effect of rate of substitution of processed, urea-treated whole-crop wheat for grass silage on the intake, milk production and diet digestibility in dairy cows and ruminal metabolism in vitro[J]. Animal, 2007, 1(4): 601-611. DOI:10.1017/S1751731107689757
[27]
ARIELI A, ADIN G. Effect of wheat silage maturity on digestion and milk yield in dairy cows[J]. Journal of Dairy Science, 1994, 77(1): 237-243. DOI:10.3168/jds.S0022-0302(94)76946-0
[28]
WEINBERG Z G, ASHBELL G, AZRIELI A, et al. Ensiling peas, ryegrass and wheat with additives of lactic acid bacteria (LAB) and cell wall degrading enzymes[J]. Grass and Forage Science, 1993, 48(1): 70-78. DOI:10.1111/j.1365-2494.1993.tb01838.x
[29]
RUSTAS B O, BERTILSSON J, MARTINSSON K, et al. Intake and digestion of whole-crop barley and wheat silages by dairy heifers[J]. Journal of Animal Science, 2011, 89(12): 4134-4141. DOI:10.2527/jas.2010-3585
[30]
KUNG L, J r, RANJIT N K. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage[J]. Journal of Dairy Science, 2001, 84(5): 1149-1155. DOI:10.3168/jds.S0022-0302(01)74575-4
[31]
ASHBELL G, WEINBERG Z G, HEN Y, et al. The effects of temperature on the aerobic stability of wheat and corn silages[J]. Journal of Industrial Microbiology and Biotechnology, 2002, 28(5): 261-263. DOI:10.1038/sj.jim.7000237
[32]
WEINBERG Z G, MUCK R E, WEIMER P J. The survival of silage inoculant lactic acid bacteria in rumen fluid[J]. Journal of Applied Microbiology, 2003, 94(6): 1066-1071. DOI:10.1046/j.1365-2672.2003.01942.x
[33]
OLIVEIRA M R, BUENO A V I, LEÃO G F M, et al. Nutritional composition and aerobic stability of wheat and corn silages stored under different environmental conditions[J]. Semina: Ciências Agrárias, 2018, 39(1): 253-260. DOI:10.5433/1679-0359.2018v39n1p253
[34]
MUCK R. Recent advances in silage microbiology[J]. Agricultural and Food Science, 2013, 22(1): 3-15. DOI:10.23986/afsci.6718
[35]
ADDAH W, BAAH J, GROENEWEGEN P, et al. Comparison of the fermentation characteristics, aerobic stability and nutritive value of barley and corn silages ensiled with or without a mixed bacterial inoculant[J]. Canadian Journal of Animal Science, 2011, 91(1): 133-146. DOI:10.4141/CJAS10071
[36]
ADDAH W, BAAH J, OKINE E K, et al. A third-generation esterase inoculant alters fermentation pattern and improves aerobic stability of barley silage and the efficiency of body weight gain of growing feedlot cattle[J]. Journal of Animal Science, 2012, 90(5): 1541-1552. DOI:10.2527/jas.2011-4085
[37]
KRISTENSEN N B, SLOTH K H, HOJBERG O, et al. Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions[J]. Journal of Dairy Science, 2010, 93(8): 3764-3774. DOI:10.3168/jds.2010-3136
[38]
BEN-MEIR Y A, JAMI E, PORTNIK Y, et al. Effect of silage inoculants on the quality of baled whole-crop wheat silages and milking cow performance[J]. Grassland Science, 2018, 6(3): 207-214.
[39]
HAN H, OGATA Y, YAMAMOTO Y, et al. Identification of lactic acid bacteria in the rumen and feces of dairy cows fed total mixed ration silage to assess the survival of silage bacteria in the gut[J]. Journal of Dairy Science, 2014, 97(9): 5754-5762. DOI:10.3168/jds.2014-7968
[40]
OLIVEIRA M R, JOBIM C C, NEUMANN M, et al. Effects of inoculation with homolactic bacteria on the conservation of wheat silage stored in bunker-silos[J]. Italian Journal of Animal Science, 2018, 17(1): 81-86. DOI:10.1080/1828051X.2017.1345664
[41]
FILYA I, SUCU E. Effect of a chemical preservative on fermentation, aerobic stability and nutritive value of whole-crop wheat silage[J]. Journal of Applied Animal Research, 2007, 32(2): 133-138. DOI:10.1080/09712119.2007.9706863
[42]
陈勇, 刘月, 吴鑫, 等. 甲酸在青贮饲料中的应用研究[J]. 现代畜牧兽医, 2018(1): 15-19.
CHEN Y, LIU Y, WU X, et al. Application of formic acid in silage[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2018(1): 15-19 (in Chinese).
[43]
李悦铭, 陈勇, 孟庆翔, 等. 不同浓度甲酸丙酸混合添加剂对全株小麦青贮品质的影响[J]. 中国畜牧杂志, 2019, 55(8): 77-84.
LI Y M, CHEN Y, MENG Q X, et al. Effect of adding different concentrations of the mixture of formic acid and propionic acid on silage quality of whole wheat[J]. Science and Technology, 2019, 55(8): 77-84 (in Chinese).
[44]
KÖNIG W, KÖNIG E, WEISS K, et al. Impact of hexamine addition to a nitrite-based additive on fermentation quality, Clostridia and Saccharomyces cerevisiae in a white lupin-wheat silage[J]. Journal of the Science of Food and Agriculture, 2019, 99(4): 1492-1500. DOI:10.1002/jsfa.9322
[45]
ARICAN G, DURU A A. The effect of black seed oil (Nigella sativa) on in vitro digestibility, chemical and fermentation characteristics of Hungarian vetch-wheat silage[J]. Pakistan Journal of Botany, 2020, 52(2): 723-727.
[46]
CAREY P L, CAMERON K C, DI H J, et al. Sowing a winter catch crop can reduce nitrate leaching losses from winter-applied urine under simulated forage grazing: a lysimeter study[J]. Soil Use and Management, 2016, 32(3): 329-337. DOI:10.1111/sum.12276
[47]
HASSANAT F, GERVAIS R, JULIEN C, et al. Replacing alfalfa silage with corn silage in dairy cow diets: effects on enteric methane production, ruminal fermentation, digestion, N balance, and milk production[J]. Journal of Dairy Science, 2013, 96(7): 4553-4567. DOI:10.3168/jds.2012-6480
[48]
TURAN N. Determining the chemical composition and nutrition quality of Hungarian vetch silage (Vicia pannonica Crantz) mixed with wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) at different rates[J]. Applied Ecology and Environmental Research, 2020, 18(2): 2795-2806. DOI:10.15666/aeer/1802_27952806
[49]
SINCLAIR L A, JACKSON M A, HUNTINGTON J A, et al. The effects of processed, urea-treated whole-crop wheat or maize silage and supplementation of whole-crop wheat on the performance of dairy cows[J]. Livestock Production Science, 2005, 95(1/2): 1-10.
[50]
RICO D E, HARVATINE K J. Induction of and recovery from milk fat depression occurs progressively in dairy cows switched between diets that differ in fiber and oil concentration[J]. Journal of Dairy Science, 2013, 96(10): 6621-6630. DOI:10.3168/jds.2013-6820
[51]
HARVATINE K J, BOISCLAIR Y R, BAUMAN D E. Recent advances in the regulation of milk fat synthesis[J]. Animal, 2009, 3(1): 40-54. DOI:10.1017/S1751731108003133
[52]
袁文焕, 张天琦, 张振强. 饲喂小麦秸秆和小麦青贮对泌乳奶牛采食量、产奶性能和消化率的影响[J]. 中国饲料, 2018(6): 61-64.
YUAN W H, ZHANG T Q, ZHANG Z Q. Effect of wheat hay and wheat silage on feed intake, milk performance and digestibility of lactating dairy cows[J]. China Feed, 2018(6): 61-64 (in Chinese).
[53]
HAMELEERS A. The effects of the inclusion of either maize silage, fermented whole crop wheat or urea-treated whole crop wheat in a diet based on a high-quality grass silage on the performance of dairy cows[J]. Grass and Forage Science, 1998, 53(2): 157-163. DOI:10.1046/j.1365-2494.1998.5320157.x
[54]
GVNAL M, MCCOURT A, ZHAO Y, et al. The effect of silage type on animal performance, energy utilisation and enteric methane emission in lactating dairy cows[J]. Animal Production Science, 2019, 59(3): 499-505. DOI:10.1071/AN16435
[55]
KLIEM K E, MORGAN R, HUMPHRIES D J, et al. Effect of replacing grass silage with maize silage in the diet on bovine milk fatty acid composition[J]. Animal, 2008, 2(12): 1850-1858. DOI:10.1017/S1751731108003078
[56]
BENCHAAR C, HASSANAT F, GERVAIS R, et al. Methane production, digestion, ruminal fermentation, nitrogen balance, and milk production of cows fed corn silage- or barley silage-based diets[J]. Journal of Dairy Science, 2014, 97(2): 961-974. DOI:10.3168/jds.2013-7122
[57]
FERRARETTO L F, CRUMP P M, SHAVER R D. Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a meta-analysis[J]. Journal of Dairy Science, 2013, 96(1): 533-550. DOI:10.3168/jds.2012-5932
[58]
FONSECA A J M, CABRITA A R J, NOGUEIRA C S S, et al. Lactation responses of dairy cows to whole-crop wheat or ryegrass silages[J]. Animal Feed Science and Technology, 2005, 118(1/2): 153-160.
[59]
BRASK M, LUND P, HELLWING A L F, et al. Enteric methane production, digestibility and rumen fermentation in dairy cows fed different forages with and without rapeseed fat supplementation[J]. Animal Feed Science and Technology, 2013, 184(1/2/3/4): 67-79.
[60]
SHAANI Y, NIKBACHAT M, YOSEF E, et al. Effect of wheat hay particle size and replacement of wheat hay with wheat silage on rumen pH, rumination and digestibility in ruminally cannulated non-lactating cows[J]. Animal, 2017, 11(3): 426-435. DOI:10.1017/S1751731116001865
[61]
BIKEL D, BEN-MEIR Y A, SHAANI Y, et al. Nutritive value for high-yielding lactating cows of barley silage and hay as a substitute for wheat silage and hay in low-roughage diets[J]. Animal Feed Science and Technology, 2020, 265: 114498. DOI:10.1016/j.anifeedsci.2020.114498
[62]
PLAIZIER J C, KRAUSE D O, GOZHO G N, et al. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences[J]. The Veterinary Journal, 2008, 176(1): 21-31. DOI:10.1016/j.tvjl.2007.12.016
[63]
BAUMAN D E, GRIINARI J M. Nutritional regulation of milk fat synthesis[J]. Annual Review of Nutrition, 2003, 23: 203-227. DOI:10.1146/annurev.nutr.23.011702.073408