动物营养学报    2021, Vol. 33 Issue (5): 2504-2514    PDF    
玉米淀粉湿法加工副产物在畜禽生产上的应用研究进展
杨明 , 龙沈飞 , 贺腾飞 , 朴香淑     
中国农业大学动物科学技术学院, 动物营养学国家重点实验室, 北京 100193
摘要: 玉米淀粉湿法加工副产物是玉米采用湿磨工艺生产淀粉过程中多种副产物的合称,在猪、家禽及反刍动物等畜禽生产上具有应用潜力。本文根据多种玉米淀粉湿法加工副产物的营养成分及其应用,综合探讨了玉米淀粉湿法加工副产物的研究现状,为其在畜禽生产中的进一步研究、开发和应用提供理论依据。
关键词: 玉米    淀粉    湿法    副产物    畜禽    应用研究    
Research Progress on Application of Corn Starch Wet Processing By-Products in Livestock and Poultry Production
YANG Ming , LONG Shenfei , HE Tengfei , PIAO Xiangshu     
State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
Abstract: Corn starch wet processing by-products is a kind of by-products in the process of corn starch production by wet grinding technology, which has potential application in pig, poultry and ruminant animal production. In this paper, according to the nutritional composition and application of many kinds of corn starch wet processing by-products, the research status of corn starch wet processing by-products was comprehensively discussed, which provided theoretical basis for further research, development and application in livestock and poultry production.
Key words: corn    starch    wet process    by-product    livestock and poultry    application research    

目前,随着中国畜牧生产的不断发展,人畜争粮问题日益显著,导致饲料原料供应紧缺,养殖成本提高。研究表明,70%的农业产品应用于畜禽饲料,而总的农业产品中副产品比例高达30%[1],这些副产品营养物质含量丰富,可通过直接利用和微生物发酵等方式转化为饲用产品。因此,农工业副产品作为畜禽非常规饲料原料的开发可使饲料资源得到充分利用,进而丰富饲料原料来源,提高附加值,降低养殖成本,减少原料浪费,对种植业及畜牧业均有积极意义。

玉米是重要的能量饲料,由种皮、胚乳、胚、尖端等4个部分组成,其营养成分为16.0%水分、61.0%淀粉、3.8%玉米油、8.0%蛋白质和11.2%纤维[2],在饲料配方中占比60%左右[3]。尽管我国是世界上第二大玉米生产国,2020—2021年度玉米产量预估有2.6亿t[4],但是我国玉米生产成本较高,产业链不完善,深加工产业较美国等发达国家有一定差距,而且玉米加工副产物的综合利用效率较低,造成了资源浪费[5-6]。玉米加工的主要产物是玉米淀粉和乙醇,其中玉米淀粉可通过干法和湿法2种工艺生产,湿法工艺能够减少淀粉杂质,提高淀粉纯度,便于玉米副产物回收[7]。玉米淀粉湿法加工副产物包含玉米皮、玉米蛋白粉、玉米胚芽粕、玉米浆等,均含有大量的纤维素、蛋白质、脂肪和维生素等营养物质,在畜禽生产中具有广阔应用前景。本文综述了玉米淀粉湿法加工副产物的种类、营养特性及其在畜禽生产中的应用,为玉米淀粉湿法加工副产物的应用与研究提供参考依据。

1 玉米淀粉湿法加工副产物的种类和营养特性

玉米淀粉湿法加工副产物是玉米通过湿法工艺生产玉米淀粉时的副产物,主要包括玉米皮、喷浆玉米皮、玉米浆、玉米蛋白粉、玉米胚芽粕、玉米蛋白饲料和玉米纤维饲料等[8]。玉米淀粉湿法加工副产物营养物质含量因原料种类、加工工艺及来源等影响,在畜禽饲料中的添加比例并不统一,以下就各类玉米淀粉湿法加工副产物进行阐述。

1.1 玉米皮与喷浆玉米皮

玉米皮是玉米湿法生产淀粉过程中,经净化、浸泡、脱胚、清洗、烘干等步骤生产出来的以玉米表皮为主的副产物,占玉米干物质总量的10%~14%[9]。玉米皮主要由纤维素、半纤维素、木质素、蛋白质、淀粉等营养成分组成,其中玉米皮纤维为木质纤维,是一种复合有机结构[10],其木质素覆盖着纤维素和半纤维素,不易被利用[11]。喷浆玉米皮则是玉米浆喷洒在玉米皮上经干燥后制成[12],其蛋白质、能量和消化率高于玉米皮,在动物饲料中应用广泛。研究表明,玉米皮[13-15]和喷浆玉米皮[12, 15-22]的营养物质含量因原料、加工工艺等而不同,其营养成分及含量如表 1所示。

表 1 玉米淀粉湿法加工副产物营养成分及含量(干物质基础) Table 1 Nutritional composition and contents of corn starch wet processing by-products (DM basis)  
1.2 玉米浆

玉米浆是玉米经亚硫酸溶液浸泡后产生的玉米浸渍液蒸发浓缩而成的副产物[23]。玉米浸泡过程中,营养物质经种皮渗透到玉米浆,使其富含蛋白质、多肽、氨基酸、糖类、维生素和矿物质等可溶性营养物质,纤维素和半纤维素等非淀粉多糖含量较低,有较高的营养价值,是重要的有机氮源[24-25]。玉米浆产量较大,价格低廉,1 t玉米原料可生产0.8 t玉米浆,干物质含量为6%~8%,具有较高的利用价值[26]。研究表明,玉米浆经浓缩后,其干物质含量可达到30.0%~52.5%,粗蛋白质含量可达到16.0%~33.5%,碳水化合物含量可达到13%~22%[27-30]

1.3 玉米蛋白粉

玉米蛋白粉是经蛋白分离工序生产的玉米原料去除外皮、胚芽、纤维、淀粉后所产生的高蛋白玉米副产物[31]。玉米蛋白粉的纤维和抗营养因子含量较低,但粗蛋白质含量在60%以上,蛋白质组成中约65%为醇溶蛋白,30%为谷蛋白,醇溶蛋白不溶于水,谷蛋白疏水性强,难被畜禽利用[32-33]。此外,玉米蛋白粉氨基酸组成不平衡,蛋氨酸、谷氨酸等含量较高,缺乏赖氨酸、组氨酸、色氨酸等必需氨基酸[31]。研究表明,玉米蛋白粉的营养水平类似于其他玉米加工副产品受到品种、加工工艺等影响[34-38],其营养成分及含量见表 1

1.4 玉米胚芽粕

玉米胚芽粕是玉米经胚芽分离,从玉米胚芽中提取玉米油后的副产物,其粗脂肪含量低于3%[39]。玉米胚芽粕含有玉米胚芽中除油脂外多种营养物质,通常在畜禽饲料中作为能量饲料[40]。玉米胚芽粕富含多不饱和脂肪酸、蛋白质和纤维,粗蛋白质含量可达30.5%,中性洗涤纤维含量可达58.28%,其中蛋白质由30%球蛋白、30%白蛋白和20%谷蛋白组成,生物学价值较高,但其氨基酸含量不平衡,赖氨酸、蛋氨酸和色氨酸等含量较低[40-43]。玉米胚芽粕[37, 39-40, 42-46]营养成分及含量见表 1

1.5 玉米蛋白饲料

玉米蛋白饲料是玉米去掉胚芽和淀粉后的混合副产物,主要由玉米皮、玉米浆和玉米胚芽粕等玉米加工副产物混合而成[47]。玉米淀粉湿法加工可生产17%~20%的玉米蛋白饲料[48],以湿或干玉米蛋白饲料形式存在,分别含有40%~45%或10%干物质[47, 49]。玉米蛋白饲料的粗蛋白质含量可达23.8%[47],其中瘤胃可降解蛋白含量较高,瘤胃降解率达86.27%[50],且含有35.5%~50.0%中性洗涤纤维[47, 49],易于反刍动物消化[51]。研究表明,玉米蛋白饲料的淀粉和油脂含量较低,缺乏赖氨酸和蛋氨酸等必需氨基酸,但补充齐全时,对奶牛的产奶量和奶品质无影响[52]。玉米蛋白饲料[44, 46, 49, 53-56]的营养成分及含量见表 1

1.6 玉米纤维饲料

玉米纤维饲料是玉米浆与玉米皮以一定比例混合而成的玉米副产物,富含玉米纤维和蛋白质[49, 57],分为干、湿2种类型,湿玉米纤维饲料经浓缩后成为干玉米纤维饲料,价格低廉,是反刍动物优质的能量饲料[58]。玉米纤维是玉米经浸泡后研磨分离出来的外层纤维层[59],由玉米种皮和10%~25%的黏附淀粉组成[60],半纤维素和纤维素含量分别为40%~50%和15%~25%,同时含有部分蛋白质、酚类化合物和油脂等[61]。玉米纤维除了作为动物饲料外,也可作为乙醇、膳食纤维、半纤维素、油脂等物质原料来源[62]。干玉米纤维饲料[57]和湿玉米纤维饲料[58]的营养含量见表 1

2 玉米淀粉湿法加工副产物在畜禽生产的应用 2.1 玉米皮在畜禽生产中的应用

玉米皮由于能量和蛋白质含量较低,纤维素和半纤维素含量较高,不易被利用,但是通过青贮、发酵、添加酶制剂等处理后,能够提高其利用率,降低饲养成本。

玉米皮与纤维素酶等酶类联合使用时,能降低玉米皮高纤维含量的不利影响,提高利用率。Owosibo等[63]在肉鸡饲粮中加入0.02%复合酶(含纤维素酶、葡聚糖酶、木聚糖酶、植酸酶),可以将玉米皮的添加比例提高到20%,进而提高玉米皮利用率。研究表明,断奶仔猪饲粮中添加5%玉米皮,可减少断奶后的炎症反应,增加肠道微生物多样性,促进肠道健康[64]。此外,玉米皮与益生菌添加剂等联合使用,能提高玉米皮的利用价值。在育肥猪饲粮中分别添加10%玉米皮和经枯草芽孢杆菌发酵后的玉米皮,均不影响育肥猪生长性能[65]。Montejo-Sierra等[66]在断奶仔猪及育肥猪饲粮中分别添加0.5、3.0 kg/d玉米皮,以及25、50 mL/d益生菌添加剂,提高了断奶仔猪及育肥猪的平均日增重。综上所述,断奶仔猪和育肥猪饲粮中添加5%~10%玉米皮,对生长性能无不良影响。玉米皮可作为青贮饲料的原料,可以提高反刍动物的生长性能,减少对常规饲料的依赖。Maneerat等[67]研究发现,以玉米皮为原料的青贮饲料饲喂育肥肉牛时,其平均日增重增加5.26%,饲料转化效率提高34.91%。

2.2 玉米浆在畜禽生产中的应用

玉米浆中粗蛋白质含量和能值较高,纤维含量较低,既可直接利用,也可经酶解、发酵后利用,效果显著[15]。然而,经亚硫酸浸泡后的玉米浆中含有亚硫酸盐,使用中需脱硫或避免长期饲用。玉米浆作为肉鸡饲粮可改善其生长性能及营养物质消化率。Ullah等[68]在饲粮中添加10%含水量为42%的玉米浆饲喂肉仔鸡,其平均日增重、饲料转化效率和营养物质消化率得到提高。此外,水犊牛饲粮中添加10%玉米浆能够改善其生长性能,提高生产效益。添加10%玉米浆饲喂尼里拉菲水犊牛,结果表明干物质采食量和宰前热胴体重最高,中、酸性洗涤纤维消化率显著高于对照组[69]。玉米浆经过酶解处理后可制成酶解蛋白饲料,提高生长性能和健康水平。徐君等[70]用10%玉米浆酶解蛋白饲料饲喂肉兔,平均日增重提高2.29%,且血清中总蛋白和白蛋白含量也显著提高。De Freitas等[71]用不同比例玉米浆替代豆粕,结果表明不影响羔羊干物质摄入量和平均日增重,但替代比例每增加1%,粗蛋白质摄入量减少0.2 g/d,表观消化率降低1.41%。莫哈尼羔羊表现为同样的结果,随着玉米浆添加比例的提高,生长性能、营养物质摄入量和消化率有下降趋势,瘤胃纤维分解微生物酶活性降低[72]。Chegini等[73]用低质量粗饲料小麦秸秆饲喂生长羔羊,配合豆粕使用与单纯玉米浆相比具有较好的生长性能,棉籽粕最差。以上研究表明,玉米浆饲喂效果不及豆粕等常规原料,但不会引起生长性能的显著变化,并且在粗饲料较为低劣的情况下要优于棉籽粕。

2.3 玉米蛋白粉在畜禽生产中的应用

玉米蛋白粉在玉米淀粉湿法加工副产物中属于蛋白质含量较高的一种,具有玉米黄素等天然色素,在肉鸡饲粮中应用较多。近年来玉米蛋白粉在肉鸡、肉牛和奶牛饲粮中应用研究较多,在猪生产中研究较少。与传统工艺相比,目前玉米蛋白粉多经发酵工艺处理,产生可溶性小肽,使其在畜禽饲料中的利用率得到提高[74]

玉米蛋白粉与酶制剂同时使用能够提高雏鸡的生长性能。Afrouzi等[75]在肉鸡饲粮中添加2%经过蛋白酶处理的玉米蛋白粉,结果显示肉鸡生长性能有提高趋势。在雏鸡玉米-玉米蛋白粉(20.1%)饲粮中添加200 mg/kg蛋白酶,结果表明可改善肠道菌群和肠道完整性,并且降低饲料成本和改善环境质量[76]。此外,玉米蛋白粉经发酵后,营养水平提高,抗营养因子减少,有较好的饲喂效果,在三黄肉鸡饲粮中添加10%发酵玉米蛋白粉可改善肉鸡平均日增重、器官指数及肠道形态[77]。玉米蛋白粉的赖氨酸含量较低是限制其在猪饲粮中使用的主要因素,实际应用需补充适量赖氨酸。刘燕强[78]在生长育肥猪饲粮中添加5%玉米蛋白粉,同时补充适量赖氨酸,结果显示育肥猪生长性能与不添加玉米蛋白粉组无显著差异。玉米蛋白粉可直接应用于奶牛和肉牛饲粮,能降低饲料成本,提高生产性能。Imran等[79]用20.7%玉米蛋白粉替代饲粮中的大豆粉,结果显示不影响荷斯坦奶牛产奶量和乳成分。在沙希瓦犊牛饲粮中用75%玉米蛋白粉等氮替代花生饼,可改善其生长速度和终末体重[80]。此外,玉米蛋白粉经过发酵后,饲喂效果较好,是玉米蛋白粉重要的利用趋势。Jiang等[81-82]在断奶前和断奶后荷斯坦犊牛饲粮中添加5%发酵玉米蛋白粉,结果显示可改善其生长性能、抗氧化和免疫功能,并且能够促进瘤胃发育,增加瘤胃细菌群落的多样性。

2.4 玉米胚芽粕在畜禽生产中的应用

玉米胚芽粕适口性较好,富含可消化氨基酸和半纤维素,既可作为单胃动物蛋白质饲料,也可作为反刍动物蛋白质、能量饲料[83]。玉米胚芽粕营养成分和含量因玉米种类、加工工艺等变化,不同玉米胚芽粕有效能差异较大[84]

玉米胚芽粕在家禽生产中可作为有色肉鸡和蛋鸡饲粮。Lakshmi等[85-86]研究表明,有色肉鸡饲粮中添加玉米胚芽粕,会显著降低干物质、有机物的消化代谢率,但0~25%添加水平均不影响有色肉鸡胴体性能,额外添加0.05%植酸酶,对生长性能无显著影响。Hoan等[87]研究表明,蛋鸡饲粮中随着玉米胚芽粕添加比例的提高,蛋黄中Omega-3多不饱和脂肪酸含量增加,添加0.5%时饲喂效果最好。由于Omega-3多不饱和脂肪酸可以降低心血管疾病风险,对人体健康有益,可通过鸡蛋黄等食物获取,因此在蛋鸡饲粮中可添加适当比例玉米胚芽粕,改善蛋品质。此外,Harper[88]研究结果表明,生长肥育猪饲粮中添加20%玉米胚芽粕,对生长性能无负面影响。也有研究表明,使用玉米胚芽粕同时补充脂肪含量达到饲粮代谢能水平,可提高育肥猪饲料转化效率[89]。Kaur等[90]模拟瘤胃内环境,对玉米胚芽粕进行营养价值的体外评估,发现玉米胚芽粕每千克干物质代谢能比豆粕高18.6%,同时挥发性脂肪酸利用率较高,氨氮含量显著低于豆粕,甲烷产量低,是比较适合饲喂反刍动物的饲料原料。肉牛饲养中,玉米胚芽粕和酒糟具有相同的饲喂效果,在杂种肉母牛饲粮中添加24.5%玉米胚芽粕与22%干玉米酒糟具有相似的生长性能[91]。对于奶牛,玉米胚芽粕和其他饲料原料混合挤压成型可以提高干物质消化率,补充粗脂肪时总粗蛋白质消化率提高[92]

2.5 玉米蛋白饲料在家畜生产中的应用

玉米蛋白饲料的应用研究主要集中在反刍动物,在单胃动物饲料中的应用研究较少。奶牛生产中,玉米蛋白饲料能普遍提高奶牛的干物质采食量、产奶量以及改善乳成分[93]。Hao等[49]在泌乳奶牛饲粮中添加11%干玉米蛋白饲料,可替代部分苜蓿干草,干物质采食量、微生物蛋白产量、乳蛋白含量等均有提高。肉牛饲粮中添加24.5%玉米蛋白饲料,可显著提高肉品质,对生产性能无显著影响[94]。此外,玉米蛋白饲料对肉牛繁殖性能也有积极影响,Taylor等[95]在肉牛早期泌乳期间饲喂26.4%、52.8%玉米蛋白饲料,显著提高肉牛怀孕率。玉米蛋白饲料与大豆皮、青贮饲料等原料合理搭配,能改善生产性能,并且降低饲料成本。应用“大豆皮+24.5%玉米蛋白饲料”饲喂肉牛,饲料转化效率与对照组相似,每千克增重所消耗的饲料成本显著下降[96]。Anjum等[97]用18%玉米蛋白饲料配合玉米青贮饲料饲喂沙希瓦犊牛,饲喂效果均好于棉籽饼和菜籽饼。玉米蛋白饲料在羊上的应用前景较大,合理添加能够提高繁殖率,同时不影响生长性能。在冬季补充30%干玉米蛋白饲料,母羊平均日增重相似,但具有更高的受孕率和产羔率[98]。绵羊全株玉米青贮饲料中则可掺入高达40%的湿玉米蛋白饲料,提高营养物质的摄入量和消化率,并有利于玉米蛋白饲料的储存[99]。玉米蛋白饲料也可作为豆粕的经济替代品,Kim等[100]用玉米蛋白饲料100%替代豆粕作为波尔山羊的蛋白质源饲料,对生长性能没有显著影响,同时每千克饲料成本降低了0.28元。

许璇等[101]在猪饲粮中添加15%玉米蛋白饲料,生长性能显著提高,添加比例提高到30%时,生长性能、营养物质消化率都相对下降。因此,玉米蛋白饲料可在猪饲粮中添加15%~30%。

2.6 玉米纤维饲料及喷浆玉米皮在畜禽生产中的应用

玉米纤维饲料和喷浆玉米皮是用玉米淀粉湿法加工所生产的各种副产物人工组合而成的二次副产品,因生产工艺不同,营养价值也不同。郝小燕等[51]用干玉米纤维饲料做体外瘤胃发酵试验,添加比例为15%时,体外发酵产气量、挥发性脂肪酸产量较高,并且最大化地提高了发酵液中主要纤维分解菌的数量。但过高的玉米纤维饲料不利于生产性能的发挥,在高产奶牛饲粮中添加25%湿玉米纤维饲料降低了产奶量[102]。此外,湿玉米纤维饲料用酿酒酵母固态发酵,能增加可利用蛋白质和可利用纤维的含量,提高干物质、粗蛋白质等营养物质瘤胃降解率[103],提高玉米纤维饲料的饲用价值。舒维成[21]研究发现,喷浆玉米皮在樱桃谷肉鸭上的表观代谢能为6.36 MJ/kg,36~56日龄时,饲粮中可添加比例为20%。尹福泉等[104]研究发现,皇竹草与喷浆玉米皮以75 ∶ 25和50 ∶ 50组合,在山羊瘤胃液体外消化试验中表现较好,有机物、粗纤维、中性洗涤纤维降解率产生正组合效应。

3 小结

综合玉米淀粉湿法加工副产物的营养价值及在家禽、猪、反刍动物等畜禽生产上的应用研究,结果表明各种副产物在畜禽生产中有较好的应用效果和前景。然而,由于玉米淀粉湿法加工副产物本身纤维含量较高,粗蛋白质、能量等营养物质含量因原料种类及加工工艺不同差异较大,限制了其在部分单胃动物生产中的应用,一般在反刍动物生产中应用较多。目前,玉米淀粉湿法加工副产物通过微生物发酵以及与酶制剂、其他饲料原料进行合理配合使用,能够提高其饲用价值和应用范围。另外,玉米淀粉湿法加工副产物作为畜禽非常规饲料应用时,应注意动物所处的生理阶段,确定合适的添加比例,以达到较好的利用效果。玉米淀粉湿法加工副产物种类较多,不同种类的副产物其营养物质含量亦不相同,因此其在加工工艺、深层次加工技术及在畜禽各阶段的添加比例等方面有待进一步的研究,为玉米淀粉湿法加工副产物在畜禽生产中的应用提供理论依据。

致谢:

感谢中国农业大学动物科学技术学院尚庆辉博士、刘汉锁硕士对文稿所提的宝贵意见。

参考文献
[1]
AJILA C M, BRAR S K, VERMA M, et al. Bio-processing of agro-byproducts to animal feed[J]. Critical Reviews in Biotechnology, 2012, 32(4): 382-400. DOI:10.3109/07388551.2012.659172
[2]
DAVIS K. Corn milling, processing and generation of co-products[EB/OL]. https://www.biofuelscoproducts.umn.edu/sites/biodieselfeeds.cfans.umn.edu/files/cfans_asset_414251.pdf,2001-9-11.
[3]
刘安兵. 玉米产业生产现状与发展趋势分析[J]. 农民致富之友, 2017(23): 54-55.
LIU A B. Production status and development trend of corn industry[J]. Friends of farmers, 2017(23): 54-55 (in Chinese). DOI:10.3969/j.issn.1003-1650.2017.23.050
[4]
佚名. 2019/20年度全球粮食产量预计[J]. 养猪, 2020(4): 2.
Anon. Grain production forecast in 2019/20[J]. Swine Production, 2020(4): 2 (in Chinese).
[5]
葛欣然. 我国玉米产业发展现状及政策调整[J]. 新农业, 2017(20): 7-8.
GE X R. Development status and policy adjustment of maize industry in China[J]. New Agriculture, 2017(20): 7-8 (in Chinese).
[6]
刘瑶, 郭丽华. 玉米加工及产业化发展文献综述[J]. 北方经贸, 2019(8): 128-129.
LIU Y, GUO L H. Literature review of corn processing and industrialization[J]. Northern Economy and Trade, 2019(8): 128-129 (in Chinese).
[7]
柳景然, 刘金锐. 玉米加工淀粉技术浅论[J]. 现代畜牧科技, 2017(9): 56.
LIU J R, LIU J R. Discussion on corn starch processing technology[J]. Modern Animal Husbandry Science & Technology, 2017(9): 56 (in Chinese).
[8]
RAMIREZ E C, JOHNSTON D B, MCALOON A J, et al. Engineering process and cost model for a conventional corn wet milling facility[J]. Industrial Crops and Products, 2008, 27(1): 91-97. DOI:10.1016/j.indcrop.2007.08.002
[9]
赵玮, 周瑾琨, 王大为. 响应面试验优化固体酸催化剂催化玉米皮半纤维素水解工艺[J]. 食品科学, 2016, 37(16): 14-21.
ZHAO W, ZHOU J K, WANG D W. Optimization of hydrolysis conditions of corn bran hemicellulose by supported solid acid catalyst with response surface methodology[J]. Food Science, 2016, 37(16): 14-21 (in Chinese). DOI:10.7506/spkx1002-6630-201616003
[10]
YILMAZ N D. Effects of enzymatic treatments on the mechanical properties of corn husk fibers[J]. Journal of the Textile Institute, 2013, 104(4): 396-406. DOI:10.1080/00405000.2012.736707
[11]
CONDE-MEJÍA C, JIMÉNEZ-GUTIÉRREZ A, EL-HALWAGI M. A comparison of pretreatment methods for bioethanol production from lignocellulosic materials[J]. Process Safety and Environmental Protection, 2012, 90(3): 189-202. DOI:10.1016/j.psep.2011.08.004
[12]
武婷婷. 非常规饲料资源在肉牛育肥中的应用与典型日粮配方的研究[D]. 硕士学位论文. 南宁: 广西大学, 2018: 1-101.
WU T T. Application of unconwentional feed resources and study on typical dietary formula on beef cattle fattening[D]. Master's Thesis. Nanning: Guangxi University, 2018: 1-101. (in Chinese)
[13]
曾绘锦, 田刚, 鲁院院, 等. 玉米皮对生长肉兔的营养价值评定[J]. 动物营养学报, 2019, 31(8): 3674-3681.
ZENG H J, TIAN G, LU Y Y, et al. Nutritional value evaluation of corn bran for growing rabbits[J]. Chinese Journal of Animal Nutrition, 2019, 31(8): 3674-3681 (in Chinese).
[14]
MISTRY A H, ECKHOFF S R. Alkali debranning of corn to obtain corn bran[J]. Cereal Chemistry, 1992, 69(2): 202-205.
[15]
GUTIERREZ N A, SERÃO N V L, KERR B J, et al. Relationships among dietary fiber components and the digestibility of energy, dietary fiber, and amino acids and energy content of nine corn coproducts fed to growing pigs[J]. Journal of Animal Science, 2014, 92(10): 4505-4517. DOI:10.2527/jas.2013-7265
[16]
王红玉. 蛋鸡玉米加工副产物营养价值的评定[D]. 硕士学位论文. 雅安: 四川农业大学, 2016: 1-100.
WANG H Y. Evaluation of the nutritive value of corn coproduct for laying hens[D]. Master's Thesis. Ya'an: Sichuan Agricultural University, 2016: 1-100. (in Chinese)
[17]
吴浩浩, 郭战胜, 黄广燕, 等. 替代法评定玉米及其副产物对成年麒麟母鸡的营养价值[J]. 中国饲料, 2018(17): 32-26.
WU H H, GUO Z S, HUANG G Y, et al. Study on nutritional value of corn and its by-products for adult frizzle hens by substitution method[J]. China Feed, 2018(17): 32-26 (in Chinese).
[18]
尹福泉, 吴征敏, 王志敬, 等. 皇竹草和喷浆玉米皮混合对瘤胃发酵特性的影响[J]. 草业科学, 2018, 35(7): 1797-1804.
YING F Q, WU Z M, WANG Z J, et al. Effect of the combination of Pennisetum sinese and sprouting corn bran on rumen fermentation characteristics[J]. Pratacultural Science, 2018, 35(7): 1797-1804 (in Chinese).
[19]
杜鑫, 刘洪波, 郭启鹏, 等. 利用稻壳、喷浆玉米皮、酒糟粉制曲的研究[J]. 酿酒科技, 2016(5): 54-56.
TU X, LIU H B, GUO Q P, et al. Starter-making by rice husk, corn bran shotcrete and lees powder[J]. Liquor-Making Science & Technology, 2016(5): 54-56 (in Chinese).
[20]
涂远璐, 孟梅娟, 白云峰, 等. 南方农区小麦秸秆与非常规饲料的组合利用[J]. 江苏农业学报, 2017, 33(1): 166-173.
TU Y L, MENG M J, BAI Y F, et al. Study of the combined utilization of wheat straw and unconventional feeds in southern China agriculture region[J]. Jiangsu Journal of Agricultural Sciences, 2017, 33(1): 166-173 (in Chinese). DOI:10.3969/j.issn.1000-4440.2017.01.027
[21]
舒维成. 玉米加工副产物肉鸭代谢能评定及喷浆玉米皮在肉鸭饲粮中的应用[D]. 硕士学位论文. 雅安: 四川农业大学, 2017: 1-61.
SHU W C. Evaluation of metabolizable energy of corn by-products and the application of corn gluten feed in meat duck[D]. Master's Thesis. Ya'an: Sichuan Agricultural University, 2017: 1-61. (in Chinese)
[22]
ANDERSON P V, KERR B J, WEBER T E, et al. Determination and prediction of digestible and metabolizable energy from chemical analysis of corn coproducts fed to finishing pigs[J]. Journal of Animal Science, 2012, 90(4): 1242-1254. DOI:10.2527/jas.2010-3605
[23]
李红宇, 许丽. 玉米浆的营养特点及应用[J]. 饲料研究, 2017(19): 5-9, 18.
LI H Y, XU L. Nutritional characteristics and application of corn steep liquor[J]. Feed Research, 2017(19): 5-9, 18 (in Chinese).
[24]
SALAM L B, ISHAQ A. Biostimulation potentials of corn steep liquor in enhanced hydrocarbon degradation in chronically polluted soil[J]. 3 Biotech, 2019, 9(2): 46. DOI:10.1007/s13205-019-1580-4
[25]
LIU X Y, XWANG X F, XU J X, et al. Citric acid production by Yarrowia lipolytica SWJ-1b using corn steep liquor as a source of organic nitrogen and vitamins[J]. Industrial Crops and Products, 2015, 78: 154-160. DOI:10.1016/j.indcrop.2015.10.029
[26]
刘井权, 郑喜群, 刘晓兰, 等. 玉米浆生产植物蛋白调味液质量影响因素探讨[J]. 中国调味品, 2016, 41(11): 145-147.
LIU J Q, ZHENG X Q, LIU X L, et al. Discussion on influential factors for the quality of vegetable protein seasoning liquor produced by corn steep liquor[J]. China Condiment, 2016, 41(11): 145-147 (in Chinese). DOI:10.3969/j.issn.1000-9973.2016.11.034
[27]
张嘉雨, 曹越, 马文萱, 等. 玉米浆中蛋白提取及酶解工艺[J]. 食品工业, 2019, 40(5): 93-95.
ZHANG J Y, CAO Y, MA W X, et al. Extraction and enzymolysis technology of protein from corn steep liquor[J]. The Food Industry, 2019, 40(5): 93-95 (in Chinese).
[28]
林巍, 李丽, 景艳, 等. 玉米浆成分分析及其抗氧化活性研究[J]. 食品工业, 2018, 39(10): 173-176.
LIN W, LI L, JING Y, et al. Study on compositions and antioxidant activity of corn steep liquor[J]. The Food Industry, 2018, 39(10): 173-176 (in Chinese).
[29]
LI X X, XU W B, YANG J S, et al. Effect of different levels of corn steep liquor addition on fermentation characteristics and aerobic stability of fresh rice straw silage[J]. Animal Nutrition, 2016, 2(4): 345-350. DOI:10.1016/j.aninu.2016.09.003
[30]
PETZEL E A, TITGEMEYER E C, SMART A J, et al. What is the digestibility and caloric value of different botanical parts in corn residue to cattle?[J]. Journal of Animal Science, 2019, 97(7): 3056-3070. DOI:10.1093/jas/skz137
[31]
BAI N, GU M, LIU M J, et al. Corn gluten meal induces enteritis and decreases intestinal immunity and antioxidant capacity in turbot (Scophthalmus maximus) at high supplementation levels[J]. PLoS One, 2019, 14(3): e0213867. DOI:10.1371/journal.pone.0213867
[32]
ZHU B Y, HE H, HOU T. A comprehensive review of corn protein-derived bioactive peptides: production, characterization, bioactivities, and transport pathways[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(1): 329-345. DOI:10.1111/1541-4337.12411
[33]
姜鑫, 张立阳, 赵雪娇, 等. 发酵玉米蛋白粉对奶牛瘤胃体外发酵特性及微生物菌群的影响[J]. 中国畜牧兽医, 2018, 45(4): 905-915.
JIANG X, ZHANG L Y, ZHAO X J, et al. Effects of fermented corn gluten meal on in vitro fermentation characteristics and microorganism population[J]. China Animal Husbandry & Veterinary Medicine, 2018, 45(4): 905-915 (in Chinese).
[34]
魏杰. 酶水解法评价鸭常用饲料原料能量的有效性研究[D]. 硕士学位论文. 北京: 中国农业科学院, 2019: 1-67.
WEI J. Study on the energy effectiveness evaluation with enzymolysis method for duck feedstuffs[D]. Master's Thesis. Beijing: Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, 2019: 1-67. (in Chinese)
[35]
杨露, 刘松柏, 赵江涛, 等. 玉米蛋白粉的营养价值及其在家禽饲料中应用研究进展[J]. 粮食与饲料工业, 2018(11): 58-61.
YANG L, LIU S B, ZHAO J T, et al. Nutritive value of corn gluten meal and its application in poultry feed[J]. Cereal & Feed Industry, 2018(11): 58-61 (in Chinese).
[36]
陆启明, 陈志成, 何爱丽. 玉米淀粉加工副产物玉米蛋白粉的应用与开发[J]. 食品安全质量检测学报, 2018, 9(3): 467-474.
LU Q M, CHENG Z C, HE A L. Application and development of corn protein powder from corn starch processing byproduct[J]. Journal of Food Safety & Quality, 2018, 9(3): 467-474 (in Chinese). DOI:10.3969/j.issn.2095-0381.2018.03.002
[37]
GHAZAGHI M, HASSANABADI A, MEHRI M. Pre-cecal phosphorus digestibility for corn, wheat, soybean meal, and corn gluten meal in growing Japanese quails from 28 to 32 d of age[J]. Animal Nutrition, 2019, 5(2): 148-151. DOI:10.1016/j.aninu.2018.10.001
[38]
PAVITHRA S, VIDANARACHCHI J K, SARMINI M, et al. Chemical composition and gross energy content of commonly available animal feedstuff in Sri Lanka[J]. Journal of the National Science Foundation of Sri Lanka, 2019, 47(1): 79-87. DOI:10.4038/jnsfsr.v47i1.8925
[39]
LV Z Q, LI Y K, LIU H, et al. Net energy content of rice bran, defatted rice bran, corn gluten feed, and corn germ meal fed to growing pigs using indirect calorimetry[J]. Journal of Animal Science, 2018, 96(5): 1877-1888. DOI:10.1093/jas/sky098
[40]
XU J, HOU Y J, ZHAO G Q, et al. Replacement of forage fiber sources with dried distillers grains with solubles and corn germ meal in Holstein calf diets[J]. Journal of Integrative Agriculture, 2014, 13(8): 1753-1758. DOI:10.1016/S2095-3119(13)60602-4
[41]
ZHANG Z Y, LIU Z Y, ZHANG S, et al. Effect of inclusion level of corn germ meal on the digestible and metabolizable energy and evaluation of ileal AA digestibility of corn germ meal fed to growing pigs[J]. Journal of Animal Science, 2019, 97(2): 768-778. DOI:10.1093/jas/sky469
[42]
KUMAR D, SINGH V. Improving dry-fractionated corn fermentation by supplementation of corn germ meal and pasta mill feed from agro-food industries[J]. Cereal Chemistry, 2019, 96(2): 243-251. DOI:10.1002/cche.10114
[43]
YU Y L, WANG L J, WANG Y, et al. Hepatoprotective effect of albumin peptides from corn germ meal on chronic alcohol-induced liver injury in mice[J]. Food Science, 2017, 82(12): 2997-3004. DOI:10.1111/1750-3841.13953
[44]
尹惠双, 刘玉兰, 刘华敏, 等. 醇洗法脱除玉米胚芽粕中玉米赤霉烯酮的研究[J]. 中国油脂, 2018, 43(6): 76-80.
YING H S, LIU Y L, LIU H M, et al. Removal of zearalenone from corn germ meal by ethanol washing method[J]. China Oils and Fats, 2018, 43(6): 76-80 (in Chinese). DOI:10.3969/j.issn.1003-7969.2018.06.017
[45]
董雪玉. 貉常用12种饲料的营养价值评定[D]. 硕士学位论文. 秦皇岛: 河北科技师范学院, 2018: 1-79.
DONG X Y. Evaluations of nutritional values in twelve Ingredients for raccoon dog[D]. Master's Thesis. Qinhuangdao: Hebei Normal University of Science & Technology, 2018: 1-79. (in Chinese)
[46]
LI Y K, LI Z C, LIU H, et al. Net energy content of rice bran, corn germ meal, corn gluten feed, peanut meal, and sunflower meal in growing pigs[J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(9): 1481-1490. DOI:10.5713/ajas.17.0829
[47]
DUSTIN W D. In-vitro digestibility and gas production of wheat middlings, solvent extracted cottonseed meal, soyhulls, and corn gluten feed and the effects of monensin on in-vitro digestibility and gas production[D]. Master's Thesis. Missouri State: Missouri State University, 2018: 1-56.
[48]
PARK J, KIM D H, MOON J Y, et al. Distribution analysis of twelve mycotoxins in corn and corn-derived products by LC-MS/MS to evaluate the carry-over ratio during wet-milling[J]. Toxins, 2018, 10(8): 319. DOI:10.3390/toxins10080319
[49]
HAO X Y, GAO H, WANG X Y, et al. Replacing alfalfa hay with dry corn gluten feed and Chinese wild rye grass: effects on rumen fermentation, rumen microbial protein synthesis, and lactation performance in lactating dairy cows[J]. Journal of Dairy Science, 2017, 100(4): 2672-2681. DOI:10.3168/jds.2016-11645
[50]
曹善勇. 肉牛常用饲料瘤胃降解特性及日粮类型对瘤胃发酵影响的研究[D]. 硕士学位论文. 泰安: 山东农业大学, 2015: 1-66.
CAO S Y. The degradation characteristics of common feeds of beef cattle and the influence of diet type on rumen fermentation[D]. Master's Thesis. Tai'an: Shandong Agricultural University, 2015: 1-66. (in Chinese)
[51]
NAJEEB S, JAVAID A, SIDDIQ K, et al. Nutritional assessment of corn wet feed in Nili Ravi buffalo (Bubalus bubalis)[J]. Pure and Applied Biology, 2018, 7(3): 998-1006.
[52]
WEISS W P. Effects of feeding diets composed of corn silage and a corn milling product with and without supplemental lysine and methionine to dairy cows[J]. Journal of Dairy Science, 2019, 102(3): 2075-2084. DOI:10.3168/jds.2018-15535
[53]
PARK S, CHO E, CHUNG H, et al. Digestibility of phosphorous in cereals and co-products for animal feed[J]. Saudi Journal of Biological Sciences, 2019, 26(2): 373-377. DOI:10.1016/j.sjbs.2018.12.003
[54]
GONZÁLEZ J, MOUHBI R, GUEVARA-GONZÁLEZ JESÚS A, et al. Effects of correcting in situ ruminal microbial colonization of feed particles on the relationship between ruminally undegraded and intestinally digested crude protein in concentrate feeds[J]. Journal of Food and Agriculture, 2018, 98(3): 891-895. DOI:10.1002/jsfa.8534
[55]
HUANG C F, STEIN H H, ZHANG L Y, et al. Concentrations of minerals in pig feed ingredients commonly used in China[J]. Translational Animal Science, 2017, 1(2): 126-136. DOI:10.2527/tas2017.0013
[56]
JAWORSKI N W, LÆRKE H N, KNUDSEN K E B, et al. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains[J]. Journal of Animal Science, 2015, 93(3): 1103-1113. DOI:10.2527/jas.2014-8147
[57]
王燕, 刘骥, 刘晓兰, 等. 不同来源玉米纤维饲料的营养价值评价[J]. 饲料研究, 2016(6): 50-54.
WANG Y, LIU J, LIU X L, et al. Evaluation of nutritional value of corn fiber feed from different sources[J]. Feed Research, 2016(6): 50-54 (in Chinese).
[58]
潘春方, 李洋, 张幸怡, 等. 湿玉米纤维饲料的营养价值评定[J]. 饲料工业, 2017, 38(9): 20-26.
PAN C F, LI Y, ZHANG X Y, et al. Evaluation of the nutritional values of wet corn gluten feed[J]. Feed Industry, 2017, 38(9): 20-26 (in Chinese).
[59]
MOREAU R A, POWELL M J, HICKS K B. Extraction and quantitative analysis of oil from commercial corn fiber[J]. Journal of Agricultural and Food Chemistry, 1996, 44(8): 2149-2154. DOI:10.1021/jf950743h
[60]
GÁSPÁR M, KÁLMÁN G, RÉCZEY K. Corn fiber as a raw material for hemicellulose and ethanol production[J]. Process Biochemistry, 2007, 42(7): 1135-1139. DOI:10.1016/j.procbio.2007.04.003
[61]
YADAV M P, KALE M S, HICKS K B, et al. Isolation, characterization and the functional properties of cellulosic arabinoxylan fiber isolated from agricultural processing by-products, agricultural residues and energy crops[J]. Food Hydrocolloids, 2017, 63: 545-551. DOI:10.1016/j.foodhyd.2016.09.022
[62]
SCHELL D J, RILEY C J, DOWE N, et al. A bioethanol process development unit: initial operating experiences and results with a corn fiber feedstock[J]. Bioresource Technology, 2004, 91(2): 179-188. DOI:10.1016/S0960-8524(03)00167-6
[63]
OWOSIBO A O, ODETOLA O M, OKERE I A, et al. Growth performance, blood parameters and carcass characteristics of broilers fed corn bran based diets with or without enzymes (Maxigrain) supplementation[J]. Nigerian Journal of Animal Science, 2017, 19(1): 135-143.
[64]
LIU P, ZHAO J B, WANG W, et al. Dietary corn bran altered the diversity of microbial communities and cytokine production in weaned pigs[J]. Frontiers in Microbiology, 2018, 9: 2090. DOI:10.3389/fmicb.2018.02090
[65]
LIU P, ZHAO J B, GUO P T, et al. Dietary corn bran fermented by Bacillus subtilis MA139 decreased gut cellulolytic bacteria and microbiota diversity in finishing pigs[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7: 526. DOI:10.3389/fcimb.2017.00526
[66]
MONTEJO-SIERRA I L, LAMELA-LÓPEZ L, ARECE-GARCÍA J, et al. Effect of non-conventional diets with native microorganisms on pig rearing[J]. Pastos Y Forrajes, 2017, 40(4): 2078-8452.
[67]
MANEERAT W, PRASANPANICH S, TUMWASORN S, et al. Evaluating agro-industrial by-products as dietary roughage source on growth performance of fattening steers[J]. Saudi Journal of Biological Sciences, 2015, 22(5): 580-584. DOI:10.1016/j.sjbs.2015.01.015
[68]
ULLAH Z, YOUSAF M, SHAMI M M, et al. Effect of graded levels of dietary corn steep liquor on growth performance, nutrient digestibility, haematology and histopathology of broilers[J]. Journal of Animal Physiology and Animal Nutrition, 2018, 102(1): e395-e402. DOI:10.1111/jpn.12758
[69]
QAMAR M S, UN-NISA M, SARWAR M, et al. Influence of varying levels of corn steep liquor on nutrients intake, digestibility and growth response in growing buffalo calves[J]. Journal of Animal and Poultry Sciences, 2015, 4(3): 39-48.
[70]
徐君, 菜景义, 吴霜. 玉米浆酶解蛋白质饲料替代豆粕对肉兔生长性能和血清生化指标的影响[J]. 黑龙江畜牧兽医, 2019(19): 113-116.
XU J, CAI J Y, WU X. Effects of corn milk hydrolyzed protein feed replacing soybean meal on growth performance and serum biochemical indexes of meat rabbits[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019(19): 113-116 (in Chinese).
[71]
DE FREITAS A P D, FERREIRA M D, DE OLIVEIRA J P F, et al. Replacement of soybean meal with maize steep liquor in the diets of feedlot lambs[J]. South African Journal of Animal Science, 2015, 45(5): 521-527.
[72]
AZIZI-SHOTORKHOFT A, SHARIFI A, MIRMOHAMMADI D, et al. Effects of feeding different levels of corn steep liquor on the performance of fattening lambs[J]. Journal of Animal Physiology and Animal Nutrition, 2016, 100(1): 109-117. DOI:10.1111/jpn.12342
[73]
CHEGINI R, KAZEMI-BONCHENARI M, KHALTABADI-FARAHANI A H, et al. Effects of liquid protein feed on growth performance and ruminal metabolism of growing lambs fed low-quality forage and compared to conventional protein sources[J]. The Journal of Agricultural Science, 2019, 157(3): 272-280. DOI:10.1017/S0021859619000595
[74]
刘骥, 易春霞, 韩业东, 等. 微生物发酵玉米蛋白粉生产富肽饲料的研究[J]. 饲料工业, 2018, 39(17): 36-39.
LIU J, YI C X, HAN Y D, et al. Study on the production of peptide-rich feed by microbial fermentation of corn protein meal[J]. Feed Industry, 2018, 39(17): 36-39 (in Chinese).
[75]
AFROUZI H N, TORBATINEJAD N, SHARGH M S, et al. Effect of corn gluten meal without processing and processed with protease enzyme at different times on performance, carcass characteristics and some blood parameters in broiler chickens[J]. Animal Production Research, 2018, 7(1): 67-80.
[76]
GIANNENAS I, BONOS E, ANESTIS V, et al. Effects of protease addition and replacement of soybean meal by corn gluten meal on the growth of broilers and on the environmental performances of a broiler production system in Greece[J]. PLoS One, 2017, 12(1): e0169511. DOI:10.1371/journal.pone.0169511
[77]
WANG Y, LIU X L, JIN L, et al. Effects of fermented corn gluten meal on growth performance, serum parameters, intestinal morphology, and immunity performance of three-yellow broilers[J]. Canadian Journal of Animal Science, 2019, 99(2): 408-417. DOI:10.1139/cjas-2017-0007
[78]
刘燕强. 玉米蛋白粉饲喂生长肥育猪试验[J]. 江西畜牧兽医杂志, 1994(3): 35-36.
LIU Y Q. Experiment on feeding growing finishing pigs with corn gluten meal[J]. Jiangxi Journal of Animal Husbandry Veterinary Medicine, 1994(3): 35-36 (in Chinese).
[79]
IMRAN M, SHAHID M Q, PASHA T N, et al. Effects of replacing soybean meal with corn gluten meal on milk production and nitrogen efficiency in Holstein cows[J]. South African Journal of Animal Science, 2018, 48(3): 590-599. DOI:10.4314/sajas.v48i3.20
[80]
MALIK T A, THAKUR S S, MAHESH M S, et al. Replacing groundnut cake with gluten meals of rice and maize in diets for growing Sahiwal cattle[J]. Asian-Australasian Journal of Animal Sciences, 2017, 30(10): 1410-1415. DOI:10.5713/ajas.17.0089
[81]
JIANG X, MA G M, CUI Z Q, et al. Effects of fermented corn gluten meal on growth performance, plasma metabolites, rumen fermentation and bacterial community of Holstein calves during the pre-weaning period[J]. Livestock Science, 2020, 231: 103866. DOI:10.1016/j.livsci.2019.103866
[82]
JIANG X, LIU X, LIU S, et al. Growth, rumen fermentation and plasma metabolites of Holstein male calves fed fermented corn gluten meal during the postweaning stage[J]. Animal Feed Science and Technology, 2019, 249: 1-9. DOI:10.1016/j.anifeedsci.2019.01.012
[83]
LAKSHMI R K S, KUMARI K N, REDDY P R. Corn germ meal (CGM)-potential feed ingredient for livestock and poultry in India-a review[J]. International Journal of Livestock Research, 2017, 7(8): 39-50.
[84]
SHI M, LIU Z Y, WANG H L, et al. Determination and prediction of the digestible and metabolizable energy contents of corn germ meal in growing pigs[J]. Asian-Australasian Journal of Animal Sciences, 2019, 32(3): 405-412. DOI:10.5713/ajas.17.0891
[85]
LAKSHMI R K, GLORIDOSS G, SINGH K C. Effect of corn germ meal based low phosphorus diets on nutrient metabolizability and carcass characteristics of colored broilers[J]. Animal Nutrition and Feed Technology, 2018, 18(3): 421-428. DOI:10.5958/0974-181X.2018.00039.2
[86]
LAKSHMI R K S, GLORIDOSS R G, SINGH K C, et al. Effect of inclusion of corn germ meal in diets of colored (RAJA-Ⅱ) broilers with phytase enzyme supplementation[J]. The Bioscan, 2015, 10(4): 1581-1584.
[87]
HOAN N D, KHOA M A. Omega-3 fatty acid enrichment capacity in egg yolks from laying hens fed either corn germ oil or corn germ meal[J]. JSM Veterinary Medicine and Research, 2019, 2: 7.
[88]
HARPER H M. Effects of Distiller's dried grains with solubles (DDGS) and corn germ meal (CGM) on growth performance and carcass characteristics of growing-finishing pigs, and determination of the productive energy content of DDGS and CGM[D]. Master's Thesis. Green St, Champaign: University of Illinois at Urbana-Champaign, 2019.
[89]
RESTREPO J E E. Effects of body weight and research conditions on the productive energy content of corn germ meal fed to growing-finishing pigs[D]. Ph. D. Thesis. Green St, Champaign: University of Illinois at Urbana-Champaign, 2017.
[90]
KAUR M, KAUR J, LAMBA J S, et al. In vitro evaluation of corn germ meal as ruminant feed[J]. Journal of Animal Research, 2019, 9(5): 727-734.
[91]
DETRAY M L, MONTGOMERY S P, TITGEMEYER E, et al. Feeding nucleotides with corn germ meal or dried corn distillers grains does not promote growth performance of receiving and growing calves[J]. Kansas Agricultural Experiment Station Research Reports, 2017, 3(1): 17.
[92]
FERREIRA R N, EZEQUIEL J M B, GALATI R L, et al. Site and extent of amino acid digestion in dairy cattle fed with corn and its byproducts[J]. Semina: Ciências Agrárias, 2015, 36(1): 421-430. DOI:10.5433/1679-0359.2015v36n1p421
[93]
DARABIGHANE B, AGHJEHGHESHLAGH F M, MAHDAVI A, et al. Effects of inclusion of corn gluten feed in dairy rations on dry matter intake, milk yield, milk components, and ruminal fermentation parameters: a meta-analysis[J]. Tropical Animal Health and Production, 2020, 52(5): 2359-2369. DOI:10.1007/s11250-020-02261-2
[94]
STELZLENI A M, SEGERS J R, STEWART R L, Jr. Long-term use of corn coproducts as a source of protein in beef finishing diets and the effects on carcass characteristics and round muscle quality[J]. Journal of Animal Science, 2016, 94(3): 1227-1237. DOI:10.2527/jas.2015-9752
[95]
TAYLOR E G, LEMENAGER R P, STEWART K R. Using corn gluten feed in post-partum diets of young beef cows to optimize reproductive performance[J]. Translational Animal Science, 2017, 1(3): 296-303. DOI:10.2527/tas2017.0034
[96]
LOURENCO J M, DILORENZO N, STELZLENI A M, et al. Use of by-product feeds to decrease feed cost while maintaining performance of developing beef bulls[J]. The Professional Animal Scientist, 2016, 32(3): 287-294. DOI:10.15232/pas.2015-01436
[97]
ANJUM M I, JAVAID S, AFZAL M. Influence of substituting cottonseed cake with rapeseed cake and maize gluten feed as protein equivalent basis on growth rate, digestibility and economic benefits in sahiwal calves[J]. Journal of Animal & Plant Sciences, 2017, 27(3): 737-742.
[98]
CHASTEEN S J. Corn gluten feed supplementation and its effects on maturation rates in rambouillet ewe lambs[D]. Ph. D. Thesis. San Angelo: Angelo State University, 2017: 1-21.
[99]
HERMISDORFF I D C, FERREIRA I C, FRANÇA A M S, et al. Nutritional evaluation of corn silage with different levels of inclusion of wet corn gluten feed in sheep[J]. Bioscience Journal, 2016, 32(5): 1286-1295.
[100]
KIM E, CRANE A R, LATTIMER J M, et al. Effect of corn gluten feed or corn dried distiller grains with solubles as a substitute for soybean meal of Boer-type goat[EB/OL]. https://krex.k-state.edu/dspace/handle/2097/39992,2019.
[101]
许璇, 赵轩, 白广栋, 等. 玉米蛋白饲料对民猪杂交猪生长性能和养分表观消化率的影响[J]. 饲料工业, 2019, 40(17): 26-30.
XU X, ZHAO X, BAI G D, et al. Effects of corn gluten feed on the growth performance and apparent digestibility of nutrients in hybrids of Min pig[J]. Feed Industry, 2019, 40(17): 26-30 (in Chinese).
[102]
潘春方, 姜鑫, 徐宏建, 等. 湿玉米纤维饲料对奶牛瘤胃发酵和产奶性能的影响[J]. 中国畜牧杂志, 2017, 53(7): 67-71.
PAN C F, JIANG X, XU H J, et al. Effect of wet corn gluten feed on rumen fermentation and milk performance of lactating dairy cows[J]. Chinese Journal of Animal Science, 2017, 53(7): 67-71 (in Chinese).
[103]
王馨影. 湿玉米纤维饲料发酵条件的优化及营养价值的评定[D]. 硕士学位论文. 哈尔滨: 东北农业大学, 2018: 1-39.
WANG X Y. Optimization of fermentation condition and evaluation of nutritional value of wet corn gluten feed[D]. Master's Thesis. Harbin: Northeast Agricultural University, 2018: 1-39. (in Chinese)
[104]
尹福泉, 吴征敏, 王志敬, 等. 皇竹草和喷浆玉米皮混合对瘤胃发酵特性的影响[J]. 草业科学, 2018, 35(7): 1797-1804.
YIN F Q, WU Z M, WANG Z J, et al. Effect of the combination of Pennisetum sinese and sprouting corn bran on rumen fermentation characteristics[J]. Pratacultural Science, 2018, 35(7): 1797-1804 (in Chinese).