动物营养学报    2021, Vol. 33 Issue (7): 3873-3884    PDF    
饲粮发酵棉籽粕水平对28~70日龄马冈鹅生长性能、屠宰性能、肠道形态结构及回肠黏膜免疫屏障相关基因表达的影响
申佳佳1 , 汪珩1 , 张艺1 , 陈俊鹏2 , 许克铨2 , 王旭龙2 , 王文策1 , 朱勇文1 , 杨琳1     
1. 华南农业大学动物科学学院, 广东省动物营养调控重点实验室, 广州 510642;
2. 汕头市白沙禽畜原种研究所, 汕头 515800
摘要: 本试验旨在研究饲粮发酵棉籽粕水平对28~70日龄马冈鹅生长性能、屠宰性能、肠道形态结构及回肠黏膜免疫屏障相关基因表达的影响。选择体重相近、健康的28日龄马冈鹅公鹅432只,随机分成6个组,每组6个重复,每个重复12只。各组饲粮发酵棉籽粕水平分别为0(对照组)、5%、10%、15%、20%和25%(游离棉酚含量分别为0、22、44、66、88和110 mg/kg)。试验期42 d。结果表明:1)饲粮发酵棉籽粕水平对28~70日龄马冈鹅平均日增重和平均日采食量无显著影响(P>0.05)。20%和25%发酵棉籽粕水平组的料重比显著高于对照组(P < 0.05)。2)饲粮发酵棉籽粕水平对70日龄马冈鹅屠宰率、半净膛率、全净膛率、胸肌率、腹脂率均无显著影响(P>0.05)。25%发酵棉籽粕水平组的腿肌率显著低于对照组(P < 0.05)。3)饲粮发酵棉籽粕水平对70日龄肉鹅十二指肠、回肠、盲肠和总肠道相对长度以及空肠、回肠、盲肠、直肠和总肠道相对重量均无显著影响(P>0.05)。25%发酵棉籽粕水平组空肠、直肠相对长度显著高于对照组和15%发酵棉籽粕水平组(P < 0.05),十二指肠相对重量显著高于其他各组(P < 0.05)。4)饲粮发酵棉籽粕水平对十二指肠隐窝深度、绒毛高度/隐窝深度,空肠绒毛高度、隐窝深度、绒毛高度/隐窝深度,回肠绒毛高度、绒毛高度/隐窝深度均无显著影响(P>0.05)。15%和25%发酵棉籽粕水平组十二指肠绒毛高度显著低于对照组(P < 0.05),15%发酵棉籽粕水平组回肠隐窝深度显著低于对照组(P < 0.05)。5)饲粮发酵棉籽粕水平对回肠黏膜闭锁蛋白(Claudin)的mRNA相对表达量无显著影响(P>0.05)。25%发酵棉籽粕水平组的回肠黏膜闭锁小环蛋白-1(ZO-1)、咬合蛋白(Occludin)、核因子-κB(NF-κB)、白细胞介素-6(IL-6)的mRNA相对表达量显著高于对照组(P < 0.05),回肠黏膜白细胞介素-10(IL-10)的mRNA相对表达量显著低于对照组(P < 0.05)。综上所述,饲粮发酵棉籽粕水平过高可引起肠道形态结构和免疫屏障功能受损,导致饲料转化率降低,推荐28~70日龄马冈鹅饲粮发酵棉籽粕水平不高于20%(游离棉酚含量不高于88 mg/kg)。
关键词: 马冈鹅    发酵棉籽粕    生长性能    屠宰性能    肠道形态结构    
Effects of Dietary Fermented Cottonseed Meal Level on Growth Performance, Slaughter Performance, Intestinal Morphology and Expression of Immune Barrier Related Genes in Ileum Mucosa of Magang Geese during 28 to 70 Days of Age
SHEN Jiajia1 , WANG Heng1 , ZHANG Yi1 , CHEN Junpeng2 , XU Kequan2 , WANG Xulong2 , WANG Wence1 , ZHU Yongwen1 , YANG Lin1     
1. Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
2. Baisha Institute of Livestock and Poultry, Shantou 515800, China
Abstract: The experiment was conducted to investigate the effects of dietary fermented cottonseed meal level on growth performance, slaughter performance, intestinal morphology and expression of immune barrier related genes in ileum mucosa of Magang geese during 28 to 70 days of age. A total of 432 healthy 28-day-old geese with similar body weight were randomly divided into 6 groups with 6 replicates in each group and 12 geese in each replicate. Dietary fermented cottonseed meal levels of 6 groups were 0 (control group), 5%, 10%, 15%, 20% and 25% (the contents of free gossypol were 0, 22, 44, 66, 88 and 110 mg/kg), respectively. The experiment lasted for 42 days. The results showed as follows: 1) dietary fermented cottonseed meal level had no significant effects on the average daily gain and average daily feed intake of Magang geese during 28 to 70 days of age (P>0.05). The feed to gain ratio of 20% and 25% fermented cottonseed meal level groups was significantly higher than that of the control group (P < 0.05). 2) Dietary fermented cottonseed meal level had no significant effects on the dressing percentage, semi-eviscerated percentage, eviscerated percentage, breast muscle percentage and abdominal fat percentage of Magang geese at 70 days of age (P>0.05). The leg muscle percentage of 25% fermented cottonseed meal level group was significantly lower than that of the control group (P < 0.05). 3) Dietary fermented cottonseed meal level had no significant effects on the relative length of duodenum, ileum, cecum and total intestine and relative weight of jejunum, ileum, cecum, rectum and total intestine of Magang geese at 70 days of age (P>0.05). The relative length of jejunum and rectum of 25% fermented cottonseed meal level group was significantly higher than that of the control group and 15% fermented cottonseed meal level group (P < 0.05), and the relative weight of duodenum was significantly higher than that of other groups (P < 0.05). 4) Dietary fermented cottonseed meal level had no significant effects on the crypt depth and villus height/crypt depth in duodenum, the villus height, crypt depth and villus height/crypt depth in jejunum, and the villus height and height/crypt depth in ileum (P>0.05). The villus height in duodenum of 15% and 25% fermented cottonseed meal level groups was significantly lower than that of the control group (P < 0.05), and the crypt depth of 15% fermented cottonseed meal level group was significantly lower than that of the control group (P < 0.05). 5) Dietary fermented cottonseed meal level had no significant effect on mRNA relative expression level of Claudin in ileal mucosa (P>0.05). The mRNA relative expression levels of zonula occludens-1 (ZO-1), Occludin, nuclear factor-κB (NF-κB) and interleukin-6 (IL-6) in ileal mucosa of 25% fermented cottonseed meal level group were significantly higher than those of the control group (P < 0.05), and the mRNA relative expression level of interleukin-10 (IL-10) in ileal mucosa was significantly lower than that of the control group (P < 0.05). In conclusion, the excessive dietary fermented cottonseed meal level can cause damage to the intestinal morphology and immune barrier function, which lead to reduce feed conversion efficiency. It is recommended that the excessive dietary fermented cottonseed meal level of Magang geese during 28 to 70 days of age is not higher than 20% (free gossypol content is not higher than 88 mg/kg).
Key words: Magang geese    fermented cottonseed meal    growth performance    slaughter performance    intestinal morphology    

微生物发酵能够有效降解、转化饲料原料中抗营养因子,具有提高动物养分利用率等作用。饲料原料经微生物发酵后,营养价值得到较大提升,在家禽生产上的应用优势日益凸显[1]。研究表明,饲粮中添加适宜水平发酵豆粕或发酵菜籽粕可提高肉鸡蛋白质和氨基酸消化率,促进肌肉中氨基酸、脂肪酸、肌苷酸等风味物质沉积,改善肉品质[2-3]。棉籽粕的氨基酸种类丰富、比例合理,其养分含量接近豆粕[4]。但棉籽粕中的抗营养因子棉酚、环丙烯脂肪酸等可与动物消化道中的酶及蛋白质结合,降低蛋白质消化率;同时抑制肠道矿物质和六碳糖的转运,降低家禽生长性能[5]。而棉籽粕经发酵后可降低抗营养因子含量,提高养分利用率。目前,发酵棉籽粕实际生产应用主要集中在肉鸡和肉鸭上,且适宜水平的推荐量存在差异。研究表明,饲粮中添加6%发酵棉籽粕可提高鸡的生长性能,并通过影响鸡的能量代谢减轻脂肪沉积,降低腹脂和皮脂厚度[6-7]。王婷[8]研究证实,饲粮中添加9.0%~13.5%的发酵棉籽粕对肉鸭生长性能较为理想,且对肝脏发育、血液指标无显著影响。但目前发酵棉籽粕对肉鹅饲用价值的研究报道甚少,有待探索发酵棉籽粕在肉鹅饲粮中的适宜水平。因此,本试验旨在研究饲粮发酵棉籽粕水平对28~70日龄马冈鹅生长性能、屠宰性能、肠道形态结构及回肠黏膜免疫屏障相关基因表达的影响,以期为发酵棉籽粕在马冈鹅非常规饲料的配制应用提供试验依据。

1 材料与方法 1.1 试验动物及试验设计

试验在汕头白沙禽畜原种研究所试验场进行。选用28日龄健康、体重相近的马冈鹅公鹅432只,采用单因素完全随机设计,随机分为6个组,每组6个重复,每个重复12只。试验期42 d。试验鹅采用地面平养,自由采食和饮水。

1.2 试验饲粮

试验所用发酵棉籽粕采用红曲霉、枯草芽孢杆菌、产朊假丝酵母固态发酵。经测定,发酵前、后粗蛋白质含量分别为45.67%、44.26%,游离棉酚含量分别为940、440 mg/kg。

参照NRC(1994)鹅营养需要,以玉米-豆粕型饲粮为基础,6个等能等氮等纤维饲粮中发酵棉籽粕水平分别为0(对照组)、5%、10%、15%、20%和25%,游离棉酚含量分别为0、22、44、66、88和110 mg/kg。试验饲粮组成及营养水平见表 1

表 1 试验饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of experimental diets (air-dry basis) 
1.3 检测指标与方法 1.3.1 饲粮中粗蛋白质和游离棉酚含量测定

粗蛋白质含量测定:每组准确称取饲粮样品各0.5 g,置于消化管中,添加催化剂(K2SO4 6 g、CuSO4 0.4 g),添加浓硫酸12 mL,消煮后上KJELTEC-2300型全自动定氮仪进行测定,记录氮含量,并计算粗蛋白质含量。

游离棉酚含量测定:每组准确称取1.00 g饲粮样品,置于三角瓶中,添加50 mL提取液(715 mL 95%乙醇,285 mL水,200 mL乙醚,0.2 mL冰乙酸)。室温振荡提取30 min,过滤(0.5滤膜)清液直接用于Agilent-1290型高效液相色谱仪测定,并计算游离棉酚含量。

1.3.2 生长性能

于70日龄当天08:00对试验鹅进行空腹称重(称前停饲6 h),记录耗料量,统计各组试验鹅每日采食量和增重情况,计算平均日增重(ADG)、平均日采食量(ADFI)和料重比(F/G)。

1.3.3 屠宰性能

于70日龄时,从每重复中抽取接近该重复体重的2只鹅进行屠宰,颈静脉放血致死,用湿法拔毛沥干水分后称重,测定其屠宰性能。测定指标包括屠宰率、全净膛率、半净膛率、胸肌率、腿肌率、腹脂率。试验操作及指标的测定方法参照《家禽生产性能名词术语和度量统计方法》(NY/T 823—2004)进行。

1.3.4 肠道发育和形态结构

取完整十二指肠、空肠、回肠、盲肠、直肠,剔除脂肪和食糜后测量各部分长度并称重,计算得到各个肠段相对于试验鹅活重的相对长度(cm/kg)、相对重量(g/kg)。

根据对肠道发育具有显著影响的发酵棉籽粕水平,筛选0、5%、15%和25%组进一步研究饲粮发酵棉籽粕水平对肠道形态结构及免疫屏障相关基因表达的影响。取十二指肠、空肠、回肠肠段中部相同位置约1.5 cm,用磷酸盐缓冲液清洗3遍,置于4%甲醛固定液中,进行苏木精-伊红(HE)染色,结果由武汉赛维尔生物科技有限公司提供。

1.3.5 回肠黏膜免疫屏障相关基因mRNA相对表达量

闭锁小环蛋白-1(ZO-1)、闭合蛋白(Claudin)、咬合蛋白(Occludin)、核因子-κB(NF-κB)、白细胞介素-6(IL-6)和白细胞介素-10(IL-10)基因的引物序列信息见表 2,由上海生工生物技术有限公司合成,内参基因为β-肌动蛋白(β-actin)。采用Magen生物公司的RNA提取试剂盒提取样品总RNA,实时荧光定量PCR使用Quantifast STBR Green PCR kit试剂盒和Bio-rad CFX-96型荧光定量PCR仪进行,每个实时定量PCR设3个重复。PCR反应程序为:95 ℃预变性10 min,95 ℃变性10 s,56 ℃退火延伸30 s,总计40个循环。

表 2 目的基因的引物序列信息 Table 2 Primer sequence information of target genes
1.4 数据统计分析

采用SAS v6.12软件的GLM程序进行单因素方差分析,然后通过Duncan氏法进行多重比较,试验结果使用平均值和均值标准误(SEM)表示,P<0.05为差异显著。

2 结果 2.1 饲粮发酵棉籽粕水平对28~70日龄马冈鹅生长性能的影响

表 3可知,饲粮发酵棉籽粕水平对28~70日龄马冈鹅ADG和ADFI无显著影响(P>0.05),但对F/G有显著影响(P<0.05)。20%和25%发酵棉籽粕水平组的F/G显著高于对照组(P<0.05),但与其他各组无显著差异(P>0.05)。

表 3 饲粮发酵棉籽粕水平对28~70日龄马冈鹅生长性能的影响 Table 3 Effects of dietary fermented cottonseed meal level on growth performance of Magang geese during 28 to 70 days of age
2.2 饲粮发酵棉籽粕水平对70日龄马冈鹅屠宰性能的影响

表 4可知,饲粮发酵棉籽粕水平对70日龄马冈鹅屠宰率、半净膛率、全净膛率、胸肌率、腹脂率均无显著影响(P>0.05),但对腿肌率有显著影响(P<0.05)。25%发酵棉籽粕水平组的腿肌率显著低于对照组(P<0.05),但与其他各组无显著差异(P>0.05)。

表 4 饲粮发酵棉籽粕水平对70日龄马冈鹅屠宰性能的影响 Table 4 Effects of dietary fermented cottonseed meal level on slaughter performance of Magang geese at 70 days of age  
2.3 饲粮发酵棉籽粕水平对70日龄马冈鹅肠道发育及形态结构的影响

表 5表 6可知,饲粮发酵棉籽粕水平对70日龄肉鹅十二指肠、回肠、盲肠和总肠道相对长度以及空肠、回肠、盲肠、直肠和总肠道相对重量均无显著影响(P>0.05),但对空肠和直肠相对长度以及十二指肠相对重量有显著影响(P<0.05)。25%发酵棉籽粕水平组空肠、直肠相对长度显著高于对照组和15%发酵棉籽粕水平组(P<0.05),且十二指肠相对重量显著高于其他各组(P<0.05)。

表 5 饲粮发酵棉籽粕水平对70日龄马冈鹅肠道相对长度的影响 Table 5 Effects of dietary fermented cottonseed meal level on intestinal relative length of Magang geese at 70 days of age  
表 6 饲粮发酵棉籽粕水平对70日龄马冈鹅肠道相对重量的影响 Table 6 Effects of dietary fermented cottonseed meal level on intestinal relative weight of Magang geese at 70 days of age  

表 7可知,饲粮发酵棉籽粕水平对十二指肠隐窝深度、绒毛高度/隐窝深度,空肠绒毛高度、隐窝深度、绒毛高度/隐窝深度,回肠绒毛高度、绒毛高度/隐窝深度均无显著影响(P>0.05),但对十二指肠绒毛高度和回肠隐窝深度有显著影响(P<0.05)。随着饲粮发酵棉籽粕水平的增加,十二指肠绒毛高度呈现降低趋势,15%和25%发酵棉籽粕水平组十二指肠绒毛高度显著低于对照组(P<0.05);随着饲粮发酵棉籽粕水平的增加,回肠隐窝深度呈现先降低后升高的趋势,15%发酵棉籽粕水平组回肠隐窝深度显著低于对照组(P<0.05)。

表 7 饲粮发酵棉籽粕水平对70日龄马冈鹅肠道形态结构的影响 Table 7 Effects of dietary fermented cottonseed meal level on intestinal morphology of Magang geese at 70 days of age
2.4 饲粮发酵棉籽粕水平对鹅回肠黏膜免疫屏障相关基因mRNA相对表达量的影响

表 8可知,饲粮发酵棉籽粕水平对回肠黏膜Claudin的mRNA相对表达量无显著影响(P>0.05),但对回肠黏膜ZO-1、OccludinNF-κBIL-6、IL-10的mRNA相对表达量有显著影响(P<0.05)。25%发酵棉籽粕水平组的回肠黏膜ZO-1、OccludinNF-κBIL-6的mRNA相对表达量显著高于对照组(P<0.05),回肠黏膜IL-10的mRNA相对表达量显著低于对照组(P<0.05)。

表 8 饲粮发酵棉籽粕水平对马冈鹅回肠黏膜免疫屏障相关基因mRNA相对表达量的影响 Table 8 Effects of dietary fermented cottonseed meal level on mRNA relative expression levels of immune barrier related genes in ileum mucosa of Magang geese
3 讨论 3.1 饲粮发酵棉籽粕水平对28~70日龄马冈鹅生长性能和屠宰性能的影响

棉籽粕中棉酚、环丙烯脂肪酸、植酸等抗营养因子含量过高会导致畜禽食欲下降、生长迟缓,影响机体正常代谢和生殖能力[9]。而棉籽粕经发酵后其中的抗营养因子得到有效降解,从而提高饲料利用率并改善家禽生长性能。目前,发酵棉籽粕的研究主要集中在肉鸡和肉鸭上。Tang等[10]和冯江鑫[11]等先后证实5%~8%发酵棉籽粕能显著提高肉鸡生长性能,并显著降低F/G。闫理东等[12]发现生长期肉仔鸡饲喂9%发酵棉籽粕显著降低了ADG和ADFI。周联高等[13]和王雅倩等[14]在樱桃谷肉鸭上的研究表明,饲喂6%发酵棉籽粕其生长性能最好,效益最高,且胴体品质能够得到改善。而Zeng等[15]研究发现,饲粮33.11%发酵棉籽粕水平(游离棉酚含量152 mg/kg)显著降低了ADG和ADFI。上述研究结果不一致的原因可能与棉籽粕发酵工艺、饲粮抗营养因子含量高低及品种、生长阶段不同等因素密切相关。本试验结果表明,饲粮发酵棉籽粕水平(5%~25%)对28~70日龄肉鹅ADG和ADFI无显著影响,与Wang等[16]肉鸡方面的研究结果基本一致。但饲粮高水平(20%和25%)发酵棉籽粕引起28~70日龄肉鹅F/G显著增加。一方面,随着发酵棉籽粕水平增加,高剂量棉酚、植酸等抗营养因子与蛋白质、氨基酸、矿物质结合,使得肉鹅养分利用率下降[17];另一方面,发酵棉籽粕中的棉酚对肠道中胃蛋白酶和胰淀粉酶等内源酶有直接的抑制作用,影响蛋白质和淀粉等营养物质吸收利用,从而影响饲料利用效率[18]

屠宰性能方面,本试验发现饲粮发酵棉籽粕水平对70日龄马冈鹅屠宰率、半净膛率和全净膛率无显著影响,与Yu等[19]在肉鹅上屠宰性能的结果基本一致。但饲粮25%发酵棉籽粕水平显著降低70日龄肉鹅腿肌率,其原因可能是发酵棉籽粕中的棉酚与肌肉中的蛋白质形成复合物,抑制了蛋白质沉积,从而导致腿肌率降低[20]。而魏莲清等[21]等研究表明,饲粮中添加发酵棉籽粕可以显著提高肉鸡半净膛率和腿肌率,且6%发酵棉籽粕水平组腿肌率最高。上述研究结果不一致的原因可能是饲粮发酵棉籽粕水平不同以及不同物种对棉籽粕抗营养因子的耐受性高低有关。综合考虑本试验生长性能指标,建议28~70日龄肉鹅饲粮发酵棉籽粕水平控制在20%(游离棉酚含量88 mg/kg)以内。

3.2 饲粮发酵棉籽粕水平对70日龄马冈鹅肠道发育和形态结构的影响

小肠肠道发育和形态结构的变化均可引起小肠对营养物质吸收的改变,从而影响家禽的生长发育和饲料转化率[22]。本试验发现,饲粮25%发酵棉籽粕水平(游离棉酚含量110 mg/kg)可提高空肠、直肠的相对长度和十二指肠的相对重量,其原因可能与发酵棉籽粕中益生菌及其代谢产物影响肠道发育有关[23]。肠道形态结构方面,发现饲粮15%~25%发酵棉籽粕水平显著降低肉鹅十二指肠的绒毛高度,该结果与饲粮23.27%发酵棉籽粕水平降低肉鸭十二指肠绒毛高度和绒毛高度/隐窝深度的结果[24]基本吻合。Wang等[25]和Chadha等[26]分别在草鱼和小鼠上均证实过量棉酚可加剧肠炎,损害肠道上皮细胞结构。因而,饲用过高水平的发酵棉籽粕不利于肉鹅肠道发育。绒毛高度的下降一定程度反映了十二指肠肠道吸收表面积和营养物质吸收能力的降低,进而引起饲料转化率的降低[27]。但Yu等[28]研究发现,肉鹅饲粮中6.73%~20.18%发酵棉籽粕水平会显著提高空肠的绒毛高度;Özdoğan等[29]报道,饲粮5%~10%发酵棉籽粕水平会提高肉鸡十二指肠的绒毛高度和绒毛高度/隐窝深度。这与本试验结果不一致,可能与饲粮发酵棉籽粕水平及其棉酚等抗营养因子含量高低有关。有研究表明,游离棉酚不仅能在肠道中与铁结合,降低铁元素利用率,还可与饲粮中赖氨酸结合,抑制肠道中蛋白质及脂肪代谢相关酶的合成[30-31],这可能与本试验高水平发酵棉籽粕剂抑制肠道发育有关。

3.3 饲粮发酵棉籽粕水平对马冈鹅回肠黏膜免疫屏障相关基因mRNA相对表达量的影响

肠上皮细胞肠屏障功能可保证肠腔内的物质与外界分离,防止病原体抗原入侵的功能。肠黏膜上皮细胞彼此相连,构成完整的生物屏障,细胞质膜蛋白与接头蛋白形成的蛋白网状结构是紧密连接的重要部分[32]。ZO-1是重要的细胞质接头蛋白,Occludin和Claudin是主要的细胞质跨膜蛋白[33]。这3种蛋白的表达减少或结构损伤可破坏肠道免疫屏障功能,致使肠壁通透性增加。本试验结果发现,25%发酵棉籽粕水平组的回肠黏膜ZO-1和Occludin的mRNA相对表达量显著升高;Claudin的mRNA相对表达量呈下降趋势,但并未达到显著水平。这与Wang等[34]在体外试验中的发现一致,高浓度棉酚可通过上调草鱼肠道细胞中磷肌球蛋白轻链激酶(MLCK)的表达,下调Claudin-b的表达。饶渊[35]发现高棉籽粕水平组可显著下调蛋鸡空肠Occludin蛋白表达,其原因可能是鸡与鹅的物种属性差异导致其主体整体协调反馈机制不同,同时对于棉酚的耐受反应也不尽相同。肉鸡方面的研究发现,发酵棉籽粕中的棉酚、植酸等抗营养因子可诱导肠道细菌产生大量毒素,引起坏死性肠炎[36]。饲粮25%发酵棉籽粕水平(游离棉酚含量120 mg/kg)可显著上调肉鹅回肠黏膜的NF-κBIL-6的mRNA相对表达量。研究表明,NF-κB是存在于多种细胞中的一种基因转录调控蛋白,受外界信息刺激活化,从胞浆进入胞核与炎性因子(如IL-1、IL-6等)基因启动子区域中的κB位点结合,启动炎性因子基因转录为mRNA,从而促进其合成,在炎症反应中起重要调控作用[37]。此外,肉鹅饲喂高水平发酵棉籽粕还可抑制抗炎细胞因子IL-10的表达,与在蛋鸡[38]和草鱼[34]方面的研究结果一致,可能与棉酚会加重生长期草鱼肠道组织病理学病变,降低肠道免疫功能有关。由此推测,发酵棉籽粕中的棉酚可能引起回肠的炎症反应,进而导致小肠绒毛高度下降等形态结构的破坏。但其促炎症反应等的机制是否通过NF-κB信号转导通路上调炎症因子表达来发挥作用,有待进一步研究。

4 结论

综上所述,基于F/G、肠道形态结构和免疫屏障等指标,推荐28~70日龄马冈鹅饲粮发酵棉籽粕水平不高于20%(游离棉酚不高于88 mg/kg)。饲粮发酵棉籽粕水平过高可引起28~70日龄马冈鹅肠道形态结构和免疫屏障功能受损,导致饲料转化率降低。

参考文献
[1]
胡新旭, 周映华, 卞巧, 等. 无抗发酵饲料对生长育肥猪生产性能、血液生化指标和肉品质的影响[J]. 华中农业大学学报, 2015, 34(1): 72-77.
HU X X, ZHOU Y H, BIAN Q, et al. Effects of complex probiotics fermented feed without antibiotic on growth performance, plasma biochemical parameters, immune function and meat quality in growing-finishing pig[J]. Journal of Huazhong Agricultural University, 2015, 34(1): 72-77 (in Chinese).
[2]
刘举. 发酵豆粕等量替代普通豆粕对文昌鸡繁殖性能与肉品质的影响[D]. 硕士学位论文. 广州: 华南农业大学, 2018.
LIU J. The effects of fermented soybean meal on the reproductive performance and meat quality in dual-purpose type chicken for meat and eggs[D]. Master's Thesis. Guangzhou: South China Agricultural University, 2018. (in Chinese)
[3]
吴正可. 多菌种固态发酵菜籽粕的工艺优化及其对肉鸡的饲用价值评定[D]. 硕士学位论文. 北京: 中国农业科学院, 2018.
WU Z K. Study on multi-strain solid fermenting process of rapeseed meal and its feeding value for broilers[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[4]
夏新成, 李贵强, 滕安国, 等. 复合发酵棉籽粕菌种筛选、鉴定及其发酵工艺参数优化研究[J]. 中国粮油学报, 2010, 25(1): 91-98.
XIA X C, LI G Q, TENG A G, et al. Mix culture solid fermentation for detoxification of cottonseed meal[J]. Journal of the Chinese Cereals and Oils Association, 2010, 25(1): 91-98 (in Chinese).
[5]
黄薇, 姚清华, 宋永康, 等. 发酵棉籽粕在动物生产中的应用[J]. 饲料研究, 2011(1): 15-18.
HUANG W, YAO Q H, SONG Y K, et al. Application of fermented cottonseed meal in animal production[J]. Feed Research, 2011(1): 15-18 (in Chinese).
[6]
NIU J L, ZHANG J, WEI L Q, et al. Effect of fermented cottonseed meal on the lipid-related indices and serum metabolic profiles in broiler chickens[J]. Animals, 2019, 9(11): 930. DOI:10.3390/ani9110930
[7]
NIU J L, WEI L Q, LUO Y Q, et al. Fermented cottonseed meal improves production performance and reduces fat deposition in broilers chicken[J]. Asian-Australasian Journal of Animal Sciences, 2020. DOI:10.5713/ajas.20.0571
[8]
王婷. 混菌发酵棉籽粕工艺参数研究及在肉鸭生产中的应用[D]. 硕士学位论文. 合肥: 安徽农业大学, 2015.
WANG T. Research of the process parameters of multi-strains fermented cottonseed meal and the application of feeding meat duck[D]. Master's Thesis. Hefei: Anhui Agricultural University, 2015. (in Chinese)
[9]
王大祥. 棉酚和环丙烯脂肪酸对蛋鸡生产性能、蛋品质及肝脏的影响[D]. 硕士学位论文. 扬州: 扬州大学, 2017.
WANG D X. The impact on the production performance, egg quality and liver of laying hens exposed to the FG and CPFA[D]. Master's Thesis. Yangzhou: Yangzhou University, 2017. (in Chinese)
[10]
TANG J W, SUN H, YAO X H, et al. Effects of replacement of soybean meal by fermented cottonseed meal on growth performance, serum biochemical parameters and immune function of yellow-feathered broilers[J]. Asian-Australasian Journal of Animal Sciences, 2012, 25(3): 393-400. DOI:10.5713/ajas.2011.11381
[11]
冯江鑫, 孙焕林, 王朝阳, 等. 枯草芽孢杆菌发酵棉籽粕对黄羽肉鸡营养物质代谢率、生产性能的影响[J]. 粮食与饲料工业, 2015(7): 43-46.
FENG J X, SUN H L, WANG C Y, et al. .Effects of cottonseed meal fermentation by Bacillus subtilis on nutrient metabolics rates and production performance of yellow broilers[J]. Cereal and Feed Industry, 2015(7): 43-46 (in Chinese).
[12]
闫理东, 张文举, 聂存喜, 等. 发酵棉粕对黄羽肉鸡生产性能和屠宰性能的影响[J]. 石河子大学学报(自然科学版), 2012, 30(2): 171-176.
YAN L D, ZHANG W J, NIE C X, et al. Effect of fermented cottonseed meal on growth performance and slaughter performance in yellow-feathered broilers[J]. Journal of Shihezi University (Natural Science), 2012, 30(2): 171-176 (in Chinese). DOI:10.3969/j.issn.1007-7383.2012.02.009
[13]
周联高, 吴蓉蓉, 章世元, 等. 不同比例棉籽粕替代豆粕在樱桃谷鸭日粮中的应用[J]. 饲料工业, 2008, 29(17): 22-25.
ZHOU L G, WU R R, ZHANG S Y, et al. Application of cottonseed meal different proportion substitute soybean meal in the diet of cherry valley duck[J]. Feed Industry, 2008, 29(17): 22-25 (in Chinese). DOI:10.3969/j.issn.1001-991X.2008.17.006
[14]
王雅倩, 俞路, 闫韩韩. 棉籽粕在樱桃谷肉鸭日粮中的应用研究[J]. 中国饲料, 2009(6): 16-18.
WANG Y Q, YU L, YAN H H. Application of cottonseed meal in the diet of cherry valley meat duck[J]. China Feed, 2009(6): 16-18 (in Chinese). DOI:10.3969/j.issn.1004-3314.2009.06.006
[15]
ZENG Q F, BAI P, WANG J P, et al. The response of meat ducks from 15 to 35 d of age to gossypol from cottonseed meal[J]. Poultry Science, 2015, 94(6): 1277-1286. DOI:10.3382/ps/pev070
[16]
WANG Y W, DENG Q Q, SONG D, et al. Effects of fermented cottonseed meal on growth performance, serum biochemical parameters, immune functions, antioxidative abilities, and cecal microflora in broilers[J]. Food and Agricultural Immunology, 2017, 28(4): 725-738. DOI:10.1080/09540105.2017.1311308
[17]
ARAUJO R S, OLIVEIRA A C, SOUSA F C B, et al. Effects of cottonseed oil and ferrous sulfate on the performance and expression of antioxidant enzymes in broilers[J]. Poultry Science, 2019, 98(9): 3860-3869. DOI:10.3382/ps/pez103
[18]
ČŚWIATKIEWICZ S, ARCZEWSKA-WŁOSEK A, JÓZEFIAK D. The use of cottonseed meal as a protein source for poultry: an updated review[J]. World's Poultry Science Journal, 2016, 72(3): 473-484. DOI:10.1017/S0043933916000258
[19]
YU J, YANG H M, WAN X L, et al. Effects of cottonseed meal on slaughter performance, meat quality, and meat chemical composition in Jiangnan white goslings[J]. Poultry Science, 2020, 99(1): 207-213. DOI:10.3382/ps/pez451
[20]
ADEYEMO G O, LONGE O G. Effects of graded levels of cottonseed cake on performance, haematological and carcass characteristics of broilers fed from day old to 8 weeks of age[J]. African Journal of Biotechnology, 2007, 6(8): 1064-1071.
[21]
魏莲清, 牛俊丽, 赵官正, 等. 添加不同水平的发酵棉粕对科宝肉鸡生长性能、屠宰性能和血清生化指标的影响[J]. 中国畜牧兽医, 2019, 46(7): 1953-1961.
WEI L Q, NIU J L, ZHAO G Z, et al. Effects of different levels of fermented cottonseed meal on growth performance, slaughter performance and serum biochemical indexes of cobb broilers[J]. China Animal Husbandry and Veterinary Medicine, 2019, 46(7): 1953-1961 (in Chinese).
[22]
胡骁飞, 职爱民, 魏凤仙, 等. 应激影响家禽肠道结构和功能的研究进展[J]. 中国家禽, 2009, 31(14): 36-39.
HU X F, ZHI A M, WEI F X, et al. Research progress on the influence of stress on poultry intestinal structure and function[J]. China Poultry, 2009, 31(14): 36-39 (in Chinese).
[23]
李卫芬, 沈涛, 陈南南, 等. 饲料中添加枯草芽孢杆菌对草鱼消化酶活性和肠道菌群的影响[J]. 大连海洋大学学报, 2012, 27(3): 221-225.
LI W F, SHEN T, CHEN N N, et al. Effects of dietary Bacillus subtilis on digestive enzyme activity and intestinal microflora in grass carp Ctenopharyngodon idellus[J]. Journal of Dalian Ocean University, 2012, 27(3): 221-225 (in Chinese). DOI:10.3969/j.issn.1000-9957.2012.03.006
[24]
柏鹏. 饲粮棉粕水平对15-35日龄肉鸭生产性能和健康的影响及棉酚残留研究[D]. 硕士学位论文. 雅安: 四川农业大学, 2014.
BAI P. The effect of dietary cottonseed meal levels on the growth performance and health of 15-35-day-old meat ducks and gossypol residues[D]. Master's Thesis. Ya'an: Sichuan Agricultural University, 2014. (in Chinese)
[25]
WANG H Y, GUO Y M, SHIH J C H. Effects of dietary supplementation of keratinase on growth performance, nitrogen retention and intestinal morphology of broiler chickens fed diets with soybean and cottonseed meals[J]. Animal Feed Science and Technology, 2008, 140(3/4): 376-384.
[26]
CHADHA S, SANYAL S N, KANWAR U. Effects of gossypol acetic acid on the absorptive and digestive functions of rat intestine[J]. Biochemistry International, 1988, 17(6): 1117-1133.
[27]
周洪彬, 魏景坤, 刘洋, 等. 植物精油对肉仔鸡生长性能、免疫功能及肠道发育的影响[J]. 动物营养学报, 2020, 32(8): 3887-3895.
ZHOU H B, WEI J K, LIU Y, et al. Effects of plant essential oil on growth performance, immune function and intestinal development of broilers[J]. Chinese Journal of Animal Nutrition, 2020, 32(8): 3887-3895 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.08.047
[28]
YU J, WANG Z Y, YANG H M, et al. Effects of cottonseed meal on growth performance, small intestinal morphology, digestive enzyme activities, and serum biochemical parameters of geese[J]. Poultry Science, 2019, 98(5): 2066-2071. DOI:10.3382/ps/pey553
[29]
ÖZDOǦAN M, WELLMANN K, PAKSUZ E. Effect of gossypol on blood serum parameters and small intestinal morphology of male broilers[J]. Journal of Animal Physiology and Animal Nutrition, 2012, 96(1): 95-101. DOI:10.1111/j.1439-0396.2010.01126.x
[30]
EI-SAIDY D M S D, GABER M M. Use of cottonseed meal supplemented with iron for detoxification of gossypol as a total replacement of fish meal in Nile tilapia, Oreochromis niloticus (L.) diets[J]. Aquaculture Research, 2004, 35(9): 859-865. DOI:10.1111/j.1365-2109.2004.01077.x
[31]
LEEK K J, DABROWSKI K. Gossypol and gossypolone enantiomers in tissues of rainbow trout fed low and high levels of dietary cottonseed meal[J]. Journal of Agricultural and Food Chemistry, 2002, 50(10): 3056-3061. DOI:10.1021/jf0115387
[32]
TURNER J R. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application[J]. The American Journal of Pathology, 2006, 169(6): 1901-1909. DOI:10.2353/ajpath.2006.060681
[33]
CHEN L, LI L, HAN Y, et al. Tong-fu-li-fei decoction exerts a protective effect on intestinal barrier of sepsis in rats through upregulating ZO-1/occludin/claudin-1 expression[J]. Journal of Pharmacological Sciences, 2020, 143(2): 89-96. DOI:10.1016/j.jphs.2020.02.009
[34]
WANG K Z, FENG L, JIANG W D, et al. Dietary gossypol reduced intestinal immunity and aggravated inflammation in on-growing grass carp (Ctenopharyngodon idella)[J]. Fish & Shellfish Immunology, 2019, 86: 814-831.
[35]
饶渊. 日粮棉粕水平对鸡肠道屏障功能体系的影响[D]. 硕士学位论文. 泰安: 山东农业大学, 2013.
RAO Y. Effects of dietary cottonseed meal level on the intestinal barrier function system of chicken[D]. Master's Thesis. Tai'an: Shandong Agricultural University, 2013. (in Chinese)
[36]
LIU N, WANG J Q, GU K T, et al. Effects of dietary protein levels and multienzyme supplementation on growth performance and markers of gut health of broilers fed a miscellaneous meal based diet[J]. Animal Feed Science and Technology, 2017, 234: 110-117. DOI:10.1016/j.anifeedsci.2017.09.013
[37]
陈少军. 核因子-κB/环氧合酶-2与新生鼠坏死性肠炎相关性研究[D]. 硕士学位论文. 武汉: 武汉大学, 2005.
CHEN S J. Nuclear factor kappa B/cyxlooxygenase-2 and necrotizing enterocolitis relativity research[D]. Master's Thesis. Wuhan: Wuhan University, 2005. (in Chinese)
[38]
WANG L, LI A K, SHI J J, et al. Effects of different levels of cottonseed meal on laying performance, egg quality, intestinal immunity and hepatic histopathology in laying hens[J]. Food and Agricultural Immunology, 2020, 31(1): 803-812. DOI:10.1080/09540105.2020.1774745