动物营养学报    2021, Vol. 33 Issue (7): 3735-3744    PDF    
乳果糖和凝结芽孢杆菌合生素对断奶仔猪生长性能、养分表观消化率和血液指标的影响
赵祖艳1 , 杨运南1 , 刘日亮1 , 张云龙1 , 胡浩2 , 郑卫江1 , 姚文1     
1. 南京农业大学消化道微生物实验室, 江苏省消化道营养与动物健康重点实验室, 南京 210095;
2. 江苏远山生物技术有限公司, 盐城 224001
摘要: 本试验旨在研究乳果糖和凝结芽孢杆菌合生素对断奶仔猪生长性能、养分表观消化率和血液指标的影响。选取24头27~28日龄健康"杜×长×大"三元杂交断奶阉公猪,初始体重为(9.09±0.12)kg,随机分为对照组(n=12)、试验Ⅰ组(n=6)和试验Ⅱ组(n=6)。对照组饲喂基础饲粮(不含抗生素),试验Ⅰ组饲喂基础饲粮+75 mg/kg的金霉素,试验Ⅱ组饲喂基础饲粮+乳果糖和凝结芽孢杆菌合生素(10 g/kg的乳果糖和2×109 CFU/kg的凝结芽孢杆菌)。试验期29 d。结果表明:1)第1天、第15天和第29天,3组之间体重均无显著差异(P>0.05)。第1~2周,3组之间平均日增重(ADG)和平均日采食量(ADFI)无显著差异(P>0.05);试验Ⅱ组的料重比(F/G)显著低于对照组(P < 0.05),且与试验Ⅰ组无显著差异(P>0.05)。第3~4周和第1~4周,3组之间ADG、ADFI和F/G均无显著差异(P>0.05)。2)第3~4周,试验Ⅰ组和试验Ⅱ组的腹泻率显著低于对照组(P < 0.05),且试验Ⅰ组和试验Ⅱ组之间无显著差异(P>0.05);第1~2周和第1~4周,3组之间腹泻率无显著差异(P>0.05)。3)试验Ⅰ组和试验Ⅱ组的总能和粗脂肪的表观消化率高于对照组(P < 0.05),且试验Ⅰ组和试验Ⅱ组之间无显著差异(P>0.05);试验Ⅰ组的粗蛋白质表观消化率高于对照组(P < 0.05),但试验Ⅱ组与其他2组无显著差异(P>0.05)。4)3组之间血液常规指标均无显著差异(P>0.05)。试验Ⅰ组和试验Ⅱ组的血清总胆红素含量显著低于对照组(P < 0.05),且试验Ⅰ组和试验Ⅱ组之间无显著差异(P>0.05)。综上所述,在无抗饲粮中添加乳果糖和凝结芽孢杆菌合生素可降低断奶仔猪腹泻率,提高总能和粗脂肪表观消化率,降低血清总胆红素含量,并降低F/G。
关键词: 乳果糖    凝结芽孢杆菌    合生素    断奶仔猪    养分表观消化率    血液指标    
Effects of Synbiotic Containing Lactulose and Bacillus coagulans on Growth Performance, Nutrient Apparent Digestibilities and Blood Indexes of Weaned Piglets
ZHAO Zuyan1 , YANG Yunnan1 , LIU Riliang1 , ZHANG Yunlong1 , HU Hao2 , ZHENG Weijiang1 , YAO Wen1     
1. Jiangsu Key Laboratory of Gastrointestinal Nutrition and Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing 210095, China;
2. Jiangsu Yuanshan Biological Technology Co., Ltd., Yancheng 224001, China
Abstract: This experiment was conducted to investigate the effects of synbiotic containing lactulose and Bacillus coagulans on growth performance, nutrient apparent digestibilities and blood indexes of weaned piglets. Twenty-four healthy 27 to 28-day-old crossbred (Duroc×Landrace×Yorkshire) weaned piglets with initial body weight of (9.09±0.12) kg were randomly divided into 3 groups: control group (n=12), test group Ⅰ (n=6) and test group Ⅱ (n=6). Piglets in the control group were fed a basal diet (antibiotic-free), piglets in the test group Ⅰ were fed the basal diet+75 mg/kg chlortetracycline, and others in the test group Ⅱ were fed the basal diet+synbiotic containing lactulose and Bacillus coagulans (10 g/kg lactulose+2×109 CFU/kg Bacillus coagulans). The experiment lasted for 29 days. The results showed as follows: 1) on day 1, 15 and 29, there was no significant difference in the body weight among 3 groups (P>0.05). During weeks 1 to 2, there were no significant differences in the average daily gain (ADG) and average daily feed intake (ADFI) among 3 groups (P>0.05); the feed to gain ratio (F/G) of test group Ⅱ was significantly lower than that of the control group (P < 0.05), and had no significant difference with test group Ⅰ (P>0.05). During weeks 3 to 4 and weeks 1 to 4, there were no significant differences in the ADG, ADFI and F/G among 3 groups (P>0.05). 2) During weeks 3 to 4, the diarrhea rate of test group Ⅰ and test group Ⅱ was significantly lower than that of the control group (P < 0.05), and there was no difference between the test group Ⅰ and the test group Ⅱ (P>0.05); during weeks 1 to 2 and weeks 1 to 4, there was no difference in diarrhea rate among 3 groups (P>0.05). 3) The apparent digestibilities of gross energy and ether extract of test group Ⅰ and test group Ⅱ were significantly higher than those of the control group (P < 0.05), and there was no significant difference between test group Ⅰ and test group Ⅱ (P>0.05); the crude protein apparent digestibility of test group Ⅰ was significantly higher than that of the control group (P < 0.05), but there was no significant difference between test group Ⅱ and other 2 groups (P>0.05). 4) There were no significant differences in blood routine index among 3 groups (P>0.05). The serum total bilirubin content of test group Ⅰ and test group Ⅱ was significantly lower than that of the control group (P < 0.05), and there was no significant difference between test group Ⅰ and test group Ⅱ (P>0.05). In summary, adding synbiotic containing lactulose and Bacillus coagulans in antibiotic-free diet can reduce the diarrhea rate of weaned piglets, increase the apparent digestibilities of gross energy and ether extract, decrease the serum total bilirubin content and the F/G.
Key words: lactulose    Bacillus coagulans    synbiotic    weaned piglets    nutrient apparent digestibilities    blood indexes    

仔猪在早期断奶期间由于环境、采食方式的改变,加之肠道发育尚不完善,容易引发肠道免疫系统功能性紊乱,从而导致腹泻,并使其采食量和日增重下降[1]。因此,断奶仔猪的高腹泻率将导致机体发育迟缓,甚至死亡,严重影响经济效益[2]。促生长饲用抗生素以往作为饲料添加剂在畜禽养殖中广泛应用,主要目的是预防疾病、刺激畜禽生长和提高饲料转化率[3]。然而,由于饲用抗生素的长期不规范使用,细菌耐药性及抗生素残留等问题逐渐暴露;一方面添加促生长饲用抗生素已没有促生长作用,另一方面还严重威胁公众卫生及人类健康[4]。根据我国农业农村部规定,自2020年7月1日起,饲料生产企业停止生产含饲用抗生素的商品饲料[5]。因此,在饲料禁抗的背景下,亟需寻找一种安全、有效的促生长饲用抗生素替代物来缓解早期断奶导致的仔猪腹泻率升高和生长性能的降低。

益生菌、益生元或合生素被认为是抗生素的理想替代品之一[6]。凝结芽孢杆菌是芽孢杆菌属的革兰氏阳性菌,菌体形态呈杆状,兼性厌氧,最适温度为37~45 ℃,最适pH为6.6~7.0;该菌可分解糖类产生L-乳酸,具有耐酸、耐盐、耐热、易培养和易保存的特性[7]。与其他不产乳酸的芽孢杆菌相比,凝结芽孢杆菌更有利于恢复胃肠道的微生态平衡并提高机体免疫力[8]。研究发现,饲粮添加2×106和2×107 CFU/g凝结芽孢杆菌均可提高断奶仔猪的胆固醇代谢,维持肠道完整性,减轻氧化应激和腹泻[9]。此外,凝结芽孢杆菌的孢子具有很强的抵抗力、复活力和稳定性,能在胃的酸性环境中活化,最终在肠道中萌发并繁殖[10-11]。由于凝结芽孢杆菌在胃肠道中的高度稳定性、无毒作用以及高效性而被称为“益生菌之王”[12]。乳果糖是由半乳糖和果糖组成的化学益生元,能以原型到达结肠并被肠道菌群分解代谢[13]。体外发酵结果显示,与同浓度的菊粉和低聚果糖相比,乳果糖分解产生的乳酸浓度更高[14]。此外,0.5%乳果糖在增强乳酸杆菌和双歧杆菌生长繁殖方面表现出更好的益生作用[15]。研究表明,饲喂0.05%或0.10%乳果糖均可改善断奶仔猪生长性能和养分表观消化率,同时减少粪便中大肠杆菌数量和氨气的排放量[16]

合生素是指以增效形式将益生元和益生菌结合使用的生物制剂,其效果往往优于单独使用益生元或益生菌[17]。合生素可通过益生元增强益生菌在肠道的附着和繁殖,从而改善动物生长性能,提高饲料转化率[18]。目前,有关乳果糖和凝结芽孢杆菌合生素在断奶仔猪上应用的研究还较少。因此,本试验旨在探究乳果糖和凝结芽孢杆菌合生素对断奶仔猪生长性能、腹泻率、养分表观消化率、血液常规指标和血清生化指标的影响。

1 材料与方法 1.1 试验材料

金霉素(有效成分含量15%)购自上海某饲料有限公司;乳果糖(杜密克乳果糖口服液,乳果糖含量667 mg/mL)购自荷兰某公司;凝结芽孢杆菌(活菌数1×109 CFU/g)由江苏某生物技术有限公司提供。

1.2 试验设计

试验选取24头27~28日龄“杜×长×大”三元杂交断奶阉公猪,初始体重为(9.09±0.12) kg,随机分为对照组(n=12)、试验Ⅰ组(n=6)和试验Ⅱ组(n=6)。对照组饲喂基础饲粮(不含抗生素),试验Ⅰ组饲喂基础饲粮+75 mg/kg的金霉素,试验Ⅱ组饲喂基础饲粮+乳果糖和凝结芽孢杆菌合生素(10 g/kg的乳果糖和2×109 CFU/kg的凝结芽孢杆菌)。试验期29 d。基础饲粮营养需要参照NRC(2012),其组成及营养水平见表 1

表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the basal diet (air-dry basis) 
1.3 饲养管理

试验在扬州优佳创试验猪场进行。所有仔猪单栏饲养,每栏配有1个料槽和1个饮水器,每天07:00、14:00和18:00喂料,喂料量以每天06:30料槽中有少量剩余料为宜。试验期间所有仔猪自由饮水,消毒程序按猪场常规方法进行。每天清扫圈舍,以保持圈内清洁。

1.4 测定指标和方法 1.4.1 生长性能

试验以栏为单位,准确记录每日采食量,于试验第1、15和29天06:30对试验仔猪进行空腹称重,计算第1~2周、第3~4周及第1~4周的平均日增重(ADG)和平均日采食量(ADFI),并根据ADFI和ADG计算料重比(F/G)。

1.4.2 粪便评分和腹泻率

仔猪粪便评分参照Walsh等[19]的方法:每天早、中、晚3个时间点观察仔猪粪便情况并对其进行评分。粪便评分标准为:粪便坚硬为1分,粪便轻微柔软为2分,粪便软、部分成形为3分,粪便呈松散、半液体状为4分,粪便呈水状或黏液状为5分。当评分大于或等于4时认定为腹泻,腹泻率[20]计算公式如下:

1.4.3 养分表观消化率

采用四分法收集饲粮,65 ℃烘干至恒重,粉碎过40目筛,于-20 ℃保存。试验期第25~29天,每天08:00—12:00采集每头仔猪新鲜粪便于自封袋中,并加入10%的硫酸固氮,混匀后置于-20 ℃保存。试验结束后,将每头仔猪的全部粪样混合均匀,放置于烘箱中65 ℃烘干至恒重,粉碎过40目筛,密封保存并置于4 ℃保存。饲粮和粪便中的养分含量测定参照《饲料分析及饲料质量检测技术》,饲粮养分表观消化率采用外源指示剂法测定,试验饲粮和粪便中二氧化钛(TiO2)含量采用分光光度法[21]测定。计算公式[22]如下:某养分表观消化率(%)=100×[1-(c/d)×(b/a)]。

式中:a为饲粮中该养分含量(%);b为粪便中该养分含量(%);c为饲粮中TiO2含量(%);d为粪便中TiO2含量(%)。

1.4.4 血液常规指标和血清生化指标

于试验第29天进行空腹采血,制备血清。利用血细胞分析仪(Mindray BC-5120,迈瑞医疗国际股份有限公司)检测血液常规指标,包括白细胞计数(WBC)、淋巴细胞计数(LYM)、淋巴细胞比率(LYM%)、中性细胞计数(NEU)、红细胞计数(RBC)和血红蛋白(HGB)含量。利用全自动生化分析仪(Hitachi-7020,日本日立公司)检测血清中总蛋白(TP)、白蛋白(ALB)、球蛋白(GLOB)、总胆红素(TBIL)、葡萄糖(GLU)、胆固醇(CHOL)、甘油三酯(TG)、高密度脂蛋白(HDL)、低密度脂蛋白(LDL)含量及谷丙转氨酶(ALT)、谷草转氨酶(AST)、碱性磷酸酶(ALP)、γ-谷氨酰基转移酶(GGT)活性,试剂盒均购于美康生物科技股份有限公司。

1.5 数据处理与统计分析

所得数据在Excel 2016进行整理后,采用SPSS 25.0软件进行单因素方差分析(one-way ANOVA),并利用Duncan氏法进行多重比较;腹泻率采用卡方检验。数据以平均值(mean)和均值标准误(SEM)表示,以P < 0.05作为差异显著性判断标准。

2 结果 2.1 乳果糖和凝结芽孢杆菌合生素对断奶仔猪生长性能的影响

表 2可知,第1天、第15天和第29天,3组之间体重均无显著差异(P>0.05)。第1~2周,与对照组相比,试验Ⅰ组的ADG和ADFI分别提高了10.15%和3.30%,试验Ⅱ组ADG和ADFI分别提高了12.64%和5.53%,但3组之间无显著差异(P>0.05);试验Ⅱ组的F/G显著低于对照组(P < 0.05),且与试验Ⅰ组无显著差异(P>0.05)。第3~4周和第1~4周,3组之间ADG、ADFI和F/G均无显著差异(P>0.05)。

表 2 乳果糖和凝结芽孢杆菌合生素对断奶仔猪生长性能的影响 Table 2 Effects of synbiotic containing lactulose and Bacillus coagulans on growth performance of weaned piglets
2.2 乳果糖和凝结芽孢杆菌合生素对断奶仔猪粪便评分和腹泻率的影响

表 3可知,第1~2周、第3~4周和第1~4周,3组之间粪便评分无显著差异(P>0.05)。第1~2周,3组之间腹泻率无显著差异(P>0.05);第3~4周,与对照组相比,试验Ⅰ组和试验Ⅱ组的腹泻率显著降低(P < 0.05),且试验Ⅰ组和试验Ⅱ组之间无显著差异(P>0.05);第1~4周,与对照组相比,试验Ⅰ组和试验Ⅱ组的腹泻率也有不同程度下降,但3组之间无显著差异(P>0.05)。

表 3 乳果糖和凝结芽孢杆菌合生素对断奶仔猪粪便评分和腹泻率的影响 Table 3 Effects of synbiotic containing lactulose and Bacillus coagulans on fecal scoring and diarrhea rate of weaned piglets
2.3 乳果糖和凝结芽孢杆菌合生素对断奶仔猪养分表观消化率的影响

表 4可知,3组之间的干物质、粗纤维、粗灰分、钙和总磷表观消化率无显著差异(P>0.05)。试验Ⅰ组和试验Ⅱ组的总能和粗脂肪的表观消化率显著高于对照组(P < 0.05),且试验Ⅰ组和试验Ⅱ组之间无显著差异(P>0.05)。试验Ⅰ组的粗蛋白质表观消化率显著高于对照组(P>0.05),但试验Ⅱ组与其他2组无显著差异(P>0.05)。

表 4 乳果糖和凝结芽孢杆菌合生素对断奶仔猪养分表观消化率的影响 Table 4 Effects of synbiotic containing lactulose and Bacillus coagulans on nutrient apparent digestibilities of weaned piglets 
2.4 乳果糖和凝结芽孢杆菌合生素对断奶仔猪血液常规指标和血清生化指标的影响

表 5可知,3组之间WBC、LYM、LYM%、NEU、RBC和HGB含量均无显著差异(P>0.05)。

表 5 乳果糖和凝结芽孢杆菌合生素对断奶仔猪血液常规指标的影响 Table 5 Effects of synbiotic containing lactulose and Bacillus coagulans on blood routine indexes of weaned piglets

表 6可知,与对照组相比,试验Ⅰ组和试验Ⅱ组的血清TBIL含量显著降低(P < 0.05),且试验Ⅰ组和试验Ⅱ组之间无显著差异(P>0.05)。3组之间血清ALP、GGT、ALT和AST活性无显著差异(P>0.05);但与对照组相比,试验Ⅰ组和试验Ⅱ组的血清ALP活性均有所升高。3组之间血清TP、ALB、GLOB、GLU、CHOL、TG、HDL和LDL含量均无显著差异(P>0.05)。

表 6 乳果糖和凝结芽孢杆菌合生素对断奶仔猪血清生化指标的影响 Table 6 Effects of synbiotic containing lactulose and Bacillus coagulans on serum biochemical indexes of weaned piglets
3 讨论 3.1 乳果糖和凝结芽孢杆菌合生素对断奶仔猪生长性能和腹泻率的影响

研究表明,饲粮中添加3 000 g/t的苯甲酸和400 g/t的凝结芽孢杆菌或单独添加1×107 CFU/g凝结芽孢杆菌均可显著提高断奶仔猪ADG,并显著降低F/G[23-24]。Guerra-Ordaz等[25]研究发现,饲粮中添加10 g/kg乳果糖可显著提高断奶仔猪ADG和ADFI,并显著降低F/G。本研究也得到了类似的结果,即在第1~2周,试验Ⅱ组的F/G显著低于对照组,且与试验Ⅰ组无显著差异。前期研究认为抗生素可抑制肠道微生物的生长繁殖,减少其抗生长代谢物的产生及对养分的破坏,进而达到促生长的作用[3]。但在本研究中,金霉素对断奶仔猪的生长性能并未产生显著的促进效果;这可能与长期低剂量促生长抗生素的添加导致猪场和各阶段猪肠道微生物的高耐药性有关。本研究中,试验Ⅱ组第1~2周的F/G相较于对照组显著降低,其原因可能是乳果糖和凝结芽孢杆菌合生素可通过竞争性抑制病原菌和促进有益菌群定植以提高动物自身对养分的消化率,减少有害菌群代谢对养分的破坏,从而提高饲料转化率[11],降低F/G。

研究发现,饲粮中添加2×106和2×107 CFU/g凝结芽孢杆菌均可显著降低断奶仔猪腹泻率[9]。目前,鲜有乳果糖在降低动物腹泻率上的研究报道。陈旭东[26]研究表明,饲粮中单独添加0.4%果寡糖和0.2%芽孢杆菌均可显著降低断奶仔猪腹泻率,且二者组和添加组的腹泻率最低。本研究结果显示,第3~4周,试验Ⅰ组和试验Ⅱ组的腹泻率较对照组显著降低,且试验Ⅰ组和试验Ⅱ组之间无显著差异。产生上述结果的原因可能是金霉素可降低肠道炎症免疫反应,减轻肠源性感染,进而缓解仔猪腹泻[27]。此外,乳果糖和凝结芽孢杆菌合生素一方面可通过分泌抗菌肽、凝集素和乳酸等物质,抑制有害菌群的生长繁殖,从而缓解仔猪腹泻情况[28];另一方面,补充凝结芽孢杆菌可减轻断奶应激引起的肠道损伤,降低肠道凋亡蛋白表达,提高紧密连接蛋白表达,保护肠道屏障,进而减轻腹泻[9]

3.2 乳果糖和凝结芽孢杆菌合生素对断奶仔猪养分表观消化率的影响

临床试验显示,服用凝结芽孢杆菌(1×107 CFU/d)28 d后施加益生元低聚果糖或低聚半乳糖可通过促进肠道有益菌群繁殖、增加短链脂肪酸的产生改善机体健康,效果优于单独使用凝结芽孢杆菌[29]。Maathuis等[30]用体外装置模拟胃肠道消化环境发现,凝结芽孢杆菌(2×109 CFU/g)可增强乳糖、果糖和蛋白质的消化。乳果糖可经结肠细菌,尤其是双歧杆菌代谢,产生短链脂肪酸[14]。短链脂肪酸可调节参与能量代谢(如脂质代谢)的肠道上皮基因表达,并促进肠道的发育[31]。研究发现,饲粮中添加15%乳果糖可通过改善糖脂代谢、增加双歧杆菌等有益菌丰度维持高盐饮食小鼠肠道微环境健康[32]。本试验结果显示,金霉素可提高断奶仔猪总能、粗蛋白质和粗脂肪表观消化率。前期研究也发现,金霉素可直接或间接降低肠壁厚度,增加肠道吸收面积,促进养分吸收[3]。乳果糖和凝结芽孢杆菌合生素也可以显著提高断奶仔猪总能、粗脂肪表观消化率,粗蛋白质、粗灰分、钙和总磷表观消化率也不同程度的提高,且与金霉素无显著差异。乳果糖和凝结芽孢杆菌合生素对断奶仔猪消化率提高的具体作用机制还尚不明确,需要后期进一步研究。

3.3 乳果糖和凝结芽孢杆菌合生素对断奶仔猪血液常规指标和血清生化指标的影响

孙梅等[33]在0.2%复合芽孢杆菌制剂对断奶仔猪血液常规指标的影响中发现,血液WBC、RBC和HGB含量无显著变化。Zhao等[34]研究显示,0.10%果聚糖与0.10%甘露寡糖单独添加及0.05%果聚糖与0.05%甘露寡糖组和添加对断奶仔猪血液WBC、LYM和RBC均无显著影响。本试验结果也显示,3组之间血液常规指标无显著差异,表明乳果糖和凝结芽孢杆菌合生素的添加均对断奶仔猪机体血常规无负面影响。

TBIL与肝脏功能密切相关,可反映肝脏细胞损伤情况和肝脏的代谢水平[35]。研究表明,每日2次灌服500 mg/kg BW的乳果糖可降低采食镰刀菌污染玉米的断奶仔猪血清TBIL含量和AST活性[36]。饲喂5%菊粉和1×109 CFU/d凝结芽孢杆菌合生素可通过减少血清ALT、AST活性和TBIL含量的积累显著降低重金属隔对大鼠肝脏和肾脏的损伤[37]。本试验结果表明,与对照组相比,试验Ⅰ组和试验Ⅱ组的血清TBIL含量显著降低,且试验Ⅰ组和试验Ⅱ组之间无显著差异。以上结果表明,乳果糖和凝结芽孢杆菌合生素可一定程度减轻肝脏损伤。

4 结论

综上所述,在无抗饲粮中添加乳果糖和凝结芽孢杆菌合生素可降低断奶仔猪腹泻率,显著提高总能和粗脂肪表观消化率,降低血清TBIL含量,对断奶仔猪F/G有一定改善作用。

参考文献
[1]
MOESER A J, POHL C S, RAJPUT M. Weaning stress and gastrointestinal barrier development: implications for lifelong gut health in pigs[J]. Animal Nutrition, 2017, 3(4): 313-321. DOI:10.1016/j.aninu.2017.06.003
[2]
CAMPBELL J M, CRENSHAW J D, POLO J. The biological stress of early weaned piglets[J]. Journal of Animal Science and Biotechnology, 2013, 4: 19. DOI:10.1186/2049-1891-4-19
[3]
GASKINS H R, COLLIER C T, ANDERSON D B. Antibiotics as growth promotants: mode of action[J]. Animal Biotechnology, 2002, 13(1): 29-42. DOI:10.1081/ABIO-120005768
[4]
GADDE U, KIM W H, OH S T, et al. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review[J]. Animal Health Research Reviews, 2017, 18(1): 26-45. DOI:10.1017/S1466252316000207
[5]
中华人民共和国农业农村部. 中华人民共和国农业农村部公告第194号[J]. 浙江畜牧兽医, 2020, 45(1): 28.
Ministry of Agriculture and Rural Affairs of the People's Republic of China. Announcement No.194 of the Ministry of Agriculture and Rural Affairs of the People's Republic of China[J]. Zhejiang Journal Animal Science and Veterinary Medicine, 2020, 45(1): 28 (in Chinese).
[6]
MENG Q W, YAN L, AO X, et al. Influence of probiotics in different energy and nutrient density diets on growth performance, nutrient digestibility, meat quality, and blood characteristics in growing-finishing pigs[J]. Journal of Animal Science, 2010, 88(10): 3320-3326. DOI:10.2527/jas.2009-2308
[7]
苗华彪, 李正洲, 赵元昊, 等. 凝结芽孢杆菌在生猪养殖中的应用及其作用机理的研究进展[J]. 中国畜牧兽医, 2020, 47(8): 2433-2444.
MIAO H B, LI Z Z, ZHAO Y H, et al. Advance on the application and mechanism of Bacillus coagulans in pig breeding[J]. China Animal Husbandry and Veterinary Medicine, 2020, 47(8): 2433-2444 (in Chinese).
[8]
ZHOU Y H, ZENG Z H, XU Y B, et al. Application of Bacillus coagulans in animal husbandry and its underlying mechanisms[J]. Animals, 2020, 10(3): 454. DOI:10.3390/ani10030454
[9]
WU T, ZHANG Y, LV Y, et al. Beneficial impact and molecular mechanism of Bacillus coagulans on piglets' intestine[J]. International Journal of Molecular Sciences, 2018, 19(7): 2084. DOI:10.3390/ijms19072084
[10]
JÄGER R, PURPURA M, FARMER S, et al. Probiotic Bacillus coagulans GBI-30, 6086 improves protein absorption and utilization[J]. Probiotics and Antimicrobial Proteins, 2018, 10(4): 611-615. DOI:10.1007/s12602-017-9354-y
[11]
BAMI M K, AFSHARMANESH M, EBRAHIMNEJAD H. Effect of dietary Bacillus coagulans and different forms of zinc on performance, intestinal microbiota, carcass and meat quality of broiler chickens[J]. Probiotics and Antimicrobial Proteins, 2020, 12(2): 461-472. DOI:10.1007/s12602-019-09558-1
[12]
BOMKO T V, NOSALSKAYA T N, KABLUCHKO T V, et al. Immunotropic aspect of the Bacillus coagulans probiotic action[J]. Journal of Pharmacy and Pharmacology, 2017, 69(8): 1033-1040. DOI:10.1111/jphp.12726
[13]
KIM B R, CHO K J, KIM D, et al. Evaluation of synbiotics as gut health improvement agents against Shiga toxin-producing Escherichia coli isolated from the pig[J]. Journal of Animal Science and Technology, 2019, 61(2): 55-60. DOI:10.5187/jast.2019.61.2.55
[14]
RYCROFT C E, JONES M R, GIBSON G R, et al. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides[J]. Journal of Applied Microbiology, 2001, 91(5): 878-887. DOI:10.1046/j.1365-2672.2001.01446.x
[15]
WATSON D, MOTHERWAY M O, SCHOTERMAN M H C, et al. Selective carbohydrate utilization by Lactobacilli and Bifidobacteria[J]. Journal of Applied Microbiology, 2013, 114(4): 1132-1146. DOI:10.1111/jam.12105
[16]
HOSSAIN M M, PARK J W, KIM I H. δ-aminolevulinic acid, and lactulose supplements in weaned piglets diet: effects on performance, fecal microbiota, and in-vitro noxious gas emissions[J]. Livestock Science, 2016, 183: 84-91. DOI:10.1016/j.livsci.2015.11.021
[17]
SARAO L K, ARORA M. Probiotics, prebiotics, and microencapsulation: a review[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(2): 344-371. DOI:10.1080/10408398.2014.887055
[18]
GOURBEYRE P, DENERY S, BODINIER M. Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions[J]. Journal of Leukocyte Biology, 2011, 89(5): 685-695. DOI:10.1189/jlb.1109753
[19]
WALSH A M, SWEENEY T, O'SHEA C J, et al. Effect of supplementing different ratios of laminarin and fucoidan in the diet of the weanling piglet on performance, nutrient digestibility, and fecal scoring[J]. Journal of Animal Science, 2012, 90(Suppl.4): 215-217.
[20]
李方方, 杨晶晶, 张瑞阳, 等. 植物精油对断奶仔猪生长性能、血清生化指标及养分表观消率的影响[J]. 动物营养学报, 2019, 31(3): 1428-1433.
LI F F, YANG J J, ZHANG R Y, et al. Effects of plant essential oils on growth performance, serum biochemical indexes and nutrient apparent digestibility of weaning piglets[J]. Chinese Journal of Animal Nutrition, 2019, 31(3): 1428-1433 (in Chinese).
[21]
邓雪娟, 刘国华, 蔡辉益, 等. 分光光度计法测定家禽饲料和食糜中二氧化钛[J]. 饲料工业, 2008, 29(2): 57-58.
DEND X J, LIU G H, CAI H Y. Determination of titanium dioxide in poultry feed and chyme by spectrophotometer[J]. Feed Industry, 2008, 29(2): 57-58 (in Chinese). DOI:10.3969/j.issn.1001-991X.2008.02.020
[22]
DUARTE M E, ZHOU F X, DUTRA W M, J r, et al. Dietary supplementation of xylanase and protease on growth performance, digesta viscosity, nutrient digestibility, immune and oxidative stress status, and gut health of newly weaned pigs[J]. Animal Nutrition, 2019, 5(4): 351-358. DOI:10.1016/j.aninu.2019.04.005
[23]
PU J N, CHEN D W, TIAN G, et al. Effects of benzoic acid, Bacillus coagulans and oregano oil combined supplementation on growth performance, immune status and intestinal barrier integrity of weaned piglets[J]. Animal Nutrition, 2020, 6(2): 152-159. DOI:10.1016/j.aninu.2020.02.004
[24]
黄遵锡, 程志斌. 饲粮不同添加量的凝结芽孢杆菌对仔猪生长性能及肠道健康的影响[J]. 饲料工业, 2020, 41(15): 1-7.
HUANG Z X, HE Z B. Effects of dietary supplementation of probiotic Bacillus coagulans at various dosages on the growth performance and gut health in weanling piglets[J]. Feed Industry, 2020, 41(15): 1-7 (in Chinese).
[25]
GUERRA-ORDAZ A A, MOLIST F, HERMES R G, et al. Effect of inclusion of lactulose and Lactobacillus plantarum on the intestinal environment and performance of piglets at weaning[J]. Animal Feed Science and Technology, 2013, 185(3/4): 160-168.
[26]
陈旭东. 果寡糖和芽孢杆菌对断奶仔猪生产性能的影响及其机理[D]. 硕士学位论文. 北京: 中国农业大学, 2004.
CHEN X D. Study of FOS and Bacillus on growth performance and machanism in weanling pigs[D]. Master's Thesis. Beijing: China Agricultural University, 2004. (in Chinese)
[27]
XIAO D F, WANG Y F, LIU G, et al. Effects of chitosan on intestinal inflammation in weaned pigs challenged by enterotoxigenic Escherichia coli[J]. PLoS One, 2014, 9(8): e104192. DOI:10.1371/journal.pone.0104192
[28]
HYRONIMUS B, LE MARREC C, URDACI M C. Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans I4[J]. Journal of Applied Microbiology, 1998, 85(1): 42-50. DOI:10.1046/j.1365-2672.1998.00466.x
[29]
NYANGALE E P, FARMER S, KELLER D, et al. Effect of prebiotics on the fecal microbiota of elderly volunteers after dietary supplementation of Bacillus coagulans GBI-30, 6086[J]. Anaerobe, 2014, 30: 75-81. DOI:10.1016/j.anaerobe.2014.09.002
[30]
MAATHUIS A J, KELLER D, FARMER S. Survival and metabolic activity of the Ganeden BC30 strain of Bacillus coagulans in a dynamic in vitro model of the stomach and small intestine[J]. Beneficial Microbes, 2010, 1(1): 31-36. DOI:10.3920/BM2009.0009
[31]
PARK J, KOTANI T, KONNO T, et al. Promotion of intestinal epithelial cell turnover by commensal bacteria: role of short-chain fatty acids[J]. PLoS One, 2016, 11(5): e0156334. DOI:10.1371/journal.pone.0156334
[32]
ZHANG Z, ZHAO J T, TIAN C Y, et al. Targeting the gut microbiota to investigate the mechanism of lactulose in negating the effects of a high-salt diet on hypertension[J]. Molecular Nutrtion and Food Research, 2019, 63(11): 1800941. DOI:10.1002/mnfr.201800941
[33]
孙梅, 张一平, 张宪中, 等. 芽孢杆菌制剂对断奶仔猪血液和免疫指标的影响[J]. 中国畜牧兽医, 2015, 42(11): 2991-2998.
SUN M, ZHANG Y P, ZHANG X Z, et al. Effects of Bacillus preparation on the blood and immunologic indices in weaned piglets[J]. China Animal Husbandry and Veterinary Medicine, 2015, 42(11): 2991-2998 (in Chinese).
[34]
ZHAO P Y, JUNG J H, KIM I H. Effect of mannan oligosaccharides and fructan on growth performance, nutrient digestibility, blood profile, and diarrhea score in weanling pigs[J]. Journal of Animal Science, 2012, 90(3): 833-839. DOI:10.2527/jas.2011-3921
[35]
AGRAWAL S, DHIMAN R K, LIMDI J K. Evaluation of abnormal liver function tests[J]. Postgraduate Medical Journal, 2016, 92(1086): 223-234. DOI:10.1136/postgradmedj-2015-133715
[36]
张青, 计徐, 姚文, 等. 乳果糖和富氢水对采食镰刀菌污染玉米的仔猪血液指标和肝脾形态的影响[J]. 畜牧与兽医, 2018, 50(5): 56-64.
ZHANG Q, JI X, YAO W, et al. Effects of lactulose and hydrogen-rich water onblood indices and histomorphology of liver and spleen in piglets fed with fusarium mycotoxin contaminated corn[J]. Animal Husbandry and Veterinary Medicine, 2018, 50(5): 56-64 (in Chinese).
[37]
JAFARPOUR D, SHEKARFOROUSH S S, GHAISARI H R, et al. Protective effects of synbiotic diets of Bacillus coagulans, Lactobacillus plantarum and inulin against acute cadmium toxicity in rats[J]. BMC Complementary and Alternative Medicine, 2017, 17: 291. DOI:10.1186/s12906-017-1803-3