动物营养学报    2021, Vol. 33 Issue (6): 3564-3572    PDF    
饲粮添加驴源罗伊氏乳杆菌对断奶驴驹生长性能、营养物质表观消化率、血清免疫球蛋白含量及直肠菌群结构的影响
王卓1 , 冯培祥2,3 , 李光玉1 , 司华哲1 , 刘晓颖1 , 姜桂苗2,3 , 赵付伟2,3 , 张婷1 , 刘晗璐1     
1. 中国农业科学院特产研究所, 吉林省特种经济动物分子生物学省部共建国家重点实验室, 长春 130112;
2. 聊城大学驴产业科技协同创新中心, 聊城 252000;
3. 国家胶类中药工程技术研究中心, 东阿阿胶股份有限公司, 聊城 252201
摘要: 本试验旨在研究饲粮添加驴源罗伊氏乳杆菌对断奶驴驹生长性能、营养物质表观消化率、血清免疫球蛋白含量及直肠菌群结构的影响。选取5~6月龄体况良好的断奶驴驹10头,平均体重为(113.05±14.66)kg,随机分为2组,每组5头。对照组(CT组)饲喂基础饲粮;试验组(LA组)在基础饲粮中添加罗伊氏乳杆菌,按1×1011 CFU/kg添加于精饲料中。预试期7 d,正试期60 d。结果表明:1)对照组和试验组的体重、平均日增重、料重比均无显著差异(P>0.05)。试验组的粗饲料采食量显著低于对照组(P < 0.05)。2)对照组和试验组的干物质(DM)、粗蛋白质(CP)、粗脂肪(EE)、酸性洗涤纤维(ADF)、中性洗涤纤维(NDF)表观消化率均无显著差异(P>0.05)。与对照组相比,试验组的ADF表观消化率提高了6.2%,NDF表观消化率提高了3.4%。3)对照组和试验组的血清免疫球蛋白G(IgG)和免疫球蛋白M(IgM)含量均无显著差异(P>0.05)。试验组的血清免疫球蛋白A(IgA)含量显著高于对照组(P < 0.05)。4)饲粮添加罗伊氏乳杆菌对断奶驴驹直肠菌群α-多样性无显著影响(P>0.05),饲粮添加罗伊氏乳杆菌提高了断奶驴驹直肠菌群门水平上拟杆菌门和属水平上未鉴定瘤胃球菌科的相对丰度(P < 0.05)。由此可见,饲粮添加罗伊氏乳杆菌能减少断奶驴驹粗饲料的摄入,提高ADF和NDF表观消化率,增加血清IgA含量,提高直肠拟杆菌门和未鉴定瘤胃球菌科的相对丰度。
关键词: 断奶驴驹    罗伊氏乳杆菌    生长性能    营养物质表观消化率    免疫球蛋白    菌群多样性    
Effects of Dietary Donkey-Derived Lactobacillus reuteri on Growth Performance, Nutrient Apparent Digestibilities, Serum Immunoglobulin Contents and Rectum Microbiota Structure of Weaning Donkey Foals
WANG Zhuo1 , FENG Peixiang2,3 , LI Guangyu1 , SI Huazhe1 , LIU Xiaoying1 , JIANG Guimiao2,3 , ZHAO Fuwei2,3 , ZHANG Ting1 , LIU Hanlu1     
1. State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Animal and Plant Science, Chinese Academy of Agriculture Sciences, Changchun 130112, China;
2. Collaborative Innovation Center of Industrial Technology, Liaocheng University, Liaocheng 252000, China;
3. Engineering Research Center of Gelatin-Based Traditional Chinese Mediciine, Dong-E-E-Jiao Co., Ltd., Liaocheng 252201, China
Abstract: The aim of this study was to investigate the effects of dietary donkey-derived Lactobacillus reuteri on growth performance, nutrient apparent digestibilities, serum immunoglobulin contents and rectum microbiota structure of weaning donkey foals. Ten healthy weaning donkey foals aged from 5 to 6 months with average body weight of (113.05±14.66) kg were selected and randomly assigned into 2 groups with 5 donkeys per group. The control group (CT group) was fed a basal diet; the experimental group (LA group) was fed the basal diet supplemented with Lactobacillus reuteri, which supplemented 1×1011 CFU/kg in concentrate. The pre-experimental period lasted for 7 days, and the experimental period lasted for 60 days. The results showed as follows: 1) there were no significant differences in body weight, average daily gain and feed to gain ratio between control group and experimental group (P>0.05). The roughage feed intake of the experimental group was significantly lower than that of the control group (P < 0.05). 2) There were no significant differences in apparent digestibilities of dry matter (DM), crude protein (CP), ether extract (EE), acid detergent fiber (ADF), neutral detergent fiber (NDF) between control group and experimental group (P>0.05). Compared with the control group, the ADF apparent digestibility of the experimental group increased by 6.2%, and the NDF apparent digestibility of the experimental group increased by 3.4%. 3) There were no significant differences in contents of immunoglobulin G (IgG) and immunoglobulin M (IgM) in serum between control group and experimental group (P>0.05). The serum immunoglobulin A (IgA) content of the experimental group was significantly higher than that of the control group (P < 0.05). 4) Dietary Lactobacillus reuteri had no significant effect on the rectal microbial α-diversity of weaning donkey foals (P>0.05), and dietary Lactobacillus reuteri significantly increased the relative abundances of Bacteroidetes at phylum level and unidentified Ruminococcaceae at genus level in rectum (P < 0.05). In conclusion, dietary Lactobacillus reuteri can reduce the roughage intake of weaning donkey foals, increase the apparent digestibilities of ADF and NDF, improve the serum IgA content, and increase the relative abundances of Bacteroidetes and unidentified Ruminococcaceae in rectum.
Key words: weaning donkey foals    Lactobacillus reuteri    growth performance    nutrient apparent digestibilities    immunoglobulin    microbiota diversity    

驴为高附加值家畜,驴皮、驴肉、驴奶深受消费者喜爱,驴产品的消费潜力为驴特色养殖业的发展提供了极大动力。在驴的养殖中,断奶期是非常重要的时期,饲粮改变、母子分离以及环境改变等均易导致免疫力降低。此外,断奶会导致肠道形态和功能变化,从而影响小肠的消化和吸收能力[1-2]

2020年7月1日起我国饲料生产中开始了全面禁止添加抗生素,这意味着依靠抗生素促生长和预防肠道性疾病发生的时代已经结束,这无疑将使国内养殖产业链产生一定变革。在初生和受应激动物饲粮中添加直接饲喂微生物(direct-fed microbials,DFM),可以提高饲料利用率和通过抑制病原体改善动物健康,并具有调节免疫功能、提高其他有益微生物的增殖、调节胃肠道微生物区系平衡(GIT)等作用,常被用来代替或减少抗生素的使用[3-5]。将DFM作为提高动物生长性能和促进动物健康的功能性食品添加剂的研究也逐渐增加。然而,DFM在食草单胃动物驴的研究较少。

乳酸菌是应用最为广泛的DFM之一[6-7]。Canzi等[8]证实,乳酸菌对兔微生物区系平衡的恢复具有积极作用。本实验室从健康成年驴肠道内分离和鉴定了1株罗伊氏乳杆菌L2-2,经过小鼠安全性验证证实了该菌的安全性,并且有促进小鼠胸腺发育的作用[9]。因此,本试验旨在研究饲粮添加罗伊氏乳杆菌L2-2对断奶驴驹生长性能、营养物质表观消化率、血清免疫球蛋白含量及直肠菌群结构的影响,为驴源微生态制剂的开发和利用提供理论依据。

1 材料与方法 1.1 试验菌株

从健康成年驴肠道中分离、筛选、鉴定后得到罗伊氏乳杆菌L2-2,现保藏于中国农业科学院特产研究所特种动物营养与饲养科技创新团队实验室。取复苏的菌株接种到乳酸细菌培养基(MRS)固体斜面培养基,37 ℃培养24 h取出,刮取菌泥,用15%脱脂乳粉作为保护剂冻干,平板计数法测出有效活菌数。

1.2 试验动物和试验设计

选择5~6月龄雌性断奶驴驹10头,平均体重为(113.05±14.66) kg,随机分成2组,每组5个重复。对照组(CT组)喂基础饲粮;试验组(LR组)在基础饲粮中添加罗伊氏乳杆菌,按1×1011 CFU/kg添加于精饲料中。精饲料每日按照驴驹体重的1.3%定量饲喂,每日07:00和16:00饲喂精饲料,粗饲料(豆秸)自由采食。预试期7 d,正试期60 d。所有驴单圈饲养。精饲料组成及营养水平见表 1,粗饲料营养水平见表 2

表 1 精饲料组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the concentrate (air-dry basis)  
表 2 粗饲料营养水平(风干基础) Table 2 Composition and nutrient levels of the roughage (air-dry basis)  
1.3 检测指标 1.3.1 生长性能

每天记录采食量,每15 d晨饲前称量试验驴体重,每隔3 d对每头驴精饲料和粗饲料投料量和剩料量进行记录,用于精确计算试验期间每头驴采食量、平均日增重(ADG)和料重比(F/G)。

1.3.2 营养物质表观消化率

试验期间连续3 d每日14:00小心收集每头驴驹的部分新鲜粪便,避免驴毛、沙粒等污染,收集的粪样称重后按鲜重的5%加入10%硫酸以避免氮的损失。粪便样品在80 ℃下杀菌2 h,然后降到65 ℃烘干48 h。分析饲粮和粪便样品中干物质(DM)、有机物(OM)、粗蛋白质(CP)、盐酸不溶灰分、粗脂肪(EE)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)含量[10]。DM、CP、EE、NDF和ADF的表观消化率采用2 mol/L盐酸不溶灰分法[11]测定,通过以下公式计算表观消化率:

式中:D为营养物质表观消化率;A为饲粮中盐酸不溶性灰分含量;A1为粪便中盐酸不溶性灰分含量;B为饲粮中该营养物质含量;B1为粪便中该营养物质含量。

1.3.3 血清免疫球蛋白含量

试验第45天,晨饲前对驴颈静脉采血10 mL,加入带分离胶的促凝采血管中,离心(3 500 r/min,10 min)获得血清样本,-20 ℃保存,待分析驴驹的血清免疫球蛋白G(IgG)、免疫球蛋白A(IgA)、免疫球蛋白M(IgM)含量,使用酶联免疫吸附试验(ELISA)试剂盒测定,试剂盒购自南京建成生物工程研究所。

1.3.4 直肠菌群结构

试验第50天采集直肠内容物20 g,无菌操作下搅拌混匀,取5 g直肠内容样本,使用Fast DNA Spin Kit for Feces试剂盒(美国MP公司)进行微生物组DNA提取。提取后的DNA送往北京诺禾致源科技股份有限公司,使用IonS5TMXL测序平台对微生物基因组的16S rRNA V3~V4区进行测序。所用引物为341F(5′-CCTAYGGGRBGCASCAG-3′)和806R(5′-GGACTACNNGGGTATCTAAT-3′)。在进行分析之前,用Cutadapt[12](Martin M. 2011)软件对数据进行过滤和质控,对数据进行了均一化处理(normalize),应用Silva132数据库进行微生物分类注释。使用UPARSE软件[13]根据97%的相似度对序列进行操作分类单元(OTUs)聚类,并在聚类的过程中去除单序列和嵌合体[14]。QIIME 1.9.1用来计算α-多样性指数(ACE指数、Chao1指数、Simpson指数和Shannon指数)[15]

1.4 数据分析

使用SPSS 21.0软件进行统计分析。所有数据采用Independent-Samples t检验分析差异显著性。数据用平均值±标准差表示,P < 0.05表示差异显著。

2 结果与分析 2.1 饲粮添加罗伊氏乳杆菌对断奶驴驹生长性能的影响

表 3所示,对照组和试验组的15、30、45和60 d体重以及平均日增重、料重比均无显著差异(P>0.05)。试验组的粗饲料采食量显著低于对照组(P < 0.05)。

表 3 饲粮添加罗伊氏乳杆菌对断奶驴驹生长性能的影响 Table 3 Effects of dietary Lactobacillus reuteri on growth performance of weaning donkey foals
2.2 饲粮添加罗伊氏乳杆菌对断奶驴驹营养物质表观消化率的影响

表 4所示,对照组和试验组的DM、CP、EE、ADF、NDF表观消化率均无显著差异(P>0.05)。与对照组相比,试验组的ADF表观消化率提高了6.2%,NDF表观消化率提高了3.4%。

表 4 饲粮添加罗伊氏乳杆菌对断奶驴驹营养物质表观消化率的影响 Table 4 Effects of dietary Lactobacillus reuteri on nutrient apparent digestibilities of weaning donkey foals  
2.3 饲粮添加罗伊氏乳杆菌对断奶驴驹血清免疫球蛋白含量的影响

表 5所示,试验组的血清IgA含量显著高于对照组(P < 0.05)。对照组和试验组的血清IgG和IgM含量均无显著差异(P>0.05)。

表 5 饲粮添加罗伊氏乳杆菌对断奶驴驹血清免疫球蛋白含量的影响 Table 5 Effects of dietary Lactobacillus reuteri on serum immunoglobulin contents of weaning donkey foals  
2.4 饲粮添加罗伊氏乳杆菌对断奶驴驹直肠菌群结构的影响

表 6所示,对照组和试验组的覆盖度指数均高于0.995,说明测序深度足够,结果可呈现99.5%以上的菌群组成。试验组的Shannon指数和Simpson指数高于对照组,Chao1指数和ACE指数低于对照组,但差异不显著(P>0.05)。这表明饲粮添加罗伊氏乳杆菌对断奶驴驹直肠菌群α-多样性指数无显著影响。

表 6 饲粮添加罗伊氏乳杆菌对断奶驴驹直肠菌群α-多样性指数影响 Table 6 Effects of dietary Lactobacillus reuteri on rectum bacteria α-diversity index of weaning donkey foals

按97%相似度聚类后得到2 369个OTUs,对照组独有的OTUs为250个,试验组独有的OTUs为245个。饲粮添加罗伊氏乳杆菌后,断奶驴驹直肠菌群组成的门水平和属水平上微生物组成如图 1图 2所示。对照组和试验组的直肠菌群在门水平上主要归类为厚壁菌门[(54.76±10.91)%]、拟杆菌门[(27.74±12.60)%]和变形菌门[(10.71±17.00)%]。试验组的拟杆菌门相对丰度[(35.97±7.68)%]高于对照组[(19.52±11.37)%],对照组中有2头断奶驴驹的变形菌门相对丰度高达36.46%~48.45%,这表明饲粮添加罗伊氏乳杆菌会提高断奶驴驹直肠拟杆菌门相对丰度,可能会抑制变形菌门相对丰度。在属水平上,对照组和试验组中相对丰度较高的菌群分别为不动杆菌属[(9.07±17.28)%]、土壤芽孢杆菌属[(4.78±6.00)%]、链球菌属[(6.34±6.63)%]、未鉴定瘤胃球菌科[(3.54±1.96)%]、未鉴定梭菌目[(2.60±4.17)%]。其他菌属相对丰度均低于0.1%,在对照组和试验组的其他菌属分别占(54.65±28.70)%和(79.30±10.81)%。对照组中2头断奶驴驹的变形菌门相对丰度较高,其不动杆菌属相对丰度也较高,达到34.35%~48.12%。试验组的厚壁菌门中未鉴定瘤胃球菌科相对丰度[(4.82±1.80)%]高于对照组[(2.26±1.15)%]。对照组和试验组的直肠菌群在其他属水平上无明显区别。

CT1~CT5代表对照组的5头断奶驴驹,LR1~LR5代表试验组的5头断奶驴驹。图 2同。 CT1 to CT5 represent 5 weaning donkey foals in the control group, LR 1 to LR 5 represent 5 weaning donkey foals in the experimental group. The same as Fig. 2. 图 1 断奶驴驹直肠菌群门水平相对丰度 Fig. 1 Relative abundance of bacteria in rectum of weaning donkey foals at phylum level
图 2 断奶驴驹直肠菌群属水平相对丰度 Fig. 2 Relative abundance of bacteria in rectum of weaning donkey foals at genus level

图 3所示,主坐标分析(PCoA)显示2个轴相加解释79.80%的变量组成,2组之间一些样品的菌群组成相似,但仍有一些差异,这表明饲粮添加罗伊氏乳杆菌对断奶驴驹直肠的菌群组成具有一定影响。

图 3 断奶驴驹直肠菌群主坐标分析 Fig. 3 PCoA of bacteria in rectum of weaning donkey foals
3 讨论

DFM被认为可以通过定性或定量影响宿主肠道微生物群,同时帮助宿主完成各种生理生化功能[8]。DFM可以为宿主提供大量微生物菌体蛋白,可以改善营养物质消化率,通过微生物分泌的消化酶和提供维生素B族以及各种酶的辅助因子而提高宿主消化能力[16-18]。而有关饲喂乳酸菌后对动物益生作用的研究结果并不一致,这可能与动物的品种、状态以及菌的功能和来源有关。Ellinger等[19]、Abu-Tarboush等[20]、Krehbiel等[3]和Raeth-Knight等[21]报道,在饲喂乳酸杆菌后DM摄入量、ADG以及饲料转化率没有改善。Krehbiel等[3]报道,饲粮中添加DFM增加了瘤胃中纤维素降解菌的数量和比例。Giang等[1]报道,在仔猪断奶后的前2周补充复合乳酸菌显著增加了CP和粗纤维表观消化率。而本试验结果表明,饲粮添加罗伊氏乳杆菌后,粗饲料采食量显著减少,驴驹的生长性能未受到影响,同时发现驴驹的NDF和ADF表观消化率分别提高了3.4%和6.2%。因此,饲粮添加罗伊氏乳杆菌可以直接或间接增加驴驹对纤维素的消化率,同时可增加驴驹的饱腹感,在生产中有利于减少饲料成本的投入。

肠道细菌通过代谢产物参与宿主的免疫系统[22]。口服乳酸杆菌可以增强先天免疫反应(即增强吞噬作用和自然杀伤细胞活性),以及提高人类和动物中血清IgA含量和减少血清IgE含量[23-24]。血清免疫球蛋白是体液免疫系统的主要成分。本研究也发现,饲粮添加罗伊氏乳杆菌可以提高断奶驴驹的血清IgA含量。IgA是黏膜免疫的主要抗体,其主要功能是在非特异性免疫防护机制的协助下减少病原菌。本实验室也研究发现,将驴源罗伊氏乳杆菌连续灌胃小鼠7 d后,罗伊氏乳杆菌可以通过增加小鼠胸腺指数来增强小鼠的免疫功能[9]

从断奶驴驹直肠菌群组成的门水平和属水平的试验结果发现,饲粮添加罗伊氏乳杆菌后,乳杆菌属相对丰度并没有明显增加,这可能是直接饲喂裸菌后细菌经过胃肠液消化并没有有效存活,而是通过细菌的代谢产物发挥作用。在模拟胃酸环境下,单纯没有被包被的益生菌很难在胃中存活2 h[25]。但我们观察到饲粮添加罗伊氏乳杆菌后刺激了断奶驴驹直肠中门水平上拟杆菌门和属水平上未鉴定瘤胃球菌科的增长。拟杆菌门是饲料碳水化合物和蛋白质的重要降解菌,可促进胃肠道免疫系统的发育[26]。有研究表明,瘤胃球菌科可降解多糖和纤维,产生大量挥发性脂肪酸(VFA),这可能有助于通过增强饱腹感减少食物摄入量[27-29]。本试验也发现在饲粮添加罗伊氏乳杆菌后断奶驴驹粗饲料采食量减少,ADF表观消化率提高,可能与未鉴定瘤胃球菌科相对丰度增加有关。瘤胃球菌科已被证明可在体外产生抗炎肽[30],而且可以降低小牛的腹泻发病率和死亡率[31]。此外,瘤胃球菌科的数量与结肠炎、绞痛以及应激因素如禁食、运输和麻醉有显著负相关[32-34]。本试验中,对照组2只断奶驴驹直肠内不动杆菌的相对丰度较高。Regalado等[35]研究表明,不动杆菌可引起动物胃肠炎的发生。本试验中,试验组并未发现这样的个体,这也从侧面证明了饲粮添加罗伊氏乳杆菌可在一定程度上维持肠道稳态。因此,罗伊氏乳杆菌可能通过间接增加未鉴定瘤胃球菌科的相对丰度而预防和治疗腹泻等胃肠道疾病,关于这一点还需要进一步研究确定。

4 结论

研究表明,饲粮添加罗伊氏乳杆菌可以降低断奶驴驹的粗饲料采食量,提高ADF和NDF表观消化率,增加血清IgA含量,提高直肠中拟杆菌门和未鉴定瘤胃球菌科相对丰度。

参考文献
[1]
GIANG H H, VIET T Q, OGLE B, et al. Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with potentially probiotic complexes of lactic acid bacteria[J]. Livestock Science, 2010, 129(1/2/3): 95-103.
[2]
王世琴. 断奶应激及饲喂白藜芦醇和地衣芽孢杆菌对羔羊胃肠道发育及其微生物区系的影响[D]. 博士学位论文. 兰州: 兰州大学, 2020.
WANG S Q. Effects of weaning stress and supplementation of resveratrol and Bacillus licheniformis on gastrointestinal development and microbiota in lambs[D]. Ph. D. Thesis. Lanzhou: Lanzhou University, 2020. (in Chinese)
[3]
KREHBIEL C R, RUST S R, ZHANG G, et al. Bacterial direct-fed microbials in ruminant diets: performance response and mode of action[J]. Journal of Animal Science, 2003, 81(Suppl.2): E120-E132.
[4]
SEO J K, KIM S W, KIM M H, et al. Direct-fed microbials for ruminant animals[J]. Asian-Australasian Journal of Animal Sciences, 2010, 23(12): 1657-1667. DOI:10.5713/ajas.2010.r.08
[5]
FRIZZO L S, ZBRUN M V, SOTO L P, et al. Effects of probiotics on growth performance in young calves: a Meta-analysis of randomized controlled trials[J]. Animal Feed Science and Technology, 2011, 169(3/4): 147-156.
[6]
FULLER R. Probiotics in man and animals[J]. Journal of Applied Microbiology, 1989, 66(5): 365-378.
[7]
SOTO L P, FRIZZO L S, BERTOZZI E, et al. Molecular microbial analysis of lactobacillus strains isolated from the gut of calves for potential probiotic use[J]. Veterinary Medicine International, 2010, 2010: 274987.
[8]
CANZI E, ZANCHI R, CAMASCHELLA P, et al. Modulation by lactic-acid bacteria of the intestinal ecosystem and plasma cholesterol in rabbits fed a casein diet[J]. Nutrition Research, 2020, 20(9): 1329-1340.
[9]
王卓, 冯培祥, 李光玉, 等. 驴源罗伊氏乳杆菌的安全性评价[J]. 特产研究, 2020, 42(3): 39-43.
WANG Z, FENG P X, LI G Y, et al. Safety evaluation of Lactobacillus reuteri isolated from donkey's intestine[J]. Special Wild Economic Animal and Plant Research, 2020, 42(3): 39-43 (in Chinese).
[10]
AOAC. Official methods of analysis[S]. 17th ed. Gaithersburg MD: Association of Official Analytical Chemists, 2003.
[11]
BERGERO D, PRÉFONTAINE C, MIRAGLIA N, et al. A comparison between the 2N and 4N HCl acid-insoluble ash methods for digestibility trials in horses[J]. Animal, 2009, 3(12): 1728-1732. DOI:10.1017/S1751731109990656
[12]
LANGILLE M G I, ZANEVELD J, CAPORASO J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9): 814-821. DOI:10.1038/nbt.2676
[13]
HAAS B J, GEVERS D, EARL A M, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome Research, 2011, 21(3): 494-504. DOI:10.1101/gr.112730.110
[14]
ROGNES T, FLOURI T, NICHOLS B, et al. Vsearch: a versatile open source tool for metagenomics[J]. PeerJ, 2016, 4: e2584. DOI:10.7717/peerj.2584
[15]
LI Z P, SI H Z, NAN W X, et al. Bacterial community and metabolome shifts in the cecum and colon of captive sika deer (Cervus nippon) from birth to post weaning[J]. FEMS Microbiology Letters, 2019, 366(4): fnz010.
[16]
ROJO R, MENDOZA G D, GONZÁLEZ S S, et al. Effects of exogenous amylases from Bacillus licheniformis and Aspergillus niger on ruminal starch digestion and lamb performance[J]. Animal Feed Science and Technology, 2005, 123/124: 655-665. DOI:10.1016/j.anifeedsci.2005.04.053
[17]
KOWALSKI Z M, GÓRKA P, SCHLAGHECK A, et al. Performance of Holstein calves fed milk-replacer and starter mixture supplemented with probiotic feed additive[J]. Journal of Animal & Feed Sciences, 2009, 18(3): 399-411.
[18]
QIAO G H, SHAN A S, MA N, et al. Effect of supplemental Bacillus cultures on rumen fermentation and milk yield in Chinese Holstein cows[J]. Journal of Animal Physiology and Animal Nutrition, 2010, 94(4): 429-436.
[19]
ELLINGER D K, MULLER L D, GLANTZ P J. Influence of feeding fermented colostrum and Lactobacillus acidophilus on fecal flora of dairy calves[J]. Journal of Dairy Science, 1980, 63(3): 478-482. DOI:10.3168/jds.S0022-0302(80)82957-2
[20]
ABU-TARBOUSH H M, AL-SAIADY M Y, EL-DIN A H K. Evaluation of diet containing lactobacilli on performance, fecal coliform, and lactobacilli of young dairy calves[J]. Animal Feed Science and Technology, 1996, 57(1/2): 39-49.
[21]
RAETH-KNIGHT M L, LINN J G, JUNG H G. Effect of direct-fed microbials on performance, diet digestibility, and rumen characteristics of Holstein dairy cows[J]. Journal of Dairy Science, 2007, 90(4): 1802-1809. DOI:10.3168/jds.2006-643
[22]
SCHOSTER A, STAEMPFLI H R, GUARDABASSI L G, et al. Comparison of the fecal bacterial microbiota of healthy and diarrheic foals at two and four weeks of life[J]. BMC Veterinary Research, 2017, 13: 144. DOI:10.1186/s12917-017-1064-x
[23]
ERICKSON K L, HUBBARD N E. Probiotic immunomodulation in health and disease[J]. The Journal of Nutrition, 2000, 130(Suppl.2S): 403S-409S.
[24]
ISOLAURI E, SÜTAS Y, KANKAANPÄÄ P, et al. Probiotics: effects on immunity[J]. The American Journal of Clinical Nutrition, 2001, 73(2): 444S-450S. DOI:10.1093/ajcn/73.2.444s
[25]
元博. 高存活率益生菌微胶囊的制备及特性研究[D]. 硕士学位论文. 烟台: 烟台大学, 2019.
YUAN B. Preparation and characterization of high survival pro-biotic micro-capsules[D]. Master's Thesis. Yantai: Yantai University, 2019. (in Chinese)
[26]
SPENCE C, WELLS W G, SMITH C J. Characterization of the primary starch utilization operon in the obligate anaerobe Bacteroides fragilis: regulation by carbon source and oxygen[J]. Journal of Bacteriology, 2006, 188(13): 4663-4672. DOI:10.1128/JB.00125-06
[27]
SHANG Q S, SHAN X D, CAI C, et al. Correction: dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae[J]. Food and Function, 2018, 9(1): 655-665. DOI:10.1039/C7FO90052J
[28]
HOODA S, BOLER B M V, SERAO M C R, et al. 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber[J]. The Journal of Nutrition, 2012, 142(7): 1259-1265. DOI:10.3945/jn.112.158766
[29]
CANFORA E E, JOCKEN J W, BLAAK E E. Short-chain fatty acids in control of body weight and insulin sensitivity[J]. Nature Reviews Endocrinology, 2015, 11(10): 577-591. DOI:10.1038/nrendo.2015.128
[30]
SOKOL H, PIGNEUR B, WATTERLOT L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(43): 16731-16736. DOI:10.1073/pnas.0804812105
[31]
FODITSCH C, PEREIRA R V V, GANDA E K, et al. Oral administration of Faecalibacterium prausnitzii decreased the incidence of severe diarrhea and related mortality rate and increased weight gain in pre-weaned dairy heifers[J]. PLoS One, 2015, 10(12): e0145485. DOI:10.1371/journal.pone.0145485
[32]
COSTA M C, ARROYO L G, ALLEN-VERCOE E, et al. Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the v3-v5 region of the 16s rRNA gene[J]. PLoS One, 2012, 7(7): e41484. DOI:10.1371/journal.pone.0041484
[33]
HOLCOMBE S J, EMBERTSON R M, KURTZ K A, et al. Increased serum nonesterified fatty acid and low ionised calcium concentrations are associated with post partum colic in mares[J]. Equine Veterinary Journal, 2016, 48(1): 39-44. DOI:10.1111/evj.12391
[34]
SCHOSTER A, MOSING M, JALALI M, et al. Effects of transport, fasting and anaesthesia on the faecal microbiota of healthy adult horses[J]. Equine Veterinary Journal, 2016, 48(5): 595-602. DOI:10.1111/evj.12479
[35]
REGALADO N G, MARTIN G, ANTONY S J. Acinetobacter lwoffii: bacteremia associated with acute gastroenteritis[J]. Travel Medicine and Infectious Disease, 2009, 7(5): 316-317. DOI:10.1016/j.tmaid.2009.06.001