动物营养学报    2021, Vol. 33 Issue (6): 3309-3322    PDF    
肝脏转录组分析揭示金银花提取物缓解奶牛热应激的分子机制
高铎 , 马峰涛 , 单强 , 金宇航 , 李洪洋 , 常美楠 , 孙鹏     
中国农业科学院北京畜牧兽医研究所, 动物营养学国家重点实验室, 北京 100193
摘要: 本试验旨在研究金银花提取物对热应激奶牛生产性能、抗氧化性能、内分泌和免疫功能以及肝脏转录组的影响,以揭示金银花提取物缓解奶牛热应激的分子机制。试验选取胎次、产奶量和泌乳日龄相近的泌乳中期荷斯坦奶牛6头,随机分为2组,每组3头。对照组(CON组)饲喂基础饲粮,不添加金银花提取物;金银花提取物组(LJE组)在基础饲粮中添加28 g/d金银花提取物。预试期2周,正试期8周。试验期间,奶牛所处环境的平均温湿度指数(THI)>72。结果表明,1)与CON组相比,LJE组热应激奶牛直肠温度显著降低(P < 0.05)。2)2组之间的干物质采食量、产奶量和乳成分无显著差异(P>0.05)。3)LJE组血清白细胞介素-4、免疫球蛋白G、葡萄糖、胰高血糖素含量和谷胱甘肽过氧化物酶活性以及总抗氧化能力显著高于CON组(P < 0.05)。4)肝脏转录组分析发现,CON组和LJE组之间共有17 668个差异表达基因。当差异倍数(FC)>1.200或 < 0.667且P < 0.05时,CON组和LJE组之间共发现253个差异表达基因。基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析显示,差异表达基因主要参与免疫反应、炎症反应、泛酸代谢、碳水化合物代谢、质膜和细胞黏附过程。综上所述,饲粮中添加金银花提取物在不影响泌乳奶牛生产性能的情况下,能够缓解奶牛热应激。并且,金银花提取物可以引起肝脏中免疫、抗氧化能力、肝脏葡萄糖代谢等相关基因表达的变化。
关键词: 奶牛    热应激    肝脏    金银花提取物    转录组    
Hepatic Transcriptome Analyses Revealed Molecular Mechanism of Lonicera japonica Extract in Relieving Heat Stress of Dairy Cows
GAO Duo , MA Fengtao , SHAN Qiang , JIN Yuhang , LI Hongyang , CHANG Meinan , SUN Peng     
State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Abstract: This study was conducted to investigate the effect of Lonicera japonica extract on performance, antioxidant ability, endocrine and immune function and the hepatic transcriptome of heat-stressed dairy cows, and to reveale molecular mechanism of Lonicera japonica extract in relieving heat stress of dairy cows. Six Holstein cows in mid lactation with similar parity, milk yield and lactation day were randomly divided into 2 groups with 3 cows per group. Cows in the control group (CON group) were fed a basal diet without Lonicera japonica extract, and cows in Lonicera japonica extract group (LJE group) were fed a basal diet supplemented with 28 g/d Lonicera japonica extract. The pre-experimental period lasted for 2 weeks, and the experimental period lasted for 8 weeks. During the experimental period, the average temperature and humidity index (THI) of environment of cows was higher than 72. The results showed as follows: 1) compared with the CON group, the rectal temperature of heat-stressed dairy cows of LJE group was significantly decreased (P < 0.05). 2) There were no significant differences in dry matter intake, milk yield and milk composition between two groups (P>0.05). 3) The interleukin-4, immunoglobulin G, glucose and glucagon contents and glutathione peroxidase activity and total antioxidant capacity in serum of LJE group were significantly higher than those of the CON group (P < 0.05). 4) The hepatic transcriptome analysis found a total of 17 668 differentially expressed genes between the CON group and LJE group. A total of 253 differentially expressed genes were found between the CON group and LJE group after taking into account the criteria fold change (FC) >1.200 or < 0.667 and P < 0.05. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis revealed that differentially expressed genes were mainly involved in immune, inflammatory, pantothenate metabolic, carbohydrate metabolic processes, plasma membrane and cell adhesion. Collectively, dietary supplemented with Lonicera japonica extract can relieve heat stress of dairy cows without affect the performance of lactating cows. In addition, Lonicera japonica extract can cause changes of hepatic gene expression, such as immune, antioxidant capacity and liver glucose metabolism related genes.
Key words: dairy cows    heat stress    liver    Lonicera japonica extract    transcriptome    

热应激影响奶牛健康,对奶牛养殖业有多种负面影响[1-2]。热应激不仅会降低产奶量[3]、引起奶牛肝脏功能障碍[4]、引起全身炎症反应[5]、降低免疫功能[6],还会诱发氧化应激[7],导致奶牛代谢紊乱[8]、细胞损伤[9]以及能量负平衡等[10]。因此,奶牛需要通过增加碳水化合物、脂类和蛋白质的代谢来提供能量。虽然风扇、喷淋系统等物理降温方式已被广泛采用[11],但热应激对于奶牛养殖业仍是一个巨大挑战。因此,有必要采取其他措施配合物理降温从而缓解奶牛热应激。中草药添加剂因其无耐药性和多功能性的优点受到人们的青睐,目前在畜牧业中已得到大量应用[12-13]。金银花作为一味传统中草药,自古就被广泛使用。金银花含有多种化学成分,如绿原酸、黄酮、皂苷和环烯醚萜等[14-15]。基于人和大鼠的诸多研究表明,金银花提取物(Lonicera japonica extract,LJE)具有抗炎、抗氧化、调节免疫和保护肝脏等多种药理活性[16-18]。本实验室之前的研究表明,金银花提取物可以缓解热应激对奶牛的负面影响,并且最佳饲喂剂量为28 g/d[19]。然而,金银花提取物对热应激奶牛肝脏代谢的影响仍不清楚。转录组是连接遗传信息与生物功能之间的重要桥梁。近年来,转录组测序(RNA-Seq)方法已被广泛应用,从基因表达的水平来探索动物表型的分子机制[20-21],可以揭示天然化合物在动物体内发挥的生物学功能[22]。因此,本试验旨在研究金银花提取物对热应激奶牛生产性能、抗氧化性能、内分泌和免疫功能的影响,并通过肝脏转录组分析揭示金银花提取物缓解泌乳奶牛热应激的分子机制。

1 材料与方法 1.1 试验时间

试验于2019年6—9月在河北省新乐市君源牧业有限公司开展。

1.2 试验设计

试验选取6头泌乳中期荷斯坦奶牛,按照胎次[(1.9±0.5)胎]、产奶量[(28.0±1.0) kg/d]和泌乳天数[(85±5) d]随机分为2组,每组3头牛。对照组(CON组)饲喂基础饲粮,不添加金银花提取物;金银花提取物组(LJE组)在基础饲粮中添加28 g/d的金银花提取物。金银花提取物的主要有效成分为绿原酸,含量为10%。根据NRC(2001)的营养需求配制基础饲粮,其组成及营养水平见表 1。每天饲喂3次(06:30、13:30和20:30),自由饮水。试验期共10周,包括预试期2周,正试期8周。预试期奶牛饲养于热应激环境,平均温湿度指数(THI)为78.8,平均环境温度为29.0 ℃。正试期开始前1周,奶牛平均直肠温度(RT)为39.50 ℃,平均呼吸频率(RR)为82次/min。

表 1 基础饲粮组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of the basal diet (DM basis)  
1.3 样品采集和指标测定 1.3.1 THI、直肠温度和呼吸频率

使用温湿度计测定环境温度和相对湿度,每天记录3次(06:00、14:00、22:00)。通过公式计算THI[23]

式中:T为温度(℃);RH为相对湿度(%)。

直肠温度使用水银温度计测定,呼吸频率通过目测每分钟胸腹运动次数来测定。直肠温度和呼吸频率每日测定3次(07:30、14:30、21:30)。

1.3.2 干物质采食量(DMI)和饲粮营养成分

干物质采食量通过从总干物质采食量中减去剩料量来计算。每周连续3 d收集饲粮样本,然后用于测定干物质(DM)[AOAC(2005),方法930.15]、粗脂肪(EE)[AOAC(2003),方法4.5.05]、粗蛋白质(CP)[AOAC(2000),方法976.05]、钙(Ca)[AOAC(1990),方法985.35]和磷(P)[AOAC(1990),方法986.24]含量。采用Van Soest等[24]的方法测定中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)含量。

1.3.3 乳成分

每天挤奶3次(05:30、12:30、19:30),每天记录每头牛的产奶量,每周采集1次奶样,并按早、中、晚=4 ∶ 3 ∶ 3的比例混合奶样,奶样加防腐剂,4 ℃保存以供进一步分析。通过乳成分分析测定仪(Foss MilkoScan 2000)测定乳蛋白率、乳脂率、乳糖率以及非脂乳固体、总固形物含量。

1.3.4 血清生化指标

试验结束时(第57天,06:00),于晨饲前使用真空采血管进行尾根静脉采血。3 000×g、4 ℃条件下离心15 min制备血清,-20 ℃保存。

血清葡萄糖(glucose,GLU)含量采用全自动生化分析仪测定[25]。血清胰高血糖素(glucagon,GC)含量采用放射免疫法测定。血清总抗氧化能力(total antioxidant capacity,T-AOC)和超氧化物歧化酶(superoxide dismutase,SOD)、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)活性及丙二醛(malondialdehyde,MDA)含量采用试剂盒测定,试剂盒购于南京建成生物工程研究所。血清胰岛素(insulin,INS)、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素-2(interleukin-2,IL-2)、白细胞介素-4(interleukin-4,IL-4)、免疫球蛋白G(immunoglobulin G,IgG)、免疫球蛋白A(immunoglobulin A,IgA)和免疫球蛋白M(immunoglobulin M,IgM)含量使用酶联免疫吸附试剂盒测定,试剂盒购于美国Bethyl公司。

1.3.5 总RNA提取、文库构建和测序

肝脏样本采集于奶牛右侧髋骨结节和肩关节连线的第11~12根肋骨之间。手术部位剃毛消毒后,皮下注射3~4 mL盐酸利多卡因(2%溶液)进行局部麻醉,使用无菌手术刀切开1.5 cm的切口,用取样枪在脊柱下方约15 cm处进行肝脏组织取样。肝脏组织被取出后立即放入RNAlater溶液中,以保护RNA的完整性,随后置于液氮中保存。

使用TRIzol试剂从肝脏组织中提取总RNA。DNA酶处理消化基因组DNA,再用苯酚-氯仿萃取法去除DNA酶。检测RNA浓度和完整性,随后用Oligo(dT)磁珠富集总RNA中具有poly A结构的mRNA,断裂mRNA为200~300 bp的短片段。以mRNA为模板,通过6碱基随机引物和逆转录酶合成第1链cDNA,以第1链cDNA为模板合成第2链cDNA。文库构建完成后,利用PCR扩增文库片段,然后根据片段大小进行选择,得到450 bp的文库,测定总库浓度和有效库浓度。样品经RNA提取、纯化和文库构建后,基于Illumina测序平台进行二代测序。

1.3.6 序列比对及差异表达分析

通过去除poly-N序列、序列接头和无效序列来获得高质量的Clean Reads[26]。使用HISAT2软件(http://ccb.jhu.edu/software/hisat2/index.shtml)将获得的Clean Reads与牛参考基因组(http://asia.ensembl.org/Bos_taurus/Info/Annotation)进行比对[20]。使用HTSeq软件分析每个基因的表达值,以衡量基因表达水平[27]。在此基础上,对样品进行差异表达分析和富集分析。使用DESeq软件包进行差异表达分析[28],使用Blast2go进行基因本体论(GO)富集分析[29]。利用京都基因与基因组百科全书(KEGG)数据库分析差异表达基因在不同通路的富集情况[30]

1.4 数据统计分析

产奶量、乳成分、干物质采食量、直肠温度、呼吸频率和血清生化指标采用SAS 9.4的UNIVARIATE程序检验正态性。所有数据均采用MIXED模块进行统计学检验。其中,试验处理和时间为固定因素,试验牛为随机因素。采用Tukey’s多重比较评价组间差异。P < 0.05代表差异显著,0.05≤P < 0.10代表有差异显著趋势。

对于差异表达分析,使用Benjamini和Hochberg法得到错误发现率(FDR)校正P值,以控制FDR。P < 0.05且差异倍数(fold change,FC)>1.200或 < 0.667的基因被视为差异表达基因。在GO和KEGG通路富集分析中,FDR < 0.05表示差异显著。

2 结果 2.1 THI、呼吸频率和直肠温度

在06:00、14:00和22:00时,牛舍的日平均环境温度分别为23.6、31.0和25.7 ℃。如图 1所示,试验期间平均THI>72。

图 1 THI变化曲线 Fig. 1 Change curve of THI

表 2可见,与CON组相比,饲粮中添加金银花提取物对热应激奶牛呼吸频率无显著影响(P>0.05),但可显著降低直肠温度(P < 0.05)。

表 2 金银花提取物对热应激奶牛直肠温度和呼吸频率的影响 Table 2 Effects of Lonicera japonica extract on rectal temperature and respiratory rate of heat-stressed dairy cows
2.2 金银花提取物对热应激奶牛生产性能和乳成分的影响

表 3可见,与CON组相比,饲粮中添加金银花提取物对热应激奶牛的干物质采食量、产奶量、乳蛋白率、乳脂率、乳糖率以及非脂乳固体、总固形物含量均无显著影响(P>0.05)。

表 3 金银花提取物对热应激奶牛生产性能和乳成分的影响 Table 3 Effects of Lonicera japonica extract on performance and milk composition of heat-stressed dairy cows
2.3 金银花提取物对热应激奶牛血清生化指标的影响

表 4可见,与CON组相比,饲粮中添加金银花提取物可显著提高热应激奶牛血清IL-4和IgG含量(P < 0.05),但对血清IgA、IgM、IL-2、TNF-α和MDA含量无显著影响(P>0.05);饲粮中添加金银花提取物可显著提高热应激奶牛血清T-AOC和GSH-Px活性(P < 0.05),但对血清SOD活性和MDA含量无显著影响(P>0.05);饲粮中添加金银花提取物可显著提高热应激奶牛血清GLU和GC含量(P < 0.05),但对血清INS含量无显著影响(P>0.05)。

表 4 金银花提取物对热应激奶牛血清生化指标的影响 Table 4 Effects of Lonicera japonica extract on serum biochemical parameters of heat-stressed dairy cows
2.4 差异表达分析

差异表达分析结果显示,CON组和LJE组之间有17 668个差异表达基因。以FC>1.200或FC < 0.667且P < 0.05为差异显著标准,LJE组和CON组奶牛肝脏中共发现253个差异表达基因,其中127个上调基因,126个下调基因。表 5列出了显著富集到相关通路和代谢过程的典型差异表达基因信息(P < 0.05)。

表 5 典型差异表达基因信息 Table 5 Information of typical differentially expressed genes
2.5 GO富集分析和KEGG通路富集分析

图 2可见,图中列出了FDR < 0.05的GO细胞成分过程、GO生物学过程和GO分子功能过程以及碳水化合物代谢和趋化因子相关过程(P < 0.05)。在细胞成分类别中,差异表达基因主要与质膜类别有关(FDR < 0.05),如质膜部分、质膜、质膜内在成分和质膜整体成分。差异表达基因主要包括溶质载体家族2成员8(solute carrier family 2 member 8,SLC2A8)、溶质载体家族5成员1(solute carrier family 5 member 1,SLC5A1)、溶质载体家族5成员12(solute carrier family 5 member 12,SLC5A12)、溶质载体家族7成员5(solute carrier family 7 member 5,SLC7A5)、溶质载体家族7成员8(solute carrier family 7 member 8,SLC7A8)、溶质载体家族51β亚基(solute carrier family 51 beta subunit,SLC51β)、溶质载体家族29成员2(solute carrier family 29 member 2,SLC29A2)、分泌载体相关膜蛋白5(secretory carrier-associated membrane protein 5,SCAMP5)、细胞附着蛋白4(cytohesin 4,CYTH4)、跨膜蛋白63C(transmembrane protein 63C,TMEM63C)和干扰素诱导跨膜蛋白5(interferon induced transmembrane protein,IFITM5)。在生物学过程中,大部分差异表达基因[细胞间黏附分子3(intercellular adhesion molecule 3,ICAM3)、骨髓基质细胞抗原1(bone marrow stromal cell antigen 1,BST1)、柯萨奇病毒腺病毒受体(coxsackievirus adenovirus receptor,CXADR)、原钙黏附因子1(protocadherin 1,PCDH1)、整合素α9(integrin alpha-9,ITGA9)、桥粒斑蛋白(desmoplakin,DSP)、Thy-1细胞表面抗原(Thy-1 cell surface antigen,THY1)]被富集到细胞黏附类别(FDR < 0.05),包括细胞黏附、细胞黏附调节和细胞-细胞黏附。差异表达基因也显著富集到相关的免疫过程,包括免疫系统过程、免疫应答、免疫效应过程和白细胞活化过程(FDR < 0.05)。部分差异表达基因与炎症免疫反应相关(P < 0.05),包括慢性炎症反应、炎症反应调节、炎症反应对损伤的调节、炎症反应、急性炎症反应。差异表达基因主要包括重组人含V-set和免疫球蛋白结构域蛋白4(V-set and immunoglobulin domain containing 4,VSIG4)、唾液酸结合免疫球蛋白样凝集素10(sialic acid binding Ig like lectin 10,SIGLEC10)、碱性亮氨酸拉链ATF样转录因子3(basic leucine zipper ATF-like transcription factor 3,BATF3)、S100钙结合蛋白A8(S100 calcium binding protein A8,S100A8)、BST1、肌营养不良相关蛋白(dysferlin,DYSF)和delta样典型Notch配体4(delta like canonical Notch ligand 4,DLL4)。此外,富集到的生物学过程也与代谢有关,如泛酸代谢过程和碳水化合物代谢过程(FDR < 0.05)。对于分子功能类别,只有泛酰巯基乙胺水解酶活性过程FDR < 0.05。值得注意的是,一些差异表达基因,如趋化因子C-C-基元受体1(chemokine C-C motif receptor 1,CCR1)和非典型性趋化因子受体4(atypical chemokine receptor 4,ACKR4)还参与了C-C趋化因子过程,包括C-C趋化因子受体活性、C-C趋化因子结合、趋化因子配体5结合和趋化因子配体7结合等过程(P < 0.05)。生物信息学分析也显示,一些差异表达基因[丙酮酸羧化酶(pyruvate carboxylase,PC)、EPM2A相互作用蛋白1(EPM2A interacting protein 1,EPM2AIP1)、6-磷酸果糖激酶2,6-二磷酸酶3(6-phosphofructo-2-kinase,6-biphosphatase 3,PFKFB3)、磷酸甘油酸变位酶(phosphoglycerate mutase,PGAM)]还与葡萄糖跨膜转运蛋白活性和丙酮酸羧化酶活性有关(P < 0.05)。通过KEGG通路富集分析,差异表达基因主要富集在甘氨酸、丝氨酸和苏氨酸代谢,泛酸盐和辅酶A生物合成,Notch信号通路,腺苷酸活化蛋白激酶(AMPK)信号通路以及钙信号通路中(P < 0.05)。

cell adhesion:细胞黏附;biological adhesion:生物黏附;plasma membrane part:质膜部分;cell periphery:细胞周边;plasma membrane:质膜;intrinsic component of plasma membrane:质膜的固有成分;cell motility:细胞运动;localization of cell:细胞定位;immune system process:免疫系统过程;regulation of anion channel activity:阴离子通道活性的调节;immune response:免疫反应;immune effector process:免疫效应的过程;regulation of cell adhesion:细胞黏附调节;integral component of plasma membrane:质膜的组成部分;second messenger mediated signaling:第二信使介导信号;cell migration:细胞迁移;cell-cell adhesion:细胞-细胞黏附;locomotion:运动;leukocyte activation:白细胞激活;pantothenate metabolic process:泛酸盐代谢过程;positive regulation of anion channel activity:阴离子通道活性的正调控;positive regulation of anion transmembrane transport:负离子跨膜转运的正调控;pantetheine hydrolase activity:泛酰硫氢乙胺水解酶活性;regulation of locomotion:运动调节;cell differentiation involved in embryonic placenta development:参与胚胎胎盘发育的细胞分化;cell activation:细胞激活;carbohydrate metabolic process:碳水化合物代谢过程;positive regulation of heterotypic cell-cell adhesion:异型细胞黏附的正向调节;pyruvate carboxylase activity:丙酮酸羧化酶活性;glucose transmembrane transporter activity:葡萄糖跨膜转运活性;C-C chemokine receptor activity:C-C趋化因子受体活性;C-C chemokine binding:C-C趋化因子结合;carbohydrate binding:碳水化合物结合;chemokine receptor activity:趋化因子受体的活动;chemokine ligand 7 binding:趋化因子配体7的结合;chemokine ligand 5 binding:趋化因子配体5的结合;chemokine binding:趋化因子结合。 图 2 GO富集分析柱状图 Fig. 2 GO enrichment analyses bar graph
3 讨论 3.1 金银花提取物对热应激奶牛直肠温度和呼吸频率的影响

当THI大于68时,奶牛就有可能出现热应激[31]。呼吸频率和直肠温度是衡量奶牛热应激的重要指标,当呼吸频率大于60次/min或直肠温度大于39.2 ℃时,奶牛就有可能遭受热应激[32]。即使是直肠温度轻微的升高,也会对组织、器官和内分泌功能产生显著影响,导致生长、泌乳和繁殖性能有所下降[33]。本研究发现,试验期间的日平均THI大于72,CON组奶牛的呼吸频率和直肠温度分别为39.68 ℃和85.82次/min,表明奶牛处于热应激状态。本试验结果表明,饲粮中添加金银花提取物虽然未显著影响奶牛呼吸频率,但显著降低了直肠温度,说明金银花提取物可以有效降低奶牛的体温,有利于缓解热应激的负面影响。

3.2 金银花提取物对热应激奶牛免疫功能的影响

检测和分析血液炎性细胞因子如IL-2、IL-4、TNF-α等有助于了解奶牛的炎症反应状况[34-36]。本研究发现,饲粮中添加金银花提取物可以通过提高血清IL-4和IgG含量,进而改善热应激奶牛的免疫功能[37-38]。肝脏转录组分析发现,许多差异表达基因与免疫反应相关,如免疫系统过程、免疫反应、免疫效应过程、白细胞激活和炎症反应。上调的基因如VSIG4、SIGLEC10、CCR1、BATF3、S100A8、BST1、DYSFACKR4和DLL4在减轻肝脏炎症、调节中性粒细胞迁移、激活体液免疫反应等方面发挥了重要作用。其中,SIGLEC10在白细胞中表达,并通过细胞外结构域结合B细胞和单核细胞。SIGLEC10还可以识别炎症细胞上抑制性受体,抑制局部的炎症反应[39-40]。巨噬细胞通过分泌炎性细胞因子介导免疫功能,并受Th2细胞分泌的细胞因子调控[41-42]DDL4和VSIG4参与了巨噬细胞介导的炎症反应,其中DLL4能够调节巨噬细胞的促炎激活作用及免疫细胞的表型[43]VSIG4在巨噬细胞上表达,并在调控巨噬细胞介导的炎症反应中发挥关键作用[44]。在炎症反应中,中性粒细胞从血液迁移到炎症部位用以增强免疫防御功能[45]。与此功能一致,S100A8是中性粒细胞的强大刺激因子,参与中性粒细胞向炎症部位迁移的过程[46]。Th2细胞分泌的细胞因子可以促进B细胞的增殖并促进其分化为浆细胞,进而促进抗体的产生[41-42]。在体液免疫应答方面,BATF对Th2细胞具有积极的作用,可以加快外周B细胞向浆细胞分化所需的转录过程[47]。本研究还发现,转录因子CCR1和ACKR4与C-C趋化因子受体活性、C-C趋化因子结合、趋化因子配体5结合和趋化因子配体7结合等过程相关。趋化因子通过调节白细胞定位和迁移,在调节炎症免疫反应中发挥作用[48]。趋化因子通过介导G蛋白偶联趋化因子受体(chemokine receptors,CCRs)信号转导来发挥生物学功能[49],同时趋化因子也可以与ACKRs结合[50]。作为一种重要的调控因子,ACKR4调控早期激活的B细胞分化和抗体产生[51]。此外,趋化因子受体CCR1在自然杀伤细胞和单核细胞表面表达,并在炎症反应中发挥重要作用[52]CCR1也被鉴定为来源于肥大细胞的外泌体中的枢纽基因,通过肥大细胞释放的外泌体参与T细胞激活和Th2细胞分化,以此间接调节免疫反应[53]。当暴露于氧化应激环境时,肥大细胞释放的外泌体也可以抑制细胞中的氧化应激反应[54]。综上所述,参与免疫过程的多个差异基因表明,饲粮中添加金银花提取物可能提高了热应激奶牛的免疫功能。

3.3 金银花提取物对热应激奶牛GLU代谢的影响

热应激抑制GC的分泌,导致机体血液GLU含量下降[8]。GC通过刺激糖异生和糖原分解反应,促进肝脏GLU输出,在提高血液GLU含量方面发挥作用[55]。在热应激条件下,奶牛需要更多的GLU供应来满足能量需求[56]。肝脏的主要功能与营养物质的代谢和再分配有关,在对外界变化的环境做出反应的同时,维持稳定的血液GLU含量。本研究发现,饲粮中添加奶牛金银花提取物可以提高血液中GLU和GC含量,说明金银花提取物有助于维持热应激奶牛的能量平衡。肝脏转录组分析发现金银花提取物可以影响GLU代谢过程、葡萄糖跨膜转运蛋白活性和丙酮酸羧化酶活性的相关基因表达。在热应激时期,饲粮中添加金银花提取物可以降低奶牛肝脏中PCEPM2AIP1、PFKFB3和PGAM基因的表达水平。EPM2AIP1是糖原合成酶相关的基因,小鼠EPM2AIP1的敲除可以减弱糖原合成酶的活化作用,减少肝糖原的合成[57]EPM2AIP1表达水平的降低可能表明机体通过抑制肝糖原合成来减少血液中GLU向肝脏的输入过程。糖异生是主要的GLU来源,以丙酸盐为有效底物[58]PC是丙酮酸羧化酶基因,作为肝糖异生的限速酶发挥着至关重要的作用[59]。当奶牛遭受热应激时,肝脏内PC的表达水平增加[60-61],并且奶牛体温的升高也会直接导致PC的表达水平增加[11],在本研究中,PC表达水平的降低可能表明金银花提取物对奶牛热应激具有缓解作用。PGAM作为一种糖酵解酶基因,在细胞核、细胞质和线粒体中表达,催化3-磷酸甘油酸向2-磷酸甘油酸的可逆转化过程[62]。综上所述,添加金银花提取物促进了GC的分泌,进而提高了血液中的GLU含量,有利于缓解热应激引起的机体能量负平衡。

3.4 金银花提取物对热应激奶牛抗氧化性能的影响

本研究发现,饲粮中添加金银花提取物提高了泌乳奶牛血清T-AOC和GSH-Px活性,表明金银花提取物能够改善热应激奶牛的抗氧化状态。转录组结果表明,泛酰硫氢乙胺水解酶活性是GO分子功能中唯一富集到的FDR < 0.05的过程。此外,泛酸代谢过程和泛酸盐和辅酶A生物合成过程也被富集到。结果表明,VNN1和VNN2基因参与了这些富集过程。VNN基因家族有3个成员(VNN1、VNN2、VNN3),其中VNN1和VNN2已被鉴定出具有酶活性[63]VNN1主要在肝脏中表达,是编码泛酰巯基乙胺酶的主要转录本[64]。作为辅酶A代谢途径的一部分,泛酰巯基乙胺酶可以催化水解泛酰巯基乙胺产生泛酸(维生素B5)和半胱胺。热应激导致氧化系统和抗氧化系统之间的不平衡而诱发氧化应激[65]。在肝脏中,半胱胺具有清除活性氧的功能,与细胞中的谷胱甘肽一样,作为一个活跃的氧化还原剂,还原型半胱胺和氧化型半胱胺的比值处于平衡状态[66]。半胱胺具有抗氧化活性,与胱胺一起参与保护细胞免受氧化应激[67]。敲除小鼠的VNN1基因可以缓解氧化性组织损伤,减少炎症反应和细胞凋亡[68]。也有研究证实,VNN1在氧化应激反应中表达上调[69]。因此,饲喂热应激奶牛金银花提取物后,VNN1表达水平的降低可能表明其具有一定的抗氧化作用。从文献来看,很少有研究表明金银花提取物可以影响体内半胱胺的含量。然而,在小鼠肝脏中,VNN1敲除小鼠的谷胱甘肽含量升高,作为GSH-Px的生成底物,谷胱甘肽在抵抗氧化应激中发挥了关键作用[68],这可能间接表明了金银花提取物的抗氧化作用。VNN2也是一种泛酰巯基乙胺酶,在中性粒细胞中以可溶性和膜结合的形式表达,通过调节整合素的功能来促进中性粒细胞的黏附及迁移到炎症部位的过程[70]。本研究中VNN2的上调可能提示金银花提取物对热应激奶牛具有炎症调节作用。

3.5 金银花提取物对热应激奶牛肝脏细胞功能的影响

通过肝脏转录组进一步分析发现,有些差异表达基因的功能主要与质膜部分、质膜、质膜内在组分和质膜整体组分有关。如SLC2A8、SLC5A1、SLC5A12、SLC7A5、SLC7A8、SLC51BSLC29A2、SCAMP5、CYTH4、TMEM63CIFITM5,这些基因编码的蛋白在细胞物质转运中具有重要作用。如SLC5A12、SLC2A8、SLC5A1、SLC7A5、SLC7A8、SLC51BSLC29A2编码的溶质载体蛋白家族,在细胞膜上的物质转运中发挥着至关重要的作用。如SLC2A8是果糖和GLU的转运体,并且具有很高的亲和力和物质结合能力[71-72]SLC7A5和SLC7A8是异构体氨基酸的转运体[73-74]SLC29A2是核苷及其结构类似物的转运体[75]SLC5A1、SLC5A12和SLC51B属于SLC5异构体,是GLU、半乳糖、乳酸、短链脂肪酸、维生素、胆汁酸和共轭类固醇的转运体[76]。此外,在GO生物学过程中,多数差异表达基因(ICAM3、BST1、CXADRPCDH1、ITGA9、DSPTHY1)被富集到细胞黏附过程,主要包括细胞黏附、细胞黏附调节和细胞-细胞黏附。例如,BST1是一种支持细胞生长及调节细胞黏附和迁移的多功能分子[77]。作为免疫球蛋白超家族的细胞表面受体,ICAM亚家族成员(ICAM1、ICAM2、ICAM3)具有结构和功能上的同源性,介导与免疫过程相关的细胞-细胞黏附过程。ICAM亚家族和白细胞整合素之间的相互黏附可以促进特定抗原的T细胞应答[78]。黏附分子按其结构特征可分为整合素家族、选择素家族、钙黏蛋白家族和免疫球蛋白超家族。PCDH1是钙黏蛋白超家族中最大的亚基,是一种跨膜受体,有助于细胞间黏附和调节细胞间交流[79]DSP是一种细胞桥粒和高度组织的质膜结构域,其功能是将中间丝连接到细胞表面的细胞黏附位点[80-81]。然而,现有的文献仅能证明金银花提取物具有一些细胞保护、细胞周期阻滞和影响细胞凋亡的作用[82-84]。虽然很难确定这些与质膜和细胞黏附相关的差异表达基因的确切生物学意义,但这些与细胞功能相关的过程可能预示着高效的细胞间交流和细胞代谢过程。

4 结论

① 饲粮中添加金银花提取物可以显著降低热应激奶牛的直肠温度,但对干物质采食量、产奶量、乳成分及呼吸频率无显著影响。

② 通过分析肝脏转录组发现,金银花提取物影响的基因主要参与免疫过程、炎症过程、泛酸代谢过程、碳水化合物代谢过程以及质膜和细胞黏附过程。金银花提取物可以提高热应激奶牛的免疫功能、促进体内的物质转运和代谢过程。

③ 通过肝脏转录组分析,为阐明金银花提取物在缓解奶牛热应激的机制提供了新的见解。

参考文献
[1]
ST-PIERRE N R, COBANOV B, SCHNITKEY G. Economic losses from heat stress by US livestock industries[J]. Journal of Dairy Science, 2003, 86(Suppl.1): E52-E77.
[2]
DE RENSIS F, LOPEZ-GATIUS F, GARCÍA-ISPIERTO I, et al. Causes of declining fertility in dairy cows during the warm season[J]. Theriogenology, 2017, 91: 145-153. DOI:10.1016/j.theriogenology.2016.12.024
[3]
BERTOCCHI L, VITALI A, LACETERA N, et al. Seasonal variations in the composition of Holstein cow's milk and temperature-humidity index relationship[J]. Animal, 2014, 8(4): 667-674. DOI:10.1017/S1751731114000032
[4]
DANFÆR A. Nutrient metabolism and utilization in the liver[J]. Livestock Production Science, 1994, 39(1): 115-127. DOI:10.1016/0301-6226(94)90163-5
[5]
CHENG K, YAN E F, SONG Z H, et al. Protective effect of resveratrol against hepatic damage induced by heat stress in a rat model is associated with the regulation of oxidative stress and inflammation[J]. Journal of Thermal Biology, 2019, 82: 70-75. DOI:10.1016/j.jtherbio.2019.03.012
[6]
TAO S, MONTEIRO A P A, THOMPSON I M, et al. Effect of late-gestation maternal heat stress on growth and immune function of dairy calves[J]. Journal of Dairy Science, 2012, 95(12): 7128-7136. DOI:10.3168/jds.2012-5697
[7]
HUANG C, JIAO H, SONG Z, et al. Heat stress impairs mitochondria functions and induces oxidative injury in broiler chickens[J]. Journal of Animal Science, 2015, 93(5): 2144-2153. DOI:10.2527/jas.2014-8739
[8]
BERNABUCCI U, LACETERA N, BAUMGARD L H, et al. Metabolic and hormonal acclimation to heat stress in domesticated ruminants[J]. Animal, 2010, 4(7): 1167-1183. DOI:10.1017/S175173111000090X
[9]
CLERK A, KEMP T J, ZOUMPOULIDOU G, et al. Cardiac myocyte gene expression profiling during H2O2-induced apoptosis[J]. Physiological Genomics, 2007, 29(2): 118-127. DOI:10.1152/physiolgenomics.00168.2006
[10]
PEDERNERA M, CELI P, GARCÍA S C, et al. Effect of diet, energy balance and milk production on oxidative stress in early-lactating dairy cows grazing pasture[J]. The Veterinary Journal, 2010, 186(3): 352-357. DOI:10.1016/j.tvjl.2009.09.003
[11]
COLLIER R J, COLLIER J L, RHOADS R P, et al. Invited review: genes involved in the bovine heat stress response[J]. Journal of Dairy Science, 2008, 91(2): 445-454. DOI:10.3168/jds.2007-0540
[12]
PAN L, BU D P, WANG J Q, et al. Effects of Radix bupleuri extract supplementation on lactation performance and rumen fermentation in heat-stressed lactating Holstein cows[J]. Animal Feed Science and Technology, 2014, 187: 1-8. DOI:10.1016/j.anifeedsci.2013.09.008
[13]
SHAN C H, GUO J J, SUN X S, et al. Effects of fermented Chinese herbal medicines on milk performance and immune function in late-lactation cows under heat stress conditions[J]. Journal of Animal Science, 2018, 96(10): 4444-4457.
[14]
KAKUDA R, IMAI M, YAOITA Y, et al. Secoiridoid glycosides from the flower buds of Lonicera japonica[J]. Phytochemistry, 2000, 55(8): 879-881. DOI:10.1016/S0031-9422(00)00279-X
[15]
KUMAR N, SINGH B, BHANDARI P, et al. Biflavonoids from Lonicera japonica[J]. Phytochemistry, 2005, 66(23): 2740-2744. DOI:10.1016/j.phytochem.2005.10.002
[16]
CHOI C W, JUNG H A, KANG S S, et al. Antioxidant constituents and a new triterpenoid glycoside from Flos lonicerae[J]. Archives of Pharmacal Research, 2007, 30(1): 1-7. DOI:10.1007/BF02977770
[17]
SUN C H, TENG Y, LI G Z, et al. Metabonomics study of the protective effects of Lonicera japonica extract on acute liver injury in dimethylnitrosamine treated rats[J]. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53(1): 98-102. DOI:10.1016/j.jpba.2010.03.015
[18]
HSU H F, HSIAO P C, KUO T C, et al. Antioxidant and anti-inflammatory activities of Lonicera japonica Thunb.var. Sempervillosa Hayata flower bud extracts prepared by water, ethanol and supercritical fluid extraction techniques[J]. Industrial Crops and Products, 2016, 89: 543-549. DOI:10.1016/j.indcrop.2016.05.010
[19]
MA F T, SHAN Q, JIN Y H, et al. Effect of Lonicera japonica extract on lactation performance, antioxidant status, and endocrine and immune function in heat-stressed mid-lactation dairy cows[J]. Journal of Dairy Science, 2020, 103(11): 10074-10082. DOI:10.3168/jds.2020-18504
[20]
KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360. DOI:10.1038/nmeth.3317
[21]
PAREEK C S, SMOCZYNSKI R, TRETYN A. Sequencing technologies and genome sequencing[J]. Journal of Applied Genetics, 2011, 52(4): 413-435. DOI:10.1007/s13353-011-0057-x
[22]
RINGSEIS R, ZEITZ J O, WEBER A, et al. Hepatic transcript profiling in early-lactation dairy cows fed rumen-protected niacin during the transition from late pregnancy to lactation[J]. Journal of Dairy Science, 2018, 102(1): 365-376.
[23]
DIKMEN S, HANSEN P J. Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment?[J]. Journal of Dairy Science, 2009, 92(1): 109-116. DOI:10.3168/jds.2008-1370
[24]
VAN SOEST P J, ROBERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 1991, 74(10): 3583-3597. DOI:10.3168/jds.S0022-0302(91)78551-2
[25]
SUN P, WANG J, LIU W, et al. Hydroxy-selenomethionine: a novel organic selenium source that improves antioxidant status and selenium concentrations in milk and plasma of mid-lactation dairy cows[J]. Journal of Dairy Science, 2017, 100(12): 9602-9610. DOI:10.3168/jds.2017-12610
[26]
MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. Embnet Journal, 2011, 17(1): 10-12. DOI:10.14806/ej.17.1.200
[27]
MORTAZAVI A, WILLIAMS B A, MCCUE K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods, 2008, 5(7): 621-628. DOI:10.1038/nmeth.1226
[28]
WANG L K, FENG Z X, WANG X, et al. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics, 2010, 26(1): 136-138. DOI:10.1093/bioinformatics/btp612
[29]
GÖTZ S, GARCÍA-GÓMEZ J M, TEROL J, et al. High-throughput functional annotation and data mining with the Blast2GO suite[J]. Nucleic Acids Research, 2008, 36(10): 3420-3435. DOI:10.1093/nar/gkn176
[30]
MORIYA Y, ITOH M, OKUDA S, et al. KAAS: an automatic genome annotation and pathway reconstruction server[J]. Nucleic Acids Research, 2007, 35(Suppl.2): W182-W185.
[31]
AMUNDSON J L, MADER T L, RASBY R J, et al. Environmental effects on pregnancy rate in beef cattle[J]. Journal of Animal Science, 2006, 84(12): 3415-3420. DOI:10.2527/jas.2005-611
[32]
STAPLES C R, THATCHER W W. Stress in dairy animals|heat stress: effects on milk production and composition[M]//FUQUAY J W. Encyclopedia of dairy sciences. 2nd ed. New York: Elsevier Ltd., 2011: 561-566.
[33]
MCDOWELL R E, HOOVEN N W, CAMOENS J K. Effect of climate on performance of holsteins in first lactation[J]. Journal of Dairy Science, 1976, 59(5): 965-971. DOI:10.3168/jds.S0022-0302(76)84305-6
[34]
CAROPRESE M, ALBENZIO M, MARINO R, et al. Immune response and milk production of dairy cows fed graded levels of rumen-protected glutamine[J]. Research in Veterinary Science, 2012, 93(1): 202-209. DOI:10.1016/j.rvsc.2011.07.015
[35]
TREVISI E, AMADORI M, COGROSSI S, et al. Metabolic stress and inflammatory response in high-yielding, periparturient dairy cow[J]. Research in Veterinary Science, 2012, 93(2): 695-704. DOI:10.1016/j.rvsc.2011.11.008
[36]
LI F, WANG Y P, LIN L H, et al. Mast cell-derived exosomes promote Th2 cell differentiation via OX40L-OX40 ligation[J]. Journal of Immunology Research, 2016, 2016: 3623898.
[37]
HAYASHI S, JOHNSTON S A, TAKASHIMA A. Induction of Th2-directed immune responses by IL-4-transduced dendritic cells in mice[J]. Vaccine, 2000, 18(27): 3097-3105. DOI:10.1016/S0264-410X(00)00140-7
[38]
BAGATH M, KRISHNAN G, DEVARAJ C, et al. The impact of heat stress on the immune system in dairy cattle: a review[J]. Research in Veterinary Science, 2019, 126: 94-102. DOI:10.1016/j.rvsc.2019.08.011
[39]
WHITNEY G, WANG S L, CHANG H, et al. A new siglec family member, siglec-10, is expressed in cells of the immune system and has signaling properties similar to CD33[J]. European Journal of Biochemistry, 2001, 268(23): 6083-6096. DOI:10.1046/j.0014-2956.2001.02543.x
[40]
CROCKER P R, PAULSON J C, VARKI A. Siglecs and their roles in the immune system[J]. Nature Reviews Immunology, 2007, 7(4): 255-266. DOI:10.1038/nri2056
[41]
NA H, CHO M, CHUNG Y. Regulation of Th2 cell immunity by dendritic cells[J]. Immune Network, 2016, 16(1): 1-12. DOI:10.4110/in.2016.16.1.1
[42]
FISHMAN M A, PERELSON A S. Th1/Th2 differentiation and cross-regulation[J]. Bulletin of Mathematical Biology, 1999, 61(3): 403-436. DOI:10.1006/bulm.1998.0074
[43]
NAKANO T, FUKUDA D, KOGA J I, et al. Delta-like ligand 4-notch signaling in macrophage activation[J]. Arteriosclerosis Thrombosis and Vascular Biology, 2016, 36(10): 2038-2047. DOI:10.1161/ATVBAHA.116.306926
[44]
LI Y, SUN J P, WANG J, et al. Expression of Vsig4 attenuates macrophage-mediated hepatic inflammation and fibrosis in high fat diet (HFD)-induced mice[J]. Biochemical and Biophysical Research Communications, 2019, 516(3): 858-865. DOI:10.1016/j.bbrc.2019.06.045
[45]
WANG S W, SONG R, WANG Z Y, et al. S100A8/A9 in inflammation[J]. Frontiers in Immunology, 2018, 9: 1298. DOI:10.3389/fimmu.2018.01298
[46]
RYCKMAN C, VANDAL K, ROULEAU P, et al. Proinflammatory activities of S100:proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion[J]. Journal of Immunology, 2003, 170(6): 3233-3242. DOI:10.4049/jimmunol.170.6.3233
[47]
BETZ B C, JORDAN-WILLIAMS K L, WANG C W, et al. Batf coordinates multiple aspects of B and T cell function required for normal antibody responses[J]. Journal of Experimental Medicine, 2010, 207(5): 933-942. DOI:10.1084/jem.20091548
[48]
ZLOTNIK A, YOSHIE O. The chemokine superfamily revisited[J]. Immunity, 2012, 36(5): 705-716. DOI:10.1016/j.immuni.2012.05.008
[49]
CHARO I F, RANSOHOFF R M. The many roles of chemokines and chemokine receptors in inflammation[J]. The New England Journal of Medicine, 2006, 354(6): 610-621. DOI:10.1056/NEJMra052723
[50]
NIBBS R J B, GRAHAM G J. Immune regulation by atypical chemokine receptors[J]. Nature Reviews Immunology, 2013, 13(11): 815-829. DOI:10.1038/nri3544
[51]
KARA E E, BASTOW C R, MCKENZIE D R, et al. Atypical chemokine receptor 4 shapes activated B cell fate[J]. Journal of Experimental Medicine, 2018, 215(3): 801-813. DOI:10.1084/jem.20171067
[52]
MANTOVANI A, BONECCHI R, LOCATI M. Tuning inflammation and immunity by chemokine sequestration: decoys and more[J]. Nature Reviews Immunology, 2006, 6(12): 907-918. DOI:10.1038/nri1964
[53]
LIANG Y T, QIAO L W, PENG X, et al. The chemokine receptor CCR1 is identified in mast cell-derived exosomes[J]. American Journal of Translational Research, 2018, 10(2): 352-367.
[54]
ELDH M, EKSTRÖM K, VALADI H, et al. Exosomes communicate protective messages during oxidative stress: possible role of exosomal shuttle RNA[J]. PLoS One, 2010, 5(12): e15353. DOI:10.1371/journal.pone.0015353
[55]
FEBBRAIO M A. Alterations in energy metabolism during exercise and heat stress[J]. Sports Medicine, 2001, 31(1): 47-59. DOI:10.2165/00007256-200131010-00004
[56]
RAMNANAN C J, EDGERTON D S, KRAFT G, et al. Physiologic action of glucagon on liver glucose metabolism[J]. Diabetes Obesity & Metabolism, 2011, 13(Suppl.1): 118-125.
[57]
KLOVER P J, MOONEY R A. Hepatocytes: critical for glucose homeostasis[J]. International Journal of Biochemistry & Cell Biology, 2004, 36(5): 753-758.
[58]
TURNBULL J, TIBERIA E, PEREIRA S, et al. Deficiency of a glycogen synthase-associated protein, EPM2AIP1, causes decreased glycogen synthesis and hepatic insulin resistance[J]. Journal of Biological Chemistry, 2013, 288(48): 34627-34637. DOI:10.1074/jbc.M113.483198
[59]
WHITE H M, KOSER S L, DONKIN S S. Regulation of bovine pyruvate carboxylase mRNA and promoter expression by thermal stress[J]. Journal of Animal Science, 2012, 90(9): 2979-2987. DOI:10.2527/jas.2010-3408
[60]
O'BRIEN M D, RHOADS R P, SANDERS S R, et al. Metabolic adaptations to heat stress in growing cattle[J]. Domestic Animal Endocrinology, 2010, 38(2): 86-94. DOI:10.1016/j.domaniend.2009.08.005
[61]
RHOADS R P, LA NOCE A J, WHEELOCK J B, et al. Short communication: alterations in expression of gluconeogenic genes during heat stress and exogenous bovine somatotropin administration[J]. Journal of Dairy Science, 2011, 94(4): 1917-1921. DOI:10.3168/jds.2010-3722
[62]
GIZAK A, GRENDA M, MAMCZUR P, et al. Insulin/IGF1-PI3K-dependent nucleolar localization of a glycolytic enzyme-phosphoglycerate mutase 2, is necessary for proper structure of nucleolus and RNA synthesis[J]. Oncotarget, 2015, 6(19): 17237-17250. DOI:10.18632/oncotarget.4044
[63]
PITARI G, MALERGUE F, MARTIN F, et al. Pantetheinase activity of membrane-bound vanin-1:lack of free cysteamine in tissues of vanin-1 deficient mice[J]. FEBS Letters, 2000, 483(2/3): 149-154.
[64]
ROMMELAERE S, MILLET V, GENSOLLEN T, et al. PPAR alpha regulates the production of serum Vanin-1 by liver[J]. FEBS Letters, 2013, 587(22): 3742-3748. DOI:10.1016/j.febslet.2013.09.046
[65]
LIN H, DECUYPERE E, BUYSE J. Acute heat stress induces oxidative stress in broiler chickens[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2006, 144(1): 11-17.
[66]
FERREIRA D W, NAQUET P, MANAUTOU J E. Influence of vanin-1 and catalytic products in liver during normal and oxidative stress conditions[J]. Current Medicinal Chemistry, 2015, 22(20): 2407-2416. DOI:10.2174/092986732220150722124307
[67]
WINTERBOURN C C, METODIEWA D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide[J]. Free Radical Biology and Medicine, 1999, 27(3/4): 322-328.
[68]
BERRUYER C, MARTIN F M, CASTELLANO R, et al. Vanin-1-/- mice exhibit a glutathione-mediated tissue resistance to oxidative stress[J]. Molecular and Cellular Biology, 2004, 24(16): 7214-7224. DOI:10.1128/MCB.24.16.7214-7224.2004
[69]
NAQUET P, PITARI G, DUPRÈ S, et al. Role of the vnn1 pantetheinase in tissue tolerance to stress[J]. Biochemical Society Transactions, 2014, 42(4): 1094-1100. DOI:10.1042/BST20140092
[70]
KASKOW B J, PROFFIT J M, BLANGERO J, et al. Diverse biological activities of the vascular non-inflammatory molecules-the vanin pantetheinases[J]. Biochemical and Biophysical Research Communications, 2012, 417(2): 653-658. DOI:10.1016/j.bbrc.2011.11.099
[71]
NISHIMURA M, NAITO S. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies[J]. Drug Metabolism and Pharmacokinetics, 2005, 20(6): 452-477. DOI:10.2133/dmpk.20.452
[72]
DEBOSCH B J, CHEN Z J, SABEN J L, et al. Glucose transporter 8(GLUT8) mediates fructose-induced de novo lipogenesis and macrosteatosis[J]. Journal of Biological Chemistry, 2014, 289(16): 10989-10998. DOI:10.1074/jbc.M113.527002
[73]
BASSI M T, SPERANDEO M P, INCERTI B, et al. Slc7a8, a gene mapping within the lysinuric protein intolerance critical region, encodes a new member of the glycoprotein-associated amino acid transporter family[J]. Genomics, 1999, 62(2): 297-303. DOI:10.1006/geno.1999.5978
[74]
ELORZA A, SORO-ARNÁIZ I, MELÉNDEZ-RODRÍGUEZ F, et al. Hif2α acts as an mtorc1 activator through the amino acid carrier slc7a5[J]. Molecular Cell, 2012, 48(5): 681-691. DOI:10.1016/j.molcel.2012.09.017
[75]
ZHOU M Y, XIA L, ENGEL K, et al. Molecular determinants of substrate selectivity of a novel organic cation transporter (PMAT) in the slc29 family[J]. Journal of Biological Chemistry, 2007, 282(5): 3188-3195. DOI:10.1074/jbc.M609421200
[76]
CHIANG J Y L. Bile acids: regulation of synthesis[J]. Journal of Lipid Research, 2009, 50(10): 1955-1966. DOI:10.1194/jlr.R900010-JLR200
[77]
ISHIHARA K. History and perspectives of research in bone marrow stromal cell antigen-1(BST-1)/CD157:a relative of ADP-Ribosyl cyclase CD38[J]. Messenger, 2014, 3(1): 15-20. DOI:10.1166/msr.2014.1038
[78]
JIMÉNEZ D, RODA-NAVARRO P, SPRINGER T A, et al. Contribution of N-linked glycans to the conformation and function of intercellular adhesion molecules (ICAMs)[J]. Journal of Biological Chemistry, 2005, 280(7): 5854-5861. DOI:10.1074/jbc.M412104200
[79]
TELLEZ G F, VANDEPOELE K, BROUWER U, et al. Protocadherin-1 binds to SMAD3 and suppresses TGF-β1-induced gene transcription[J]. American Journal of Physiology: Lung Cellular and Molecular Physiology, 2015, 309(7): L725-L735. DOI:10.1152/ajplung.00346.2014
[80]
IAN GALLICANO G, KOUKLIS P, BAUER C, et al. Desmoplakin is required early in development for assembly of desmosomes and cytoskeletal linkage[J]. Journal of Cell Biology, 1998, 143(7): 2009-2022. DOI:10.1083/jcb.143.7.2009
[81]
VASIOUKHIN V, BOWERS E, BAUER C, et al. Desmoplakin is essential in epidermal sheet formation[J]. Nature Cell Biology, 2001, 3(12): 1076-1085. DOI:10.1038/ncb1201-1076
[82]
CHANG W C, HSU F L. Inhibition of platelet activation and endothelial cell injury by polyphenolic compounds isolated from Lonicera japonica thunb[J]. Prostaglandins, Leukotrienes and Essential Fatty Acids, 1992, 45(4): 307-312. DOI:10.1016/0952-3278(92)90088-Z
[83]
WEON J B, YANG H J, LEE B, et al. Neuroprotective activity of the methanolic extract of Lonicera japonica in glutamate-injured primary rat cortical cells[J]. Pharmacognosy Magazine, 2011, 7(28): 284-288. DOI:10.4103/0973-1296.90404
[84]
PARK H S, PARK K I, LEE D H, et al. Polyphenolic extract isolated from Korean Lonicera japonica thunb.induce G2/M cell cycle arrest and apoptosis in HEPG2 cells: involvements of PI3K/AKT and MAPKs[J]. Food and Chemical Toxicology, 2012, 50(7): 2407-2416. DOI:10.1016/j.fct.2012.04.034