动物营养学报    2021, Vol. 33 Issue (6): 3165-3175    PDF    
饲粮添加干酪乳杆菌代田株对断奶仔猪生长性能、抗氧化功能和结肠生物胺的影响
饶泽斌1 , 曾艳2 , 刘宇波2 , 胡萍1 , 胡红1 , 唐志如1     
1. 西南大学动物科学技术学院, 动物营养与生物饲料实验室, 重庆 400715;
2. 湖南省微生物研究院, 长沙 410000
摘要: 本试验旨在研究干酪乳杆菌代田株(Lactobacillus casei strain Shirota)对断奶仔猪生长性能、抗氧化功能和结肠生物胺的影响。选择30只健康的28日龄"杜×长×大"断奶仔猪,随机分为3个组,每组10个重复,每个重复1头猪。对照组饲喂基础饲粮,抗生素组饲喂基础饲粮+100 mg/kg硫酸黏杆菌素,干酪乳杆菌组饲喂基础饲粮+每天口服用琼脂块包埋的5×109 CFU干酪乳杆菌代田株。预试期4 d,正试期28 d。结果表明:1)与对照组相比,干酪乳杆菌组断奶仔猪末重、平均日增重和平均日采食量显著提高(P < 0.05),血浆总抗氧化能力及总超氧化物歧化酶、一氧化氮合酶(NOS)、谷胱甘肽过氧化物酶活性极显著提高(P < 0.01),肝脏NOS活性极显著提高(P < 0.01),空肠杯状细胞数量显著增加(P < 0.05),血浆谷草转氨酶(GOT)和谷丙转氨酶活性极显著降低(P < 0.01),肝脏GOT活性显著提高(P < 0.05),结肠内容物色胺、甲胺、组胺、尸胺和腐胺含量极显著降低(P < 0.01)。2)与抗生素组相比,干酪乳杆菌组断奶仔猪血浆GOT活性显著提高(P < 0.05),血浆和肝脏过氧化氢酶和NOS活性极显著提高(P < 0.01),空肠杯状细胞数量显著增加(P < 0.05),结肠内容物组胺含量极显著降低(P < 0.01)。综上所述,饲粮添加干酪乳杆菌代田株能够提高断奶仔猪生长性能和抗氧化功能,降低结肠内容物生物胺含量,具有替代抗生素的功效。
关键词: 干酪乳杆菌代田株    断奶仔猪    生长性能    抗氧化功能    肠道发育    
Effects of Lactobacillus casei Strain Shirota on Growth Performance, Antioxidant Function and Bioamines in Colon of Weaned Piglets
RAO Zebin1 , ZENG Yan2 , LIU Yubo2 , HU Ping1 , HU Hong1 , TANG Zhiru1     
1. Laboratory for Animal Nutrition and Bio-Feed, College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
2. Hunan Institute of Microbiology, Changsha 410000, China
Abstract: This experiment was conducted to investigate the effects of Lactobacillus casei strain Shirota on growth performance, antioxidant function and bioamines in colon of weaned piglets. Thirty healthy 28-day-old Duroc×Landrace×Yorkshire weaned piglets were randomly divided into 3 groups with 10 replicates per group and 1 pig per replicate. Piglets in the control group were fed a basal diet, those in the antibiotic group were fed the basal diet+100 mg/kg colistin sulfate, and those in the Lactobacillus casei group were fed the basal diet+5×109 CFU Lactobacillus casei strain Shirota embedded with agar block for oral administration every day. The pre-experiment lasted for 4 days, and the experimental period lasted for 28 days. The results showed as follows: 1) compared with the control group, the final weight, average daily gain and average daily feed intake of weaned piglets in the Lactobacillus casei group were significantly increased (P < 0.05), the total antioxidant capacity and the activity of total superoxide dismutase, nitric oxide synthase (NOS) and glutathione peroxidase in plasma were extremely significantly increased (P < 0.01), the NOS activity in liver was extremely significantly increased (P < 0.01), the number of goblet cells in jejunum was significantly increased (P < 0.05), the activity of glutamic oxalacetic transaminase (GOT) and glutamic-pyruvic transaminase in plasma was extremely significantly decreased (P < 0.01), the GOT activity in liver was significantly increased (P < 0.05), and the contents of tryptamine, methylamine, histamine, cadaverine and putrescine in colon were extremely significantly decreased (P < 0.01). 2) Compared with the antibiotic group, the GOT activity in plasma of weaned piglets in the Lactobacillus casei group was significantly increased (P < 0.05), the activity of catalase and NOS in both plasma and liver was extremely significantly increased (P < 0.01), the number of goblet cells in jejunum was significantly increased (P < 0.05), and the histamine content in colon was extremely significantly decreased (P < 0.01). In conclusion, dietary Lactobacillus casei strain Shirota can improve the growth performance and antioxidant function of weaned piglets, reduce the bioamine contents in colon, and has the effect of replacing antibiotics.
Key words: Lactobacillus casei strain Shirota    weaned piglets    growth performance    antioxidant function    intestine development    

仔猪断奶后,其肠道和免疫系统发育不成熟以及饲粮性质突然变化,这引起仔猪断奶综合征[1],仔猪的生长性能和免疫机能下降通常与断奶应激密切相关。通过在饲粮中添加抗生素可缓解仔猪断奶综合征,但是随着饲料中抗生素添加剂的禁用,乳酸菌成为一种饲用抗生素替代品。乳酸菌是一类被广泛应用于生产生活中的益生菌,其安全性已得到充分的检验[2]。干酪乳杆菌作为乳酸菌的一种,其对机体的防御机制具有耐受能力,口服后能在消化道中大量存活,能够提高宿主的生长性能[3]。Yulianto等[4]在肉鸡饲粮中添加0.5%的干酪乳杆菌WB 315(活菌数1.2×109 CFU/mL),发现其能显著提高肉鸡的平均日采食量和饲料效率,同时显著降低料重比。这是因为干酪乳杆菌的降胆固醇生理特性,改善了机体的饲料转化率,增加了饲粮采食量[5]。另外,研究发现,干酪乳杆菌可以增强机体的抗氧化功能。刘宏宇等[6]在体外研究中发现,干酪乳杆菌的菌体和无菌体的提取物对体外的自由基具有清理功能,并且其能耐受消化道中的胃酸和胆盐。陈燕等[7]研究发现,干酪乳杆菌通过下调促炎因子肿瘤坏死因子-α(TNF-α)、白细胞介素-1β(IL-1β)和白细胞介素-6(IL-6)的表达,上调炎症抑制因子白细胞介素-10(IL-10)的表达,同时上调肠道紧密连接蛋白-1(ZO-1)、闭合蛋白3(claudin 3)以及黏蛋白2(MUC2)等相关基因的表达,增强肠道屏障功能,改善小鼠的结肠炎。上述研究证实了在抗生素禁用后,饲粮中添加干酪乳杆菌能够促进动物生长性能的提高。在参考Li等[8]的试验结果以及考虑到乳杆菌对消化液的耐受程度[9],本试验通过研究饲粮添加干酪乳杆菌代田株(Lactobacillus casei strain Shirota)对断奶仔猪生长性能、抗氧化功能和结肠生物胺的影响,为干酪乳杆菌代田株替代抗生素成为新型饲料添加剂提供理论依据。

1 材料与方法 1.1 试验设计

采用单因素完全随机设计,将30头平均体重为(9.21±0.57) kg的28日龄“杜×长×大”断奶仔猪(公母各占1/2),平均分为3个组,每组10个重复,每个重复1头猪。对照组饲喂基础饲粮,抗生素组饲喂基础饲粮+100 mg/kg硫酸黏杆菌素(购自某动物药业有限公司,纯度99%),干酪乳杆菌组饲喂基础饲粮+每天口服用琼脂块包埋的5×109 CFU干酪乳杆菌代田株(购买于安徽某科技生物有限公司,纯度99%)。试验在西南大学养殖场进行,预试期4 d,正试期28 d。在正试期的第1天08:00对仔猪进行空腹称重并记录初重和分组,正试期第28天08:00空腹称重记录末重。

1.2 试验饲粮和饲养管理

试验饲粮参照NRC(2012)标准进行配制,基础饲粮组成及营养水平见表 1。试验动物单头单圈饲养,猪舍的温度维持在(25±2) ℃。每日将干酪乳杆菌代田株与粉状基础饲粮混合,分别在08:00、12:00和18:00固定投喂3次,自由采食与饮水。

表 1 基础饲粮组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of the basal diet (DM basis)  
1.3 样品采集和处理

试验第28天,每个组随机选择4头体重与平均值相近的仔猪进行空腹采血,采集10 mL血液置于含有肝素钠的抗凝采血管,在4 ℃、4 000 r/min条件下离心20 min分离得到血浆,立即保存于-20 ℃冰箱中,用于检测血浆生化和抗氧化指标。采用颈动脉放血法处死采完血的猪只,然后打开胸腔、腹腔,取出内脏。采集肝脏样品检测其生化和抗氧化指标;对胸腺、胰腺和脾脏等内脏器官进行称重并记录它们的重量;对猪的空肠、回肠和结肠的中段进行结扎,用生理盐水洗去内容物然后采集3 cm左右的肠段,保存于组织固定液中,用于后续肠道黏膜组织形态的测定;用10 mL的无菌离心管收集结肠内容物,经液氮速冻后保存于-80 ℃冰箱中,用于后续检测仔猪结肠生物胺含量;使用便携式pH计测量每段肠管中部和胃内容物的pH。

1.4 指标检测 1.4.1 生长性能和免疫器官指数

生长性能的指标为平均日增重、平均日采食量和料重比,计算公式如下:

免疫器官指数包括脾脏指数、胸腺指数和胰腺指数,其计算公式如下:

1.4.2 血浆和肝脏生化和抗氧化指标

血浆和肝脏生化和抗氧化指标包括总抗氧化能力(T-AOC)以及总超氧化物歧化酶(T-SOD)、一氧化氮合酶(NOS)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)、谷胱甘肽还原酶(GR)、谷丙转氨酶(GPT)和谷草转氨酶(GOT)活性。上述指标按照南京建成生物工程研究所试剂盒中的说明书进行测定。

1.4.3 肠道黏膜组织形态

形态学测定方法参照Wang等[10]进行,操作如下:将组织固定液中的肠道取出,经纯水清洗后,使用乙醇对其脱水,然后使用二甲苯透明组织,最后使用石蜡对其进行包埋,将包埋后的肠道组织切成5 μm厚的切片,通过苏木精-伊红(HE)法染色后,使用显微镜观察并拍照。肠道的绒毛高度和隐窝深度等指标使用OPT Pro图像处理软件进行测定,读片采用双盲法,在每个切片中读取5个视野。测量从绒毛顶端至隐窝开口处的垂直长度记录为绒毛高度,测量从隐窝开口到隐窝基部的垂直长度记录为隐窝深度,并计算绒毛高度/隐窝深度(V/C)值。

1.4.4 结肠内容物生物胺含量

采用高效液相色谱法结合紫外检测器法测定仔猪结肠内容物中生物胺的含量[11]。方法如下:用0.4 mol/L高氯酸溶液在-20 ℃下处理仔猪结肠内容物过夜。离心收集上清液,然后使用丹磺酰氯(DNS-Cl)对其进行衍生。分析柱采用Zorbax SB-C18柱,流动相为乙腈和0.02 mol/L醋酸铵水溶液,流速为1.0 mL/min,梯度洗脱。采用保留时间和紫外光谱进行定性分析,定量检测波长为254 nm。

1.5 数据统计与分析

试验数据首先采用Excel 2013进行初步处理,然后用SPSS 26.0软件包进行单因素方差分析和Duncan氏多重比较,P < 0.01为差异极显著,P < 0.05为差异显著,结果以平均值和均值标准误(SEM)表示。

2 结果与分析 2.1 饲粮添加干酪乳杆菌代田株对断奶仔猪生长性能的影响

表 2可知,3个组断奶仔猪初重差异不显著(P>0.05);干酪乳杆菌组断奶仔猪末重显著高于对照组(P < 0.05),较对照组提高了14.14%,但与抗生素组差异不显著(P>0.05)。干酪乳杆菌组断奶仔猪平均日增重和平均日采食量较对照组极显著提高(P < 0.01),但与抗生素组差异不显著(P>0.05)。干酪乳杆菌组断奶仔猪料重比较对照组降低了2.37%,但差异不显著(P>0.05)。

表 2 饲粮添加干酪乳杆菌代田株对断奶仔猪生长性能的影响 Table 2 Effects of dietary Lactobacillus casei strain Shirota on growth performance of weaned piglets
2.2 饲粮添加干酪乳杆菌代田株对断奶仔猪免疫器官指数的影响

表 3可知,各组断奶仔猪脾脏指数、胸腺指数和胰腺指数之间均无显著差异(P>0.05)。

表 3 饲粮添加干酪乳杆菌代田株对断奶仔猪免疫器官指数的影响 Table 3 Effects of dietary Lactobacillus casei strain Shirota on immune organ indices of weaned piglets  
2.3 饲粮添加干酪乳杆菌代田株对断奶仔猪血浆和肝脏生化指标的影响

表 4可知,与对照组相比,干酪乳杆菌组断奶仔猪血浆GOT和GPT活性极显著降低(P < 0.01),肝脏GOT活性显著提高(P < 0.05)。与抗生素组相比,干酪乳杆菌组断奶仔猪血浆GOT活性极显著降低(P < 0.01),血浆GPT活性无显著差异(P>0.05);另外,干酪乳杆菌组断奶仔猪肝脏GOT活性显著提高(P < 0.05),肝脏GPT活性有所升高,但差异不显著(P>0.05)。

表 4 饲粮添加干酪乳杆菌代田株对断奶仔猪血浆和肝脏生化指标的影响 Table 4 Effects of dietary Lactobacillus casei strain Shirota on biochemical indices in plasma and liver of weaned piglets
2.4 饲粮添加干酪乳杆菌代田株对断奶仔猪血浆和肝脏抗氧化指标的影响

表 5可知,与对照组相比,干酪乳杆菌组断奶仔猪血浆T-AOC以及T-SOD、NOS和GSH-Px活性极显著提高(P < 0.01),血浆CAT和GR活性无显著差异(P>0.05);与抗生素组相比,干酪乳杆菌组断奶仔猪血浆CAT和NOS活性极显著提高(P < 0.01),血浆T-AOC及T-SOD和GR活性差异不显著(P>0.05),血浆GSH-Px活性极显著降低(P < 0.01)。

表 5 饲粮添加干酪乳杆菌代田株对断奶仔猪血浆和肝脏抗氧化指标的影响 Table 5 Effects of dietary Lactobacillus casei strain Shirota on antioxidant indices in plasma and liver of weaned piglets

各组断奶仔猪肝脏T-AOC及T-SOD活性之间无显著差异(P>0.05),干酪乳杆菌组肝脏CAT和NOS活性极显著高于抗生素组(P < 0.01),但对照组肝脏GR活性显著高于抗生素组和干酪乳杆菌组(P < 0.05),抗生素组和干酪乳杆菌组间肝脏GR活性无显著差异(P>0.05)。

2.5 饲粮添加干酪乳杆菌代田株对断奶仔猪肠道黏膜组织形态的影响

图 1可知,饲粮添加干酪乳杆菌代田株对断奶仔猪空肠、回肠和结肠的黏膜组织形态存在一定的影响,与对照组相比,干酪乳杆菌组断奶仔猪空肠、回肠和结肠中的绒毛排列整齐无断裂,绒毛顶端轮廓清晰。

图 1 饲粮添加干酪乳杆菌代田株对断奶仔猪肠道黏膜组织形态的影响 Fig. 1 Effects of dietary Lactobacillus casei strain Shirota on intestinal mucosa morphology of weaned piglets (100×)

表 6可知,各组断奶仔猪空肠绒毛高度、隐窝深度、V/C值和淋巴细胞数量之间差异均不显著(P>0.05),干酪乳杆菌组空肠杯状细胞数量显著高于对照组和抗生素组(P < 0.05);各组断奶仔猪回肠绒毛高度、隐窝深度、V/C值、杯状细胞数量和淋巴细胞数量之间差异均不显著(P>0.05);同样,各组断奶仔猪结肠绒毛高度、隐窝深度、V/C值、杯状细胞数量和淋巴细胞数量之间差异均不显著(P>0.05)。

表 6 饲粮添加干酪乳杆菌代田株对断奶仔猪肠道黏膜组织形态的影响 Table 6 Effects of dietary Lactobacillus casei strain Shirota on intestinal mucosa morphology of weaned piglets
2.6 饲粮添加干酪乳杆菌代田株对断奶仔猪胃肠道内容物pH的影响

表 7可知,各组断奶仔猪胃、空肠、回肠和盲肠内容物pH无显著差异(P>0.05),表明饲粮添加抗生素或干酪乳杆菌代田株对断奶仔猪胃肠道内容物pH均无显著影响。

表 7 饲粮添加干酪乳杆菌代田株对断奶仔猪胃肠道内容物pH的影响 Table 7 Effects of Lactobacillus casei strain Shirota on pH in gastrointestinal content of weaned piglets
2.7 饲粮添加干酪乳杆菌代田株对断奶仔猪结肠内容物生物胺含量的影响

表 8可知,与对照组相比,饲粮添加抗生素或干酪乳杆菌代田株均能极显著降低断奶仔猪结肠内容物色胺、甲胺、组胺、尸胺及腐胺含量(P < 0.01);与抗生素组相比,干酪乳杆菌组断奶仔猪结肠内容物组胺含量极显著降低(P < 0.01),但是色胺和腐胺含量极显著提高(P < 0.01)。

表 8 饲粮添加干酪乳杆菌代田株对断奶仔猪结肠内容物生物胺含量的影响 Table 8 Effects of Lactobacillus casei strain Shirota on bioamine content in colon of weaned piglets  
3 讨论 3.1 饲粮添加干酪乳杆菌代田株对断奶仔猪生长性能和免疫器官指数的影响

断奶对于仔猪是一种应激,会导致生长速度降低、腹泻、肠道菌群失调以及健康状况受损等不利于生长的情况[12]。研究发现,饲粮添加热灭活的植物乳杆菌能显著提高吉富罗非鱼肠道中淀粉酶、蛋白酶和脂肪酶等消化酶的活性[13];饲粮添加复合微生态制剂(含乳酸菌、枯草芽孢杆菌、酵母菌和双歧杆菌等)能显著提高断奶仔猪对粗蛋白质、粗纤维和粗脂肪的表观消化率[14];Liu等[15]在断奶仔猪饲粮中添加干酪乳杆菌发现,断奶仔猪平均日增重提高了18%~27%。本研究发现,与对照组相比,干酪乳杆菌组断奶仔猪末重、平均日增重和平均日采食量显著提高,而料重比无显著差异,这可能是因为干酪乳杆菌代田株提高了断奶仔猪肠道中消化酶的活性,使得饲粮中营养物质的利用率提高,从而改善了仔猪的生长性能。同时,本试验发现,干酪乳杆菌代田株能提高断奶仔猪机体的抗氧化功能,这可能是导致生长性能提高的另一个因素。

免疫器官指数是评价机体免疫力的一项重要指标,本研究中干酪乳杆菌代田株对断奶仔猪的免疫器官指数的影响不显著。脾脏和胸腺是机体重要的淋巴器官,参与机体的体液免疫和细胞免疫。Xu等[16]研究指出,干酪乳杆菌ATCC 393能通过Toll样受体信号通路阻止由产肠毒素大肠杆菌K88引起的肠屏障功能障碍,从而增强肠道的屏障功能。Wang等[17]研究发现,干酪乳杆菌Zhang能够增强早期断奶仔猪肠道紧密连接蛋白-1和闭锁蛋白的表达,从而维持肠黏膜屏障的完整性。因此,在本研究中,干酪乳杆菌代田株可能增强了断奶仔猪的肠道屏障功能,从而减少了炎症的发生;也有可能是由于本试验持续时间过长,乳酸菌作用效果逐渐减弱,所以对免疫器官指数的影响不显著。

3.2 饲粮添加干酪乳杆菌代田株对断奶仔猪血浆和肝脏生化和抗氧化指标的影响

GOT与GPT是一类胞内酶,在肝脏细胞中大量分布,一般在血浆中活性极低,但是在细胞受到损伤时血浆中GOT和GPT的活性会升高,因此是检验肝脏功能的重要指标[18]。本研究发现,干酪乳杆菌组断奶仔猪血浆GOT和GPT活性极显著低于对照组,杨慧等[19]研究发现,断奶仔猪饲粮添加0.1%的乳酸菌显著降低了仔猪血浆中GOT和GPT的活性,这与本研究结果一致,说明饲粮添加乳酸菌能够预防肝脏损伤。此外,GOT和GPT是参与氨基酸代谢转化的酶,本试验发现,干酪乳杆菌组断奶仔猪肝脏中GOT活性较对照组和抗生素组显著升高,GPT活性有升高的趋势,结合血浆中GPT和GOT的活性显著低于对照组,说明肝脏并没有发生损伤,这表明肝脏对于氨基酸的利用增加,肝功能得到改善,从而促进了仔猪的生长。

正常情况下,机体内存在少量的自由基,起着重要的生理作用,如信号转导和基因表达[20]。仔猪断奶后体内的活性氧会增加导致氧化应激[21],体内活性氧累积过多不能被机体内的抗氧化酶分解,进而引起疾病。动物机体的抗氧化功能主要通过抗氧化酶系统(NOS、GSH-Px、T-SOD、CAT和GR等)得到体现[22]。Wang等[23]在研究敌草快引起的仔猪氧化应激时发现,氧化应激会导致仔猪平均日增重和平均日采食量显著下降,降低仔猪生长性能。本试验中,干酪乳杆菌组断奶仔猪血浆GOT和GPT活性显著低于对照组,可以证实干酪乳杆菌代田株能够增强肝脏的抗氧化能力。Li等[8]研究发现,仔猪在哺乳期口服德氏乳杆菌能增加其抗氧化功能并且效果能一直延续至断奶4周后。Lin等[24]在研究氧化油诱导的小鼠肝损伤模型中发现,乳酸菌能减少脂质的过氧化,恢复抗氧化酶的活性,减少肝脏的损伤。Finamore等[25]发现,干酪乳杆菌代田株能促进肠上皮细胞核因子E2相关因子2(Nrf2)的表达以及抑制Nrf2和p65的磷酸化,降低细胞内活性氧的水平,激活细胞内的Kelch样环氧氯丙烷相关蛋白1(Keap1)-Nrf2/抗氧化反应元件(ARE)信号通路,同时抑制核因子-κB(NF-κB)信号通路的激活,从而提高抗氧化功能以及缓解氧化损伤。Kobatake等[26]研究发现,热灭活的加氏乳杆菌能通过诱导Nrf2核易位进入细胞核激活Nrf2-ARE信号通路。Nrf2进入细胞核后能与ARE序列结合,从而启动抗氧化剂和细胞保护性基因的转录[27]。多项研究表明,植物乳杆菌能通过激活Nrf2信号上调下游的抗氧化酶,如CATSODGSH-Px的表达[28-29]。Chen等[30]在研究德氏乳杆菌对断奶仔猪抗氧化功能的研究中发现,德氏乳杆菌能显著提高血浆GSH-Px活性和T-AOC。Chang等[31]研究发现,CAT能触发Nrf2的核易位,然后激活Nrf2信号通路促进下游抗氧化基因的表达。在本研究中,干酪乳杆菌代田株或抗生素显著提高了断奶仔猪血浆T-AOC及T-SOD、NOS、GR和GSH-Px活性,显著提高了肝脏NOS和GR活性,其机理在于干酪乳杆菌代田株通过激活Nrf2信号通路,促进下游的抗氧化酶,如GSH-PxNOSGR的表达,从而减少仔猪氧化应激,进而提高生长性能。

3.3 饲粮添加干酪乳杆菌代田株对断奶仔猪肠道黏膜组织形态的影响

断奶应激会导致仔猪小肠结构和功能出现变化,导致肠道杯状细胞数量减少[32]。杯状细胞能合成并分泌黏蛋白,从而增强肠道屏障功能,保护肠道;杯状细胞的减少会减少黏蛋白的分泌,导致肠道结构损伤。研究发现,鼠李糖乳杆菌RC007发酵乳清可以增加小鼠肠道杯状细胞的数量[33]。本试验中,与对照组相比,饲粮添加抗生素或干酪乳杆菌代田株对断奶仔猪肠道黏膜组织形态的影响不显著,干酪乳杆菌组空肠杯状细胞数量显著增加。杯状细胞在维持胃肠道屏障完整性发挥巨大作用,其分泌的黏蛋白组成了肠道先天免疫屏障[34]。王誉颖等[35]研究发现,干酪乳杆菌能增加腹泻大鼠回肠杯状细胞数量,促进黏蛋白2的合成,维持腹泻大鼠的肠道健康。本试验中,饲粮添加干酪乳酸菌代田株对断奶仔猪空肠、回肠和结肠的绒毛高度、隐窝深度和V/C值均无显著影响;同时,饲粮添加干酪乳酸菌代田株对胃、空肠、回肠和盲肠内容物pH也均不显著影响,且各肠段内容物pH在数值上都处于偏酸性,这有利于肠道中消化酶发挥正常活性,促进机体对营养物质的吸收利用。

3.4 饲粮添加干酪乳杆菌代田株对断奶仔猪结肠内容物生物胺含量的影响

生物胺是一些游离氨基酸通过微生物的脱羧作用或醛和酮的胺化和转氨作用而形成的低分子量有机碱性化合物,包括一元胺、二胺和多胺[36]。精氨酸在宿主体内被肠道微生物利用转化为腐胺、亚精胺等多胺[37],其能影响肠黏膜和各种免疫功能。多胺对于细胞基因表达和细胞增殖有调控作用,因此需要严格控制细胞中多胺的含量[38]。在结肠癌中,多胺是肿瘤生长的标志物,也是结肠癌化学预防的靶标[39]。精胺和组胺能抑制炎性小体NOD样受体家族含pyrin结构域蛋白6(NLRP6)的活化,并减少白细胞介素-18(IL-18)的分泌,破坏肠道黏膜屏障功能[39]。Guarcello等[35]研究发现,乳酸菌在体外能够合成多铜氧化酶分解生物胺。Herrero-Fresno等[41]研究发现,干酪乳杆菌EML 1116编码生物胺降解酶的基因在质粒上。Linsalata等[41]研究发现,口服短乳杆菌能降低幽门螺杆菌阳性消化不良患者胃中幽门螺杆菌的数量,并且降低胃鸟氨酸脱羧酶活性以及降低胃中的多胺含量。本试验中,与对照组相比,饲粮添加干酪乳杆菌代田株极显著降低了断奶仔猪结肠内容物色胺、甲胺、组胺、尸胺和腐胺含量,这说明干酪乳杆菌代田株对结肠中的生物胺起到了降解作用,从而维持了肠道黏膜屏障功能的完整性,促进机体的健康。

4 结论

饲粮添加干酪乳杆菌代田株能够提高断奶仔猪生长性能和抗氧化功能,降低结肠内容物生物胺含量,具有替代抗生素的功效。

参考文献
[1]
DIRKZWAGER A, VELDMAN B, BIKKER P. A nutritional approach for the prevention of post weaning syndrome in piglets[J]. Animal Research, 2005, 54(3): 231-236. DOI:10.1051/animres:2005013
[2]
WASSENAAR T M, KLEIN G. Safety aspects and implications of regulation of probiotic bacteria in food and food supplements[J]. Journal of Food Protection, 2008, 71(8): 1734-1741. DOI:10.4315/0362-028X-71.8.1734
[3]
曹瑞博, 汪建明. 干酪乳杆菌的功能性研究及其应用[C]//第十三届中国国际食品添加剂和配料展览会暨第十九届全国食品添加剂生产应用技术展示研讨会论文集. 上海: 中国食品添加剂和配料协会, 2009.
CAO R B, WANG J M.Functional study of Lactobacillus casei and its application[C]//Proceedings of the 13th China international food additives and ingredients exhibition and the 19th national symposium on food additives production and application technology exhibition.Shanghai: China Food Additives and Ingredients Association, 2009.(in Chinese)
[4]
YULIANTO A B, LOKAPIRNASARI W P, NAJWAN R, et al. Influence of Lactobacillus casei WB 315 and crude fish oil (CFO) on growth performance, EPA, DHA, HDL, LDL, cholesterol of meat broiler chickens[J]. Iranian Journal of Microbiology, 2020, 12(2): 148-155.
[5]
LOKAPIRNASARI W P, PRIBADI T B, AL ARIF A, et al. Potency of probiotics Bifidobacterium spp. and Lactobacillus casei to improve growth performance and business analysis in organic laying hens[J]. Veterinary World, 2019, 12(6): 860-867. DOI:10.14202/vetworld.2019.860-867
[6]
刘宏宇, 汪立平, 艾连中, 等. 乳酸菌的抗氧化活性和耐酸耐胆盐性能的研究[J]. 食品工业科技, 2014, 35(2): 92-96, 99.
LIU H Y, WANG L P, AI L Z, et al. Study on antioxidant activity and acid and cholesteric resistance of lactic acid bacteria[J]. Science and Technology of food industry, 2014, 35(2): 92-96, 99 (in Chinese).
[7]
陈燕, 王光强, 张汇, 等. 益生菌对DSS诱导的炎症性肠病的作用及机制研究[C]//益生菌: 技术及产业化——第十三届益生菌与健康国际研讨会摘要集. 广州: 中国食品科学技术学会, 2018: 8-9.
CHEN Y, WANG G Q, ZHANG H, et al.Study on the effect and mechanism of probiotics on inflammatory bowel disease induced by DSS[C]//Probiotics: technology and industrialization—summary of the 13th international symposium on probiotics and health.Guangzhou: Chinese Society of Food Science and Technology, 2018: 8-9.(in Chinese)
[8]
LI Y H, HOU S L, PENG W, et al. Oral administration of Lactobacillus delbrueckii during the suckling phase improves antioxidant activities and immune responses after the weaning event in a piglet model[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 6919803.
[9]
ZAGO M, FORNASARI M E, CARMINATI D, et al. Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses[J]. Food Microbiology, 2011, 28(5): 1033-1040. DOI:10.1016/j.fm.2011.02.009
[10]
WANG W C, GU W T, TANG X F, et al. Molecular cloning, tissue distribution and ontogenetic expression of the amino acid transporter b0, + cDNA in the small intestine of Tibetan suckling piglets[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2009, 154(1): 157-164. DOI:10.1016/j.cbpb.2009.05.014
[11]
许丽卫, 耿梅梅, 张丽萍, 等. 柱前衍生-反相高效液相色谱法测定仔猪结肠内容物生物胺含量[J]. 营养学报, 2014, 36(1): 78-83.
XU W L, GENG M M, ZHANG L P, et al. Determination of bioamines in colonic contents of piglets by pre-column derivatization RP-HPLC[J]. Acta Nutrimenta Sinica, 2014, 36(1): 78-83 (in Chinese).
[12]
CAMPBELL J M, CRENSHAW J D, POLO J. The biological stress of early weaned piglets[J]. Journal of Animal Science and Biotechnology, 2013, 4: 19. DOI:10.1186/2049-1891-4-19
[13]
DAWOOD M A O, MAGOUZ F I, SALEM M F I, et al. Modulation of digestive enzyme activity, blood health, oxidative responses and growth-related gene expression in GIFT by heat-killed Lactobacillus plantarum (L-137)[J]. Aquaculture, 2019, 505: 127-136. DOI:10.1016/j.aquaculture.2019.02.053
[14]
陈勇, 黄可欣, 梁谱鑫, 等. 饲料中添加复合微生态制剂对仔猪生长性能及养分表观消化率的影响[J]. 中国饲料, 2019(21): 57-59.
CHEN Y, HUANG K X, LIANG P X, et al. Effects of compound probiotic on growth performance and apparent digestibility of nutrients in piglets[J]. China Feed, 2019(21): 57-59 (in Chinese).
[15]
LIU C Q, ZHU Q, CHANG J, et al. Effects of Lactobacillus casei and Enterococcus faecalis on growth performance, immune function and gut microbiota of suckling piglets[J]. Archives of Animal Nutrition, 2017, 71(2): 120-133. DOI:10.1080/1745039X.2017.1283824
[16]
XU C L, YAN S Q, GUO Y, et al. Lactobacillus casei ATCC 393 alleviates Enterotoxigenic Escherichia coli K88-induced intestinal barrier dysfunction via TLRs/mast cells pathway[J]. Life Sciences, 2020, 244: 117281. DOI:10.1016/j.lfs.2020.117281
[17]
WANG Y Y, YAN X, ZHANG W W, et al. Lactobacillus casei Zhang prevents jejunal epithelial damage to early-weaned piglets induced by Escherichia coli K88 via regulation of intestinal mucosal integrity, tight junction proteins and immune factor expression[J]. Journal of Microbiology and Biotechnology, 2019, 29(6): 863-876. DOI:10.4014/jmb.1903.03054
[18]
ZHAO D, WU T, YI D, et al. Dietary supplementation with Lactobacillus casei alleviates lipopolysaccharide-induced liver injury in a porcine model[J]. International Journal of Molecular Sciences, 2017, 18(12): 2535. DOI:10.3390/ijms18122535
[19]
杨慧, 林伯全, 张力, 等. L-精氨酸和乳酸菌对早期断奶仔猪生长性能、血液生化指标和小肠黏膜形态的影响[J]. 福建农林大学学报(自然科学版), 2012, 41(4): 514-519.
YANG H, LIN B Q, ZHANG L, et al. Effects of L-arginine and Lactobacillus on growth performance, blood biochemical index and intestinal mucosal morphology of weanling pigs[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2012, 41(4): 514-519 (in Chinese). DOI:10.3969/j.issn.1671-5470.2012.04.013
[20]
DASGUPTA A, KLEIN K.Chapter 1-introduction to free radicals and the body's antioxidant defense[M]//DASGUPTA A, KLEIN K.Antioxidants in food, vitamins and supplements: prevention and treatment of disease.Amsterdam: Elsevier, 2014: 1-18.
[21]
ZHU L H, ZHAO K L, CHEN X L, et al. Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs[J]. Journal of Animal Sciences, 2012, 90(8): 2581-2589.
[22]
陈刚. 止痢草油缓解断奶仔猪肠道氧化应激的作用及机制[D]. 博士学位论文. 武汉: 华中农业大学, 2015.
CHEN G.Effect and mechanism of oregano essential oil reduce intestinal oxidative stress in weaned pigs[D].Ph.D. Thesis.Wuhan: Huazhong Agricultural University, 2015.(in Chinese)
[23]
WANG A N, CAI C J, ZENG X F, et al. Dietary supplementation with Lactobacillus fermentum I5007 improves the anti-oxidative activity of weanling piglets challenged with diquat[J]. Journal of Applied Microbiology, 2013, 114(6): 1582-1591. DOI:10.1111/jam.12188
[24]
LIN X N, XIA Y J, WANG G Q, et al. Lactic acid bacteria with antioxidant activities alleviating oxidized oil induced hepatic injury in mice[J]. Frontiers in Microbiology, 2018, 9: 2684. DOI:10.3389/fmicb.2018.02684
[25]
FINAMORE A, AMBRA R, NOBILI F, et al. Redox role of Lactobacillus casei Shirota against the cellular damage induced by 2, 2'-azobis (2-amidinopropane) dihydrochloride-induced oxidative and inflammatory stress in enterocytes-like epithelial cells[J]. Frontiers in Immunology, 2018, 9: 1131. DOI:10.3389/fimmu.2018.01131
[26]
KOBATAKE E, NAKAGAWA H, SEKI T, et al. Protective effects and functional mechanisms of Lactobacillus gasseri SBT2055 against oxidative stress[J]. PLoS One, 2017, 12(5): e0177106. DOI:10.1371/journal.pone.0177106
[27]
FENG T, WANG J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review[J]. Gut Microbes, 2020, 12(1): 1801944. DOI:10.1080/19490976.2020.1801944
[28]
LIN X N, XIA Y J, WANG G Q, et al. Lactobacillus plantarum AR501 alleviates the oxidative stress of D-galactose-induced aging mice liver by upregulation of Nrf2-mediated antioxidant enzyme expression[J]. Journal of Food Science, 2018, 83(7): 1990-1998. DOI:10.1111/1750-3841.14200
[29]
ZHAO Z J, WANG C, ZHANG L, et al. Lactobacillus plantarum NA136 improves the non-alcoholic fatty liver disease by modulating the AMPK/Nrf2 pathway[J]. Applied Microbiology and Biotechnology, 2019, 103(14): 5843-5850. DOI:10.1007/s00253-019-09703-4
[30]
CHEN F M, WANG H J, CHEN J Y, et al. Lactobacillus delbrueckii ameliorates intestinal integrity and antioxidant ability in weaned piglets after a lipopolysaccharide challenge[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020: 6028606.
[31]
CHANG S Y, CHEN Y W, ZHAO X P, et al. Catalase prevents maternal diabetes-induced perinatal programming via the Nrf2-HO-1 defense system[J]. Diabetes, 2012, 61(10): 2565-2574. DOI:10.2337/db12-0248
[32]
GARCÍA G R, DOGI C A, ASHWORTH G E, et al. Effect of breast feeding time on physiological, immunological and microbial parameters of weaned piglets in an intensive breeding farm[J]. Veterinary Immunology and Immunopathology, 2016, 176: 44-49. DOI:10.1016/j.vetimm.2016.02.009
[33]
GARCÍA G, AGOSTO M E, CAVAGLIERI L, et al. Effect of fermented whey with a probiotic bacterium on gut immune system[J]. Journal of Dairy Research, 2020, 87(1): 134-137. DOI:10.1017/S0022029919000980
[34]
KIM Y S, HO S B. Intestinal goblet cells and mucins in health and disease: recent insights and progress[J]. Current Gastroenterology Reports, 2010, 12(5): 319-330. DOI:10.1007/s11894-010-0131-2
[35]
王誉颖, 汤林杰, 李姣, 等. 干酪乳杆菌对发育期腹泻模型大鼠回肠黏膜结构及MUC2含量的影响[J]. 中国农业大学学报, 2019, 24(8): 94-101.
WANG Y Y, TANG L J, LI J, et al. Effect of Lactobacillus casei on the ileal mucosal structure and MUC2 content of rats with developmental diarrhea[J]. Journal of China Agricultural University, 2019, 24(8): 94-101 (in Chinese).
[36]
GUARCELLO R, DE ANGELIS M, SETTANNI L, et al. Selection of amine-oxidizing dairy lactic acid bacteria and identification of the enzyme and gene involved in the decrease of biogenic amines[J]. Applied and Environment Microbiology, 2016, 82(23): 6870-6880. DOI:10.1128/AEM.01051-16
[37]
MICHAEL A J. Biosynthesis of polyamines and polyamine-containing molecules[J]. Biochemical Journal, 2016, 473(15): 2315-2329. DOI:10.1042/BCJ20160185
[38]
MILLER-FLEMING L, OLIN-SANDOVAL V, CAMPBELL K, et al. Remaining mysteries of molecular biology: the role of polyamines in the cell[J]. Jouenal of Molecular Biology, 2015, 427(21): 3389-3406. DOI:10.1016/j.jmb.2015.06.020
[39]
MILOVIC V, TURCHANOWA L. Polyamines and colon cancer[J]. Biochemical Society Transactions, 2003, 31(2): 381-383. DOI:10.1042/bst0310381
[40]
LEVY M, THAISS C A, ZEEVI D, et al.Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling[J].Cell, 163(6): 1428-1443.
[41]
HERRERO-FRESNO A, MARTÍNEZ N, SÁNCHEZ-LLANA E, et al. Lactobacillus casei strains isolated from cheese reduce biogenic amine accumulation in an experimental model[J]. International Journal of Food Microbiology, 2012, 157(2): 297-304. DOI:10.1016/j.ijfoodmicro.2012.06.002
[42]
LINSALATA M, RUSSO F, BERLOCO P, et al. The influence of Lactobacillus brevis on ornithine decarboxylase activity and polyamine profiles in Helicobacter pylori-infected gastric mucosa[J]. Helicobacter, 2004, 9(2): 165-172. DOI:10.1111/j.1083-4389.2004.00214.x