动物营养学报    2021, Vol. 33 Issue (6): 3228-3236    PDF    
饲粮添加缩合单宁对肉鸡生长性能、肉品质、免疫功能、抗氧化功能及肠道形态的影响
唐青松1,2 , 肖明飞1,2 , 易宏波2 , 熊海涛3 , 黄加珍4 , 徐娥1     
1. 贵州大学动物科学学院, 动物营养与饲料研究所, 贵阳 550025;
2. 广东省农业科学院动物科学研究所, 畜禽育种国家重点实验室, 农业农村部华南动物营养与饲料重点实验室, 广东省畜禽育种与营养研究重点实验室, 广州 510640;
3. 山东新航线生物科技有限公司, 潍坊 261057;
4. 浙江福佑生物科技有限公司, 温州 325000
摘要: 本试验旨在探究饲粮添加缩合单宁对肉鸡生长性能、肉品质、免疫功能、抗氧化功能和肠道形态的影响。选取360只健康状况良好的1日龄817肉仔鸡,按体重无差异原则随机分为3组,每组6个重复,每个重复20只。对照组饲喂基础饲粮,试验组分别在基础饲粮中添加100(CT-100组)和200 mg/kg(CT-200组)的缩合单宁。试验期42 d。结果表明:1)与对照组相比,CT-100组的平均日增重显著提高(P < 0.05),料重比显著降低(P < 0.05)。2)与对照组相比,CT-100组、CT-200组肌肉45 min和24 h黄度(b*)值均显著降低(P < 0.05),且CT-200组肌肉45 min b*值显著低于CT-100组(P < 0.05)。3)与对照组相比,CT-100组、CT-200组血浆免疫球蛋白G(IgG)和免疫球蛋白A(IgA)含量均显著提高(P < 0.05),CT-100组血浆免疫球蛋白M(IgM)含量显著提高(P < 0.05)。4)与对照组相比,CT-100组、CT-200组血浆和肝脏丙二醛(MDA)含量均显著降低(P < 0.05),血浆总抗氧化能力(T-AOC)和肝脏总超氧化物歧化酶(T-SOD)活性显著提高(P < 0.05);CT-100组肝脏T-AOC和血浆T-SOD活性均显著提高(P < 0.05)。5)与对照组相比,CT-100组空肠绒隐比(V/C)显著提高(P < 0.05),CT-200组回肠绒毛高度显著提高(P < 0.05)。由此可见,饲粮添加适量缩合单宁能够一定程度地改善肉鸡的生长性能、肉品质、免疫功能、抗氧化功能以及肠道形态,且添加100 mg/kg的效果优于200 mg/kg。
关键词: 缩合单宁    肉仔鸡    生长性能    抗氧化功能    免疫功能    肉品质    
Effects of Dietary Condensed Tannins on Growth Performance, Meat Quality, Immune Function, Antioxidant Function and Intestinal Morphology of Broilers
TANG Qingsong1,2 , XIAO Mingfei1,2 , YI Hongbo2 , XIONG Haitao3 , HUANG Jiazhen4 , XU E1     
1. Institute of Animal Nutrition and Feed Science, College of Animal Science, Guizhou University, Guiyang 550025, China;
2. State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch of Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
3. Shandong New Airline Biotechnology Co., Ltd., Weifang 261057, China;
4. Zhejiang Fuyou Biotechnology Co., Ltd., Wenzhou 325000, China
Abstract: This experiment was conducted to investigate the effects of dietary condensed tannins on growth performance, meat quality, immune function, antioxidant function and intestinal morphology of broilers. A total of 360 healthy one-day-old 817 broilers with similar body weight were selected and randomly divided into 3 groups with 6 replicates in each group and 20 broilers in each replicate. Broilers were fed a basal diet (control group), the basal diet supplemented with 100 (CT-100 group) or 200 mg/kg (CT-200 group) condensed tannin for 42 days. The results showed as follows: 1) compared with the control group, the average daily gain (ADG) in the CT-100 group was significantly increased (P < 0.05), while the feed to gain ratio (F/G) was significantly decreased (P < 0.05). 2) The muscle yellowness (b*) value of broilers at 45 min and 24 h in the CT-100 and CT-200 groups were significantly lower than those in the control group (P < 0.05), and the muscle b* value at 45 min in the CT-200 group was significantly lower than that in the CT-100 group (P < 0.05). 3) Plasma immunoglobulin G (IgG) and immunoglobulin A (IgA) contents were significantly increased in the CT-100 and CT-200 groups (P < 0.05), and plasma immunoglobulin M (IgM) content was significantly increased in the CT-100 group compared with the control group (P < 0.05). 4) The malondialdehyde (MDA) content in plasma and liver was significantly decreased (P < 0.05) and the total antioxidant capacity (T-AOC) in plasma and the total superoxide dismutase (T-SOD) activity in liver were significantly increased (P < 0.05) in the CT-100 and CT-200 groups compared with the control group. The T-AOC in liver and the T-SOD activity in plasma were significantly increased in the CT-100 group compared with the control group (P < 0.05). 5) The villous height/crypt depth ratio (V/C) of jejunum in the CT-100 group was significantly increased (P < 0.05), and the villi height of ileum in the CT-200 group was significantly increased compared with the control group (P < 0.05). In conclusion, dietary supplementation with appropriate amount of condensed tannins can improve the growth performance, meat quality, immune function, antioxidant function and intestinal morphology of broilers to a certain extent, and supplementation with 100 mg/kg condensed tannins in the diet shows better effect than that with 200 mg/kg.
Key words: condensed tannins    broilers    growth performance    antioxidant function    immune function    meat quality    

缩合单宁(condensed tannins)是植物界普遍存在的复杂次生代谢产物,其是由黄烷-3-醇单体组成的低聚物(2~10个单体)或聚合物(>10个单体),广泛存在于豆科牧草、谷物、灌木和草药中[1-2]。缩合单宁的多元酚羟基与蛋白质、多糖、金属离子等络合形成复合物,阻碍营养物质的消化吸收,因而传统上认为是单胃动物的“抗营养因子”[3]。近年来研究揭示,缩合单宁能够清除自由基,并具有较高的分子质量(1 000~20 000 u)及芳香环高度羟基化的结构特性,使其比低分子质量的多酚或非酚类抗氧化剂具有更强的抗氧化能力[3-6]。缩合单宁通过促进肠道拟杆菌和乳酸菌的增殖,抑制致病性大肠杆菌的活动,从而改善动物肠道健康[7-8]。研究表明,缩合单宁不能直接被肠道吸收利用,而是被肠道微生物转化或降解后发挥作用[9],其微生物代谢产物尿石素(urolithins)具有较强的抗炎作用[10]。研究报道,缩合单宁与水解单宁通过螯合金属、抗氧化、抗菌和络合作用机制来治疗和预防肠胃炎症和腹泻,并且通过抑制微生物胞外酶和抑制氧化磷酸化作用于微生物代谢[11]。此外,缩合单宁还具有抗寄生虫、抗病毒、免疫调节等多种生物学功能,具有安全高效、无污染、无残留等诸多优点[2, 10]。迄今为止,有关缩合单宁在肉鸡上的研究报道较少,且不同植物来源、化学结构和添加剂量缩合单宁的使用效果差异较大[12-14],这些都限制了缩合单宁在肉鸡饲粮中的科学使用。因此,本试验选用提取于坚木的缩合单宁为研究对象,研究饲粮中添加不同水平的缩合单宁对肉鸡生长性能、肉品质、免疫功能、抗氧化功能及肠道形态的影响,以期为缩合单宁在肉鸡饲粮中的合理应用提供依据。

1 材料与方法 1.1 试验材料与试验设计

试验用缩合单宁提取于坚木,分子质量在1 700~1 900 u,由33%的二聚物、37%的三聚物、21%的四聚物、8%的五聚物以及1%的七聚物构成。该缩合单宁由阿根廷某公司生产,含量为75%。选取360只健康状况良好的1日龄817肉仔鸡,根据体重无差异原则随机分为3组,每组6个重复,每个重复20只。对照组(CON组)饲喂不添加缩合单宁的基础饲粮,试验组分别在基础饲粮中添加100(CT-100组)和200 mg/kg(CT-200组)的缩合单宁。试验分为第1阶段(1~21日龄)和第2阶段(22~42日龄),试验期42 d。

1.2 饲养管理与基础饲粮

试验开展前清理消毒鸡舍。所有鸡只自由采食饲粮(颗粒料)和自由饮水,鸡舍通风和环境符合卫生要求,各组肉仔鸡饲养管理和免疫接种程序按常规饲养规程进行。基础饲粮为玉米-豆粕型,参照《中国饲料成分及营养价值表(2018年第29版)》和《鸡饲养标准》(NY/T 33—2004)进行配制,其组成及营养水平见表 1

表 1 基础饲粮组成及营养水平(饲喂基础) Table 1 Composition and nutrient levels of basal diets (as-fed basis)  
1.3 指标测定与方法 1.3.1 生长性能

在饲养试验开始和结束(42日龄)前1天19:00断料供水,于次日07:00以重复为单位称鸡空腹重、结料,计算每组的平均日采食量(ADFI)、平均日增重(ADG)和料重比(F/G)。

1.3.2 免疫器官指数

饲养试验结束(42日龄)时,每组选择12只(每个重复2只鸡)符合试验群体均重的鸡只颈部放血致死,去羽毛、喙壳、脚皮和趾壳后称重得屠体重。屠宰后解剖取免疫器官(肝脏、脾脏、法氏囊和胸腺)并剔除表面结缔组织和脂肪后称重,计算免疫器官指数。计算公式如下:

1.3.3 肉品质

对屠宰的鸡只取右侧胸肌用于测定肌肉滴水损失率、pH和肉色,测定方法按照《畜禽肉质的测定》(NY/T 1333—2007)进行;取左侧胸肌用于测定肌肉剪切力,测定方法按照《肉嫩度的测定剪切力测定法》(NY/T 1180—2006)进行。

1.3.4 免疫球蛋白含量与抗氧化指标

每个重复选取接近平均体重的2只鸡翅静脉采血,每只采集5 mL于加有肝素钠的抗凝管中,室温静置1 h后,3 500 r/min离心10 min取上清并分装,-80 ℃保存待测。对屠宰的肉鸡取左侧肝脏,剪成小块后装于1.5 mL离心管,-80 ℃保存。检测时取出-80 ℃保存的肝脏样品于冰上解冻,按1 ∶ 9(g ∶ mL)的质量体积比加入预冷的生理盐水,4 ℃条件下机械匀浆,12 000 r/min离心5 min,取上清待测。肝脏和血浆总超氧化物歧化酶(T-SOD)活性、总抗氧化能力(T-AOC)和丙二醛(MDA)含量均采用南京建成生物工程研究所生产的试剂盒检测。血浆免疫球蛋白A(IgA)、免疫球蛋白G(IgG)和免疫球蛋白M(IgM)含量均采用江苏麦莎实业有限公司产品生产的试剂盒检测。所有操作步骤按试剂盒说明书进行。

1.3.5 肠道形态

对屠宰的鸡只剖取分离出十二指肠、空肠和回肠,剪取各肠段中段1~2 cm,去掉肠道内容物,置于4%多聚甲醛溶液中常温固定。切片制作程序参照Sen等[15],使用苏木精-伊红(HE)染色。切片使用Axio Scope A1显微镜(Zeiss,德国)观察并拍照,使用Image-Pro软件测量肠道绒毛高度和隐窝深度,并计算绒毛高度和隐窝深度的比值,即绒隐比(V/C)。

1.4 数据处理与统计分析

试验数据先用Excel 2019进行初步整理,再采用SPSS 18.0进行单因素方差分析(one-way ANOVA),组间差异采用LSD法进行比较。结果以平均值和均值标准误(SEM)表示,P<0.05表示有显著差异。

2 结果 2.1 饲粮添加缩合单宁对肉鸡生长性能的影响

表 2可知,与对照组相比,CT-100组肉鸡的末重显著提高(P<0.05)。CT-100组肉鸡的ADG较对照组提高了4.97%(P<0.05),F/G较对照组降低了6.37%(P<0.05)。肉鸡的ADFI各组间差异不显著(P>0.05)。

表 2 饲粮添加缩合单宁对肉鸡生长性能的影响 Table 2 Effects of dietary condensed tannins on growth performance of broilers
2.2 饲粮添加缩合单宁对肉鸡肉品质的影响

表 3可知,CT-100组肌肉45 min黄度(b*)值显著低于对照组(P<0.05),比对照组降低了26.96%;CT-200组肌肉45 min b*值较CT-100组和对照组分别显著降低16.49%和39.01%(P<0.05)。与对照组相比,CT-100组、CT-200组24 h b*值均显著降低(P<0.05),分别降低了20.42%、26.37%。各组肌肉滴水损失率、剪切力和24 h pH差异不显著(P>0.05)。

表 3 饲粮添加缩合单宁对肉鸡肉品质的影响 Table 3 Effects of dietary condensed tannins on meat quality of broilers
2.3 饲粮添加缩合单宁对肉鸡免疫功能的影响

表 4可知,与对照组相比,CT-100组和CT-200组肉鸡肝脏指数、脾脏指数、法氏囊指数均无显著变化(P>0.05)。与对照组相比,CT-100组、CT-200组血浆IgG含量显著升高(P<0.05),血浆IgA含量分别显著升高32.74%、31.82%(P<0.05)。CT-100组血浆IgM含量较对照组显著升高17.93%(P<0.05),CT-200组则与对照组无显著差异(P>0.05)。

表 4 饲粮添加缩合单宁对肉鸡免疫功能的影响 Table 4 Effects of dietary condensed tannins on immune function of broilers
2.4 饲粮添加缩合单宁对肉鸡抗氧化功能的影响

表 5可知,与对照组相比,CT-100组、CT-200组血浆MDA含量分别显著降低32.55%、28.52%(P<0.05),肝脏MDA含量分别显著降低48.56%、53.60%(P<0.05),血浆T-AOC分别显著升高58.18%、46.28%(P<0.05),肝脏T-SOD活性分别显著升高58.37%、74.33%(P<0.05)。此外,CT-100组血浆T-SOD活性和肝脏T-AOC也较对照组分别显著升高了43.02%和37.50%(P<0.05)。

表 5 饲粮添加缩合单宁对肉鸡血浆和肝脏抗氧化指标的影响 Table 5 Effects of dietary condensed tannins on antioxidant indexes in plasma and liver of broilers
2.5 饲粮添加缩合单宁对肉鸡肠道形态的影响

表 6可知,与对照组相比,CT-100组、CT-200组十二指肠绒毛高度、隐窝深度和V/C均无显著变化(P>0.05);CT-100组空肠V/C显著升高20.99%(P<0.05);CT-200组回肠绒毛高度显著升高17.47%(P<0.05);CT-100组、CT-200组回肠V/C分别显著升高25.76%、27.44%(P<0.05)。

表 6 饲粮添加缩合单宁对肉鸡肠道形态的影响 Table 6 Effects of dietary condensed tannins on intestinal morphology of broilers
3 讨论 3.1 饲粮添加缩合单宁对肉鸡生长性能的影响

近年的研究普遍认为,一些植物来源的低剂量缩合单宁可以改善家禽的生长性能和健康状况[2, 16]。Abu Hafsa等[17]研究发现,饲粮添加10~20 g/kg富含缩合单宁的葡萄籽显著增加了科布肉鸡1~42日龄的ADG,而添加剂量达到40 g/kg时显著降低了ADG,各添加剂量对ADFI无显著影响。Ali等[12]报道,饲粮添加250 mg/kg的葡萄籽缩合单宁对科布肉鸡1~28日龄的ADFI无显著影响,但显著提高了ADG。本试验中,饲粮添加100、200 mg/kg缩合单宁对肉鸡1~42日龄的ADFI无显著影响,仅有100 mg/kg的添加剂量改善了1~42日龄肉鸡的ADG和F/G。也有研究表明,饲粮添加5、10、20、40和80 mg/kg的葡萄籽缩合单宁显著增加了感染大肠杆菌石岐扎肉鸡1~15日龄的增重[18]。然而,Wu等[13]研究表明,饲粮添加0.050%、0.075%和0.100%松针缩合单宁对1~15日龄爱拔益加肉鸡的生长性能无显著影响。Yang等[14]研究发现,饲粮添加7.5、15.0和30.0 mg/kg葡萄缩合单宁均降低了1~42日龄科布肉鸡的ADFI和饲料转化率,对ADG无显著影响。目前,在白色利沃诺母鸡上研究发现,添加剂量高达1%的白坚木缩合单宁对其生长性能没有负面影响[19]。以上研究结果提示,缩合单宁在家禽上的实际促生长效果存在较大差异,这可能依赖于缩合单宁降低饲料适口性的负面影响和其抗氧化、调节菌群和免疫调节等益生生物学功能的平衡关系,并且和饲粮组成、缩合单宁的化学结构及含量、动物种类及生理状态密切相关[3]。综合生长性能各项指标可知,100 mg/kg的缩合单宁改善肉鸡生长性能效果优于200 mg/kg。

3.2 饲粮添加缩合单宁对肉鸡免疫功能的影响

血浆免疫球蛋白含量和免疫器官指数是评价家禽免疫功能的重要指标,免疫抑制可降低免疫器官指数和血浆免疫球蛋白含量[20]。Wu等[13]研究发现,在爱拔益加肉鸡注射脂多糖成功模拟免疫应激后,松针缩合单宁通过降低血清中氮氧化合物(NOx)和炎症因子包括干扰素-γ(INF-γ)、白细胞介素(IL)-1β、IL-2、IL-4、IL-6、IL-10的含量来缓解免疫应激。Ali等[12]研究发现,250、500 mg/kg的葡萄籽缩合单宁缓解了黄曲霉毒素引起的肉鸡免疫功能(血清免疫球蛋白含量)和生长性能及抗氧化功能的下降。本试验中,饲粮添加100、200 mg/kg缩合单宁均显著提高了肉鸡血浆IgG和IgA含量,并且100 mg/kg缩合单宁显著提高了肉鸡血浆IgM含量。这提示缩合单宁在正常与免疫应激状态均具有良好的提高免疫功能的作用,并且100 mg/kg缩合单宁提高肉鸡免疫功能的效果优于200 mg/kg。

3.3 饲粮添加缩合单宁对肉鸡抗氧化功能和肉品质的影响

氧化应激是动物机体内羟基自由基和超氧阴离子等自由基产生的一种负面影响,过量的活性氧(ROS)会损伤蛋白质和核酸,并产生大量的MDA损伤组织,因而易引起机体衰老与疾病[21]。T-AOC是衡量机体抗氧化功能的重要指标,T-SOD是动物机体主要的抗氧化酶之一,MDA是氧化应激的标志物[22]。研究显示,缩合单宁通过清除超氧化物自由基、羟自由基、过氧化氢和一氧化氮等自由基来发挥抗氧化作用[3],并通过激活细胞Kelch样环氧氯丙烷相关蛋白1(Keap1)-核因子E2相关因子2(Nrf2)/抗氧化反应元件(ARE)信号通路,上调下游Ⅱ相解毒酶和抗氧化酶基因表达水平,提高动物的抗氧化应激能力[23]。Yang等[14]研究表明,饲粮添加7.5和15.0 mg/kg葡萄缩合单宁可提高科布肉鸡42日龄血浆T-SOD活性,并降低MDA含量。Farahat等[24]研究表明,0.125%~2.000%(最佳剂量为0.125%~0.250%)的葡萄籽缩合单宁对肉鸡表现出显著的抗氧化和免疫刺激作用。进一步增加添加剂量至5 g/kg时,葡萄籽缩合单宁对肉鸡生长性能、蛋白质和氨基酸消化率产生了负面影响[25]。然而,Chamorro等[26]报道,饲粮添加10%的葡萄果渣(富含缩合单宁)对1~21日龄肉鸡的生长性能无负面影响,并且改善了机体的抗氧化功能。相似的是,本试验中缩合单宁同样表现出了与以往研究类似的突出抗氧化能力,饲粮添加100和200 mg/kg缩合单宁对肉鸡血浆与肝脏T-AOC和T-SOD活性均有所提高,并降低了血浆和肝脏MDA含量,表现出良好的抗氧化能力。

肉鸡肉品质指标主要为肌肉pH、肉色、嫩度、滴水损失率等,这些性状反映了肉品质的良好程度。剪切力是反映肌肉嫩度最直观的指标[27]。pH与肌肉嫩度、蒸煮损失和保存时间有关[28]。肉色是肌肉生物化学、微生物学和生理的外在表现,主要受肌肉中肌红蛋白与血红蛋白含量及存在状态的影响[29]。本试验中所有组别肉鸡肌肉24 h pH均略高于优质肉的pH(5.4~5.7)[30],但是随着缩合单宁添加,逐步降低了肌肉45 min和24 h b*值,并且缩合单宁的添加对肌肉pH、嫩度和滴水损失率无负面影响。目前,缩合单宁对肉鸡肉品质影响的研究报道极少,有关植物性饲料添加剂的相关研究表明,植物性饲料添加剂可通过调节应激和抗氧化相关途径来改善肉鸡的肉品质[31]。综合本试验抗氧化和肉品质各项指标可知,饲粮添加100和200 mg/kg缩合单宁改善了肉鸡的抗氧化功能和肉品质,且肉品质的改善可能与抗氧化功能的改善有关。

3.4 饲粮添加缩合单宁对肉鸡肠道形态的影响

小肠是肉鸡对营养物质消化吸收的主要场所,肠道形态的良好程度关系着机体的稳定和健康[32]。肠道绒毛高度、隐窝深度和V/C是衡量肠道吸收功能的重要指标,肠道绒毛越长和隐窝深度越浅表明对营养物质的吸收能力越强[22]。研究表明,缩合单宁通过调节肠道菌群和降低氧化应激,并且与其肠道微生物代谢产物(羟基苯甲酸、羟基苯乙酸和羟基苯丙酸等酚酸)一起间接或直接促进肠道健康[33]。Yang等[14]研究表明,饲粮添加7.5和15.0 mg/kg葡萄缩合单宁均显著降低了42日龄科布肉鸡空肠隐窝深度和V/C。然而,本试验中,饲粮添加100 mg/kg缩合单宁显著提高了空肠V/C。从光雷等[34]的研究发现,饲粮添加100、500 mg/kg橡椀水解单宁显著提高了42日龄爱拔益加肉鸡的回肠绒毛高度。Liu等[35]研究发现,在热应激状态下,饲粮添加2 g/kg栗木水解单宁显著提高了42日龄罗斯仔鸡空肠绒毛高度。本试验中,饲粮添加200 mg/kg缩合单宁显著增加了回肠绒毛高度,这提示尽管缩合单宁与水解单宁的结构差异较大,适量的缩合单宁仍然可能具有与水解单宁相似的改善肠道形态的功效。综合本试验肠道形态各项指标认为,100、200 mg/kg缩合单宁对肉鸡肠道形态无负面影响,200 mg/kg缩合单宁对肠道形态的改善作用略优于100 mg/kg。

4 结论

综合以上试验结果得出,饲粮添加适量缩合单宁能够一定程度地改善肉鸡的生长性能、免疫功能、抗氧化功能、肉品质以及肠道形态,且添加100 mg/kg的效果优于200 mg/kg。

参考文献
[1]
GIRARD M, BEE G. Invited review: tannins as a potential alternative to antibiotics to prevent coliform diarrhea in weaned pigs[J]. Animal, 2020, 14(1): 95-107. DOI:10.1017/S1751731119002143
[2]
HUANG Q Q, LIU X L, ZHAO G Q, et al. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production[J]. Animal Nutrition, 2018, 4(2): 137-150. DOI:10.1016/j.aninu.2017.09.004
[3]
彭凯, 王玉玺, 王国霞, 等. 缩合单宁的生物功能及其在动物生产中的应用[J]. 动物营养学报, 2020, 32(8): 3451-3460.
PENG K, WANG Y X, WANG G X, et al. Biological function of condensed tannins and their application in animal production[J]. Chinese Journal of Animal Nutrition, 2020, 32(8): 3451-3460 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.08.001
[4]
KOLECKAR V, KUBIKOVA K, REHAKOVA Z, et al. Condensed and hydrolysable tannins as antioxidants influencing the health[J]. Mini Reviews in Medicinal Chemistry, 2008, 8(5): 436-447. DOI:10.2174/138955708784223486
[5]
HAGERMAN A E, RIEDL K M, JONES G A, et al. High molecular weight plant polyphenolics (tannins) as biological antioxidants[J]. Journal of Agricultural and Food Chemistry, 1998, 46(5): 1887-1892. DOI:10.1021/jf970975b
[6]
RICCI A, OLEJAR K J, PARPINELLO G P, et al. Antioxidant activity of commercial food grade tannins exemplified in a wine model[J]. Food Additives & Contaminants: Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2016, 33(12): 1761-1774.
[7]
CARDONA F, ANDRÉS-LACUEVA C, TULIPANI S, et al. Benefits of polyphenols on gut microbiota and implications in human health[J]. The Journal of Nutritional Biochemistry, 2013, 24(8): 1415-1422. DOI:10.1016/j.jnutbio.2013.05.001
[8]
DAKHEEL M M, ALKANDARI F A H, MUELLER-HARVEY I, et al. Antimicrobial in vitro activities of condensed tannin extracts on avian pathogenic Escherichia coli[J]. Letters in Applied Microbiology, 2020, 70(3): 165-172. DOI:10.1111/lam.13253
[9]
MONAGAS M, URPI-SARDA M, SÁNCHEZ-PATÁN F, et al. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites[J]. Food & Function, 2010, 1(3): 233-253.
[10]
PIWOWARSKI J P, KISS A K, GRANICA S, et al. Urolithins, gut microbiota-derived metabolites of ellagitannins, inhibit LPS-induced inflammation in RAW 264.7 murine macrophages[J]. Molecular Nutrition & Food Research, 2015, 59(11): 2168-2177.
[11]
HASSAN Z M, MANYELO T G, SELALEDI L, et al. The effects of tannins in monogastric animals with special reference to alternative feed ingredients[J]. Molecules, 2020, 25(20): 4680. DOI:10.3390/molecules25204680
[12]
ALI S, SUN L H, ZHANG N Y, et al. Ameliorative effects of grape seed proanthocyanidin extract on growth performance, immune function, antioxidant capacity, biochemical constituents, liver histopathology and aflatoxin residues in broilers exposed to aflatoxin B1[J]. Toxins, 2017, 9(11): 371. DOI:10.3390/toxins9110371
[13]
WU Q J, WANG Y Q, QI Y X. Influence of procyanidin supplementation on the immune responses of broilers challenged with lipopolysaccharide[J]. Animal Science Journal, 2017, 88(7): 983-990. DOI:10.1111/asj.12729
[14]
YANG J Y, ZHANG H J, WANG J, et al. Effects of dietary grape proanthocyanidins on the growth performance, jejunum morphology and plasma biochemical indices of broiler chicks[J]. Animal, 2017, 11(5): 762-770. DOI:10.1017/S1751731116002056
[15]
SEN S, INGALE S L, KIM Y W, et al. Effect of supplementation of Bacillus subtilis LS 1-2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology[J]. Research in Veterinary Science, 2012, 93(1): 264-268. DOI:10.1016/j.rvsc.2011.05.021
[16]
TARČEVIĆ K, KRSTULOVIĆ L, BROZIĆ D, et al. Production performance, meat composition and oxidative susceptibility in broiler chicken fed with different phenolic compounds[J]. Journal of the Science of Food and Agriculture, 2015, 95(6): 1172-1178. DOI:10.1002/jsfa.6805
[17]
ABU HAFSA S H, IBRAHIM S A. Effect of dietary polyphenol-rich grape seed on growth performance, antioxidant capacity and ileal microflora in broiler chicks[J]. Journal of Animal Physiology and Animal Nutrition, 2018, 102(1): 268-275. DOI:10.1111/jpn.12688
[18]
WANG M L, SUO X, GU J H, et al. Influence of grape seed proanthocyanidin extract in broiler chickens: effect on chicken coccidiosis and antioxidant status[J]. Poultry Science, 2008, 87(11): 2273-2280. DOI:10.3382/ps.2008-00077
[19]
MARZONI M, CASTILLO A, FRANZONI A, et al. Effects of dietary quebracho tannin on performance traits and parasite load in an Italian slow-growing chicken (White Livorno Breed)[J]. Animals, 2020, 10(4): 684. DOI:10.3390/ani10040684
[20]
LI S H, JIN E H, QIAO E M, et al. Chitooligosaccharide promotes immune organ development in broiler chickens and reduces serum lipid levels[J]. Histology and Histopathology, 2017, 32(9): 951-961.
[21]
BAI K W, HUANG Q, ZHANG J F, et al. Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens[J]. Poultry Science, 2017, 96(1): 74-82. DOI:10.3382/ps/pew246
[22]
于洁, 范雪, 赵敏孟, 等. 丁酸梭菌和枯草芽孢杆菌对肉鹅生长性能、消化酶活性、抗氧化功能和肠道形态的影响[J]. 动物营养学报, 2021, 33(2): 860-868.
YU J, FAN X, ZHAO M M, et al. Effects of clostridium butyricum and bacillus subtilis on growth performance, digestive enzyme activities, antioxidant function and intestinal morphology of meat geese[J]. Chinese Journal of Animal Nutrition, 2021, 33(2): 860-868 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.02.027
[23]
LIU B Y, ZHANG H L, TAN X, et al. GSPE reduces lead-induced oxidative stress by activating the Nrf2 pathway and suppressing miR153 and GSK-3β in rat kidney[J]. Oncotarget, 2017, 8(26): 42226-42237. DOI:10.18632/oncotarget.15033
[24]
FARAHAT M H, ABDALLAH F M, ALI H A, et al. Effect of dietary supplementation of grape seed extract on the growth performance, lipid profile, antioxidant status and immune response of broiler chickens[J]. Animal, 2017, 11(5): 771-777. DOI:10.1017/S1751731116002251
[25]
CHAMORRO S, VIVEROS A, CENTENO C, et al. Effects of dietary grape seed extract on growth performance, amino acid digestibility and plasma lipids and mineral content in broiler chicks[J]. Animal, 2013, 7(4): 555-561. DOI:10.1017/S1751731112001851
[26]
CHAMORRO S, VIVEROS A, REBOLÉ A, et al. Influence of dietary enzyme addition on polyphenol utilization and meat lipid oxidation of chicks fed grape pomace[J]. Food Research International, 2015, 73: 197-203. DOI:10.1016/j.foodres.2014.11.054
[27]
王珏, 樊艳凤, 唐修君, 等. 不同品种肉鸡屠宰性能及肌肉品质的比较分析[J]. 中国家禽, 2020, 42(7): 13-17.
WANG Y, FAN Y F, TANG X J, et al. Comparative analysis on slaughter characters and meat quality in different breeds of broilers[J]. China Poultry, 2020, 42(7): 13-17 (in Chinese).
[28]
MATSHOGO T B, MLAMBO V, MARUME U, et al. Growth performance, blood parameters, carcass characteristics and meat quality traits in potchefstroom koekoek chickens fed Lippia javanica leaf meal[J]. Tropical Animal Health and Production, 2018, 50(8): 1787-1795. DOI:10.1007/s11250-018-1620-9
[29]
吴东, 钱坤, 周芬, 等. 日粮中添加不同比例桑叶对淮南麻黄鸡生产性能的影响[J]. 家畜生态学报, 2013, 34(10): 39-43.
WU D, QIAN K, ZHOU F, et al. Effect of different contents of folium mori in diets on production performance of Huainan partridge chicken[J]. Acta Ecologae Animalis Domastici, 2013, 34(10): 39-43 (in Chinese). DOI:10.3969/j.issn.1673-1182.2013.10.009
[30]
JATURASITHA S, SRIKANCHAI T, KREUZER M, et al. Differences in carcass and meat characteristics between chicken indigenous to northern Thailand (black-boned and Thai native) and imported extensive breeds (Bresse and Rhode Island red)[J]. Poultry Science, 2008, 87(1): 160-169. DOI:10.3382/ps.2006-00398
[31]
ORLOWSKI S, FLEES J, GREENE E S, et al. Effects of phytogenic additives on meat quality traits in broiler chickens[J]. Journal of Animal Science, 2018, 96(9): 3757-3767. DOI:10.1093/jas/sky238
[32]
FORTE C, ACUTI G, MANUALI E, et al. Effects of two different probiotics on microflora, morphology, and morphometry of gut in organic laying hens[J]. Poultry Science, 2016, 95(11): 2528-2535. DOI:10.3382/ps/pew164
[33]
CHOY Y Y, QUIFER-RADA P, HOLSTEGE D M, et al. Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins[J]. Food & Function, 2014, 5(9): 2298-2308.
[34]
从光雷, 王强, 肖蕴祺, 等. 饲粮添加橡椀单宁对肉鸡生长性能、屠宰性能、肉品质、抗氧化功能和肠道发育的影响[J]. 动物营养学报, 2020, 32(12): 5948-5957.
CONG G L, WANG Q, XIAO Y Q, et al. Effects of dietary quercus acutissima carruth tannin on growth performance, slaughter performance, meat quality, antioxidant function and intestinal development of broilers[J]. Chinese Journal of Animal Nutrition, 2020, 32(12): 5948-5957 (in Chinese).
[35]
LIU H W, LI K, ZHAO J S, et al. Effects of chestnut tannins on intestinal morphology, barrier function, pro-inflammatory cytokine expression, microflora and antioxidant capacity in heat-stressed broilers[J]. Journal of Animal Physiology and Animal Nutrition, 2018, 102(3): 717-726. DOI:10.1111/jpn.12839