动物营养学报    2021, Vol. 33 Issue (7): 3970-3979    PDF    
添加残次苹果发酵物对玉米秸秆青贮品质的影响
郭睿1,2 , 艾琪1,2 , 陈亚飞1,2 , 苏华维3,4 , 蒋慧1,2 , 蒋涛1,2     
1. 塔里木大学动物科学学院, 阿拉尔 843300;
2. 塔里木畜牧科技兵团重点实验室, 阿拉尔 843300;
3. 中国农业大学动物科技学院, 北京 100193;
4. 动物营养学国家重点实验室, 北京 100193
摘要: 本研究旨在探讨添加残次苹果发酵物对玉米秸秆青贮品质的影响以及适宜添加比例。按残次苹果发酵物和玉米秸秆重量添加比例0:10(Ⅰ组)、1:9(Ⅱ组)、3:7(Ⅲ组)、5:5(Ⅳ组)、7:3(Ⅴ组)混合进行青贮,每个比例3个重复。青贮90 d后,测定混合青贮饲料的营养水平和发酵品质以及有氧暴露情况下pH及乳酸菌、酵母菌和霉菌数量的动态变化。结果表明:与未添加残次苹果发酵物相比,添加30%及以上的残次苹果发酵物使青贮原料的粗蛋白质和可溶性碳水化合物含量显著增加(P < 0.05),中性洗涤纤维和酸性洗涤纤维含量显著降低(P < 0.05);未添加残次苹果发酵物的青贮饲料感官品质为中,而添加残次苹果发酵物显著改善青贮饲料的感官品质;发酵产物中,乳酸、乙酸、丙酸含量和乳酸/总酸随着残次苹果发酵物添加比例的增加而显著增加(P < 0.05),而乙酸/总酸和氨态氮/总氮随残次苹果发酵物添加比例的增加而显著降低(P < 0.05),Ⅲ组的丁酸含量和丁酸/总酸显著低于其他组(P < 0.05);未添加残次苹果发酵物的青贮饲料发酵品质综合评分为中,而添加残次苹果发酵物的Ⅱ、Ⅲ、Ⅳ和Ⅴ组综合评分分别为良、优、优和优。在有氧暴露过程中,随着时间的延长,各组的pH及酵母菌、霉菌数量逐渐增多,乳酸菌数量逐渐减少;Ⅰ组的乳酸菌数量始终显著低于其他各组(P < 0.05),酵母菌和霉菌数量始终显著高于其他各组(P < 0.05);从有氧暴露第1天起,Ⅲ组的乳酸菌数量显著高于其他各组(P < 0.05);Ⅲ和Ⅳ组的pH及酵母菌、霉菌数量显著低于其他各组(P < 0.05)。综上所述,添加残次苹果发酵物能改善玉米秸秆青贮品质,其添加比例在3:7~5:5适宜。
关键词: 残次苹果发酵物    玉米秸秆    混合青贮    发酵品质    微生物数量    
Effects of Adding Defective Apple Fermentation on Quality of Corn Straw Silage
GUO Rui1,2 , AI Qi1,2 , CHEN Yafei1,2 , SU Huawei3,4 , JIANG Hui1,2 , JIANG Tao1,2     
1. College of Animal Science, Tarim University, Alar 843300, China;
2. Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar 843300, China;
3. College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
4. State Key Laboratory of Animal Nutrition, Beijing 100193, China
Abstract: The purpose of this study was to investigate the effects of defective apple fermentation on the quality of corn straw silage and the appropriate addition ratio. Mixed silage was carried out according to the weight ratio of defective apple fermentation and corn straw at 0:10 (group Ⅰ), 1:9 (group Ⅱ), 3:7 (group Ⅲ), 5:5 (group Ⅳ), 7:3 (group Ⅴ), respectively, and 3 replicates for each group. After 90 days of silage, the nutrient levels and fermentation quality of the mixed silage was determined as well as the dynamics of pH, number of lactic acid bacteria, yeasts group and mold under aerobic exposure. The results showed that the addition of 30% or more of defective apple fermentation increased significantly the crude protein and water soluble carbohydrate contents of the silage materials and decreased significantly the contents of neutral detergent fiber and acid detergent fiber (P < 0.05); the sensory quality of silage without adding defective apple fermentation was medium, while the treatment with adding defective apple fermentation improved significantly the sensory quality of the silage; in the fermentation products, number of lactic acid, acetic acid, propionic acid and lactic acid/total acid increased significantly with the increase of the percentage of defective apple fermentation(P < 0.05), while acetic acid/total acid and ammonia/total nitrogen decreased significantly with the increase of the percentage of defective apple fermentation(P < 0.05), the content of butyric acid and the ratio of butyric acid to total acid were lower significantly in group Ⅲ than those in the other groups (P < 0.05); the score for the fermentation quality of silage without adding defective apple fermentation was medium, while the score for groups Ⅱ, Ⅲ, Ⅳ and Ⅴ with adding defective apple fermentation were good, excellent, excellent and excellent. During aerobic exposure, with the extension of time, the pH, the number of yeast and mold increased gradually, the number of lactic acid bacteria decreased gradually in each group; the number of lactic acid bacteria in group Ⅰ was always lower significantly than that in each other group (P < 0.05), the number of yeast and mold were always higher significantly than those in each other group (P < 0.05); from the first day of aerobic exposure, the number of lactic acid bacteria in group Ⅲ was higher significantly than that in all other groups (P < 0.05); the pH, the number of yeast and mold in groups Ⅲ and Ⅳ were lower significantly than that in all other groups (P < 0.05). In conclusion, adding defective apple fermentation improves corn straw silage quality, and the appropriate ratio is between 3:7 and 5:5.
Key words: defective apple fermentation    corn straw    mixed silage    fermentation quality    microbial population    

新疆畜牧业以牛、羊等草食家畜为主,需要大量的饲草作为支撑,近几十年来由于过渡放牧等人为原因,造成天然草地退化严重,提供给草食家畜的饲草严重不足[1-3];另外,新疆是著名的瓜果之乡,林果种植面积占全疆耕地面积的24%,在主产区农民人均收入中,来自林果业的人均收入在45%以上,2017年底,苹果的种植面积达7.64万hm2,总产量为153.41万t,2018年仅阿克苏地区苹果栽培面积达2.59万hm2,总产量为63.04万t[4-5]。畜牧业产值占农业总产值19%左右,因此,新疆人工草地与林果业等经济作物在种植业的比较中处于劣势,造成人工草地的发展受到限制,使得新疆优质粗饲料资源匮乏[3, 6]

随着新疆林果业的快速发展,苹果的产量逐年增加,苹果生产中,残果、次果、落地果占10%左右,采摘运输过程中的刺伤、碰撞损失占15%左右,自然腐烂率为10%左右,苹果的伤残烂果率可达25%左右,残次苹果资源不断增大,残次苹果加工利用率不到20%[7-8]。同时,新疆地理位置偏远,缺少深加工,残次苹果加工利用率低于全国平均水平,多数残次苹果被抛弃,腐败变质,资源浪费严重[4, 9]。目前,在饲料加工方面苹果渣的利用较多,残次苹果用作饲料加工的报道较少[10-12]

残次苹果含有丰富的可溶性碳水化合物,为微生物发酵提供充足的发酵底物,再加之水分含量较高,很容易发生腐败变质,如果将其制成发酵物,可保存其营养价值,就能更好地利用这一资源,减少浪费。玉米秸秆青贮是来源最广泛、应用普遍的一种反刍动物饲料,据2019年报道,新疆有玉米秸秆993.08万t[5],但由于去穗玉米秸秆青贮的碳水化合物中淀粉含量低,纤维含量高,营养品质差,为改善其青贮品质,研究者们将玉米秸秆与废弃白菜[13]、莴笋叶[14]、紫荆花[15]等副产品进行混合青贮,获得了较好的青贮品质。因此,为合理利用含有丰富可溶性碳水化合物的残次苹果资源,改善玉米秸秆青贮品质,克服残次苹果与玉米秸秆生产不在同一时间节点的矛盾,本研究以残次苹果发酵物和干玉米秸秆为原料,旨在探索添加残次苹果发酵物能否改善玉米秸秆的青贮品质及其适宜添加比例,为残次苹果发酵物和玉米秸秆的初步利用提供依据。

1 材料与方法 1.1 试验材料

残次苹果和玉米秸秆均购买于周边团场,在残次苹果中添加本研究团队筛选的几种乳酸菌组合进行发酵得到残次苹果发酵产物。青贮原料营养水平和微生物数量见表 1

表 1 青贮原料营养水平(干物质基础)和微生物数量(鲜重基础) Table 1 Nutrient levels (DM basis)and microbial populations (FM basis)of raw materials
1.2 试验设计

试验采用完全随机设计,将残次苹果发酵物与玉米秸秆按不同重量百分比混合,添加比例分别为0 ∶ 10(Ⅰ组)、1 ∶ 9(Ⅱ组)、3 ∶ 7(Ⅲ组)、5 ∶ 5(Ⅳ组)、7 ∶ 3(Ⅴ组),每组3个重复。

1.3 混贮饲料的调制

将玉米秸秆切成2~3 cm的长度,残次苹果发酵物和玉米秸秆按试验设计的重量百分比混匀,水分含量低的组用自来水调节至与高水分组相当,压入洁净的1 L玻璃广口瓶中,压实密度为(650±50) g/L,用凡士林和胶带密封。青贮制作时对不同比例混合的原料分别进行取样,用于测定营养水平;90 d后开盖取样,分析青贮饲料营养水平和发酵品质;同时检测发酵罐开盖后第0、1、3、5、8、15天各组在有氧暴露下pH及乳酸菌、酵母菌和霉菌数量的变化。

1.4 测定指标与方法 1.4.1 青贮原料与青贮饲料营养水平的测定

分别称取各混合比例发酵前和发酵后样本各200 g在65 ℃烘箱(DHG-9240A,上海齐欣)中,烘干至恒重,粉碎后过40目筛,密封保存备用。干物质(DM)含量采用烘干法测定;粗蛋白质(CP)含量采用凯氏定氮法[16]测定;中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)含量采用范氏洗涤纤维法[17]测定;可溶性碳水化合物(WSC)含量采用蒽酮-硫酸比色法[18]测定。

1.4.2 青贮饲料的感官评定、pH及发酵品质的测定

通过pH、色泽、气味、质地以及霉变情况进行感官评定[19]。开瓶取出青贮饲料混合均匀后,准确称取50 g青贮饲料放入1 L三角瓶中,加450 mL蒸馏水后封口,放入4 ℃冰箱中浸提24 h,用涤纶布过滤,并挤尽残渣中的提取液,用定量滤纸过滤,所得提取液保存备用。在提取液中加入25%的偏磷酸(浸提液与偏磷酸的体积比为5 ∶ 1),静置30 min,在1 500 r/min,4 ℃离心15 min,上清液经0.45 μm滤膜过滤,用高效液相色谱仪测定乳酸(LA)含量[20],高效气相色谱仪测定乙酸(AA)、丙酸(PA)、丁酸(BA)的含量[21]

pH用酸度计(PHSJ-5,上海雷磁)测定。

用苯酚-次氯酸钠比色法[22]测定氨态氮(NH3-N)含量。

青贮品质的综合评分:将有机酸占总酸比例的得分和NH3-N占总氮的得分相结合,两者各占50%(即有机酸得分除以2,再与NH3-N得分相加)得到综合得分[23]

1.4.3 青贮饲料在有氧暴露下微生物数量的测定

在青贮90 d开盖取样,记为有氧试验第0天,开盖第2天记为有氧试验的第1天,以此类推。分别称取开盖后第0(青贮当天)、1、3、5、8、15天的青贮饲料20 g样品,加入180 mL的灭菌水,并做倍比稀释,每个稀释梯度做3个重复,乳酸菌用MRS培养基、酵母菌用PDA培养基、霉菌使用高盐察氏培养基进行平板涂布,对相应微生物菌落进行计数[24]

1.5 数据处理

试验数据采用分析软件DPS v3.01专业版和Excel 2019处理,数据采用单因素方差分析,并作Duncan氏法多重比较。P < 0.05为差异显著。

2 结果与分析 2.1 青贮饲料的感官评定

青贮90 d后,通过观察残次苹果发酵物与玉米秸秆混贮的色泽、气味、质地等对其进行评分并将结果列入表 2。Ⅰ组的pH为4.72,颜色为褐色,有刺鼻酒酸味,质地略带黏性,青贮感官得分为33,等级为中;Ⅱ组的pH为4.40,颜色为浅褐色,有淡酸味,质地松软不黏手,青贮感官得分为49,等级为中;Ⅲ和Ⅳ组的pH分别为4.01、3.83,颜色分别为黄色和黄褐色,甘酸味舒适,质地松软不黏手,青贮感官得分分别是83、81,等级为优;Ⅴ组的pH为3.71,颜色呈褐色,甘酸味舒适,质地松软但黏手,青贮感官得分是61,等级是良。

表 2 混合青贮饲料感官评定 Table 2 Sensory evaluation of mixed silage
2.2 青贮发酵前后的营养水平

表 3可知,发酵前,Ⅰ、Ⅱ、Ⅲ组的DM含量显著高于Ⅳ、Ⅴ组(P<0.05);CP、WSC含量随着残次苹果发酵物添加比例的增加而增加,并且Ⅴ组显著高于其他组(P<0.05),Ⅰ组的NDF、ADF含量显著高于其他4组(P<0.05)。

表 3 混合青贮饲料发酵前后营养水平(干物质基础) Table 3 Nutrient levels of mixed silage before and after fermentation (DM basis)  

青贮发酵90 d后,Ⅰ、Ⅱ、Ⅲ组间DM含量差异不显著(P>0.05),但均显著高于Ⅳ和Ⅴ组(P<0.05);Ⅰ、Ⅱ组的差异不显著(P>0.05),但显著低于Ⅲ、Ⅳ和Ⅴ组(P<0.05),Ⅲ和Ⅳ组差异也不显著(P>0.05);Ⅰ组的NDF、ADF含量显著高于其他组,且各组之间差异显著(P<0.05);Ⅰ组的WSC含量显著低于其他各组(P<0.05),Ⅱ、Ⅲ、Ⅳ组间差异不显著(P>0.05)。

2.3 青贮饲料的发酵品质及综合评价

表 4可知,添加残次苹果发酵物组中LA和AA含量均随残次苹果发酵物添加比例增加而增加,显著高于未添加的Ⅰ组(P<0.05);PA含量除Ⅱ组为微量外,Ⅳ、Ⅴ组的PA含量显著高于Ⅰ组(P<0.05),而Ⅲ组与Ⅰ组差异不显著(P>0.05);Ⅰ组的BA含量和AN/TN显著高于其他各组(P<0.05),Ⅲ组的BA含量(0.01%)最低,并且Ⅲ、Ⅵ和Ⅴ组之间AN/TN差异不显著(P>0.05)。

表 4 混合青贮饲料的发酵产物及综合评价 Table 4 Fermentation products and comprehensive evaluation of mixed silage

LA/TA随着残次苹果发酵物添加比例的增加而升高,AN/TN和AA/TA随残次苹果发酵物添加比例的增加而降低;未添加残次苹果发酵物的Ⅰ组LA/TA最低,AN/TN、AA/TA和BA/TA均最高。Ⅰ组的综合得分为60,等级为中,添加残次苹果发酵物的Ⅱ、Ⅲ、Ⅳ和Ⅴ组的等级分别为良、优、优和优,综合得分分别为79.5、94.5、93.0、90.5,其中Ⅲ组得分最高。

2.4 有氧暴露情况下的pH和微生物数量的动态变化

表 5可知,从有氧暴露第1~15天,Ⅲ、Ⅳ组之间的pH差异不显著(P>0.05),但显著低于Ⅰ、Ⅱ和Ⅴ组(P<0.05);并且随着有氧暴露时间的延长,各组的pH逐渐升高。

表 5 有氧暴露过程中混合青贮pH和微生物数量的变化 Table 5 Changes of pH and microbial population in mixed silage during aerobic exposure

乳酸菌的数量随着有氧暴露时间的延长而减少,有氧暴露第0天时,各组乳酸菌的数量变化随残次苹果发酵物添加比例的增加而增加。从有氧暴露第0~15天,未添加残次苹果发酵物的Ⅰ组乳酸菌数量均显著低于添加残次苹果发酵物的其他4组(P<0.05),Ⅲ组的乳酸菌数量均显著高于其他各组(P<0.05)。

酵母菌数量变化随着有氧暴露时间的延长而迅速增多,有氧暴露第0~15天,未添加残次苹果发酵物的Ⅰ组的酵母菌数量显著高于添加残次苹果发酵物的其他4组(P<0.05);其中,第0天Ⅲ、Ⅳ、Ⅴ组之间的酵母菌数量差异不显著(P>0.05)。从有氧暴露第1~15天,Ⅲ和Ⅳ组的酵母菌数量显著低于其他组(P<0.05)。

霉菌数量随着有氧暴露时间的延长逐渐增多,在有氧暴露第0天,Ⅱ、Ⅲ、Ⅳ、Ⅴ组均未检测到霉菌;有氧暴露第1天,Ⅱ、Ⅴ组开始有霉菌;有氧暴露第5天,Ⅲ、Ⅳ组开始有霉菌;有氧暴露第1~15天,Ⅲ和Ⅳ组的霉菌数量显著低于其他组(P<0.05)。

3 讨论 3.1 添加残次苹果发酵物对玉米秸秆青贮感官品质的影响

优质青贮的颜色接近原料的色泽,茎叶结构清晰可见,松散不黏手,有芳香味[25]。本试验结果发现,未添加残次苹果发酵物的玉米秸秆青贮后,有刺鼻酒酸味,说明玉米秸秆单独青贮品质较差,而添加残次苹果发酵物的Ⅱ~Ⅳ组青贮,气味由淡酸味变为甘酸味,颜色由浅褐色变为黄褐色;质地方面,松散柔软不黏手,说明添加残次苹果发酵物可以改善玉米秸秆青贮的感官品质,而添加70%的残次苹果发酵物的Ⅴ组感官颜色较深,有黏性容易结块,这可能是由于加入残次苹果发酵物比例较高使青贮水分含量过高。

3.2 添加残次苹果发酵物对玉米秸秆青贮营养水平的影响

WSC为青贮提供发酵底物,可确保乳酸菌快速形成LA,促使pH下降抑制不良微生物生长[26]。本研究中,添加残次苹果发酵物的玉米秸秆青贮中CP、WSC含量增加,为获得良好的青贮品质提供物质基础,青贮后的饲料NDF、ADF含量降低,表明添加残次苹果发酵物有助于玉米秸秆的进一步利用。这与杨道兰等[27]报道新鲜花椰菜茎叶与玉米秸秆混贮后其NDF和ADF含量随着新鲜花椰菜茎叶添加比例增大而降低,CP含量增加及李树成等[28]将白花草木樨与玉米秸秆混贮后发现随着白花草木樨添加比例的增加,NDF和ADF的含量降低结果一致。

3.3 添加残次苹果发酵物对玉米秸秆青贮发酵品质的影响

pH快速降低能够抑制不利于青贮的厌氧微生物如肠细菌和梭菌的生长,减少蛋白质等营养成分的损失[29-30]。本试验结果中,添加残次苹果发酵物能显著降低玉米秸秆青贮的pH,并随其添加比例增加,混贮饲料的pH逐渐降低,表明添加残次苹果发酵物有利于抑制有害微生物的繁殖,更好地保存玉米秸秆的营养价值,获得优良的青贮饲料。

NH3-N是饲料蛋白质被微生物降解的产物,NH3-N/TN高,表明饲料蛋白转化成NH3-N的量越多,其饲用价值降低,优质青贮饲料的NH3-N/TN低于10%[30-32]。本试验中,玉米秸秆单独青贮的NH3-N/TN显著高于其他各组,其比值为12.15%,说明发酵品质差;其他各组NH3-N/TN均低于10%,达到优良青贮饲料的要求,表明添加残次苹果发酵物能降低蛋白质的降解,有利于更好地保存饲料营养物质。

LA和AA含量增加能使秸秆的pH迅速降低,有效地防止霉菌和酵母菌等好气性有害微生物对青贮秸秆的有氧腐败[33]。本试验中,随着残次苹果发酵物添加比例的增多,混合青贮中LA和AA含量也逐渐增多,而BA含量呈减少的趋势,pH逐渐下降,表明添加残次苹果发酵物的玉米秸秆青贮有利于LA发酵,从而改善玉米秸秆的发酵品质。这与Ke等[34]、孙雨坤等[35]在苜蓿中添加苹果渣增加苜蓿青贮中的LA含量,降低其pH,抑制其他有害微生物的繁殖,获得良好的青贮品质的结果一致。

3.4 添加残次苹果发酵物对玉米秸秆青贮有氧暴露pH和微生物动态变化的影响

青贮饲料在有氧暴露情况下,以酵母菌、霉菌为主的好氧微生物大量繁殖,消耗青贮饲料中的LA和其他营养物质,使pH上升[36],有氧稳定性差。本试验的结果表明,未添加残次苹果发酵物的Ⅰ组随着有氧暴露时间的延长,乳酸菌数量降低,酵母菌和霉菌数量增加,pH均逐渐上升,较添加残次苹果发酵物的Ⅱ、Ⅲ、Ⅳ组变化快;但Ⅴ组的相应微生物和pH的变化较Ⅰ组更快。这表明在一定范围内,添加残次苹果发酵物可增加玉米秸秆青贮的有氧稳定性;当添加70%的残次苹果发酵物时(Ⅴ组),玉米秸秆青贮中的WSC含量残留高,导致好氧性微生物快速繁殖,有氧稳定性降低,这与其他研究者的结果[37-39]相似。

4 结论

本试验中,添加残次苹果发酵物能提高玉米秸秆原料的CP和WSC含量,降低粗纤维含量;显著提高混合青贮饲料中LA和AA含量,降低pH、BA和NH3-N含量,混合青贮饲料的感官品质和发酵品质得到良好改善。残次苹果发酵物与玉米秸秆的比例适宜在3 ∶ 7~5 ∶ 5。

参考文献
[1]
谢开云, 曹凯, 万江春, 等. 新疆半干旱区不同豆科/禾本科牧草混播草地生产力的变化研究[J]. 草业学报, 2020, 29(4): 29-40.
XIE K Y, CAO K, WAN J C, et al. Changes in productivity of different legume/grass forage mixes in semi-arid areas of Xinjiang[J]. Acta Prataculturae Sinica, 2020, 29(4): 29-40 (in Chinese).
[2]
姚幸, 韩建民. 西北牧区经济发展与草地退化的关系[J]. 草业科学, 2015, 32(4): 628-634.
YAO X, HAN J M. The relationship between economic development and grassland degradation in northwest pastureland[J]. Grassland Science, 2015, 32(4): 628-634 (in Chinese).
[3]
张彦虎. 新疆草地农业发展模式研究[D]. 博士学位论文. 石河子: 石河子大学, 2015: 12-14.
ZHANG Y H. Study on the development model of grassland agriculture in Xinjiang[D]. Ph. D. Thesis. Shihezi: Shihezi University, 2015: 12-14. (in Chinese)
[4]
李亚利, 何亚南, 郭宇欢. 推进新疆林果业基地建设高质量发展的对策建议[J]. 新疆林业, 2019(2): 4-7.
LI Y L, HE Y N, GUO Y H. Countermeasures and suggestions for promoting the high-quality development of Xinjiang forestry and fruit industry base[J]. Xinjiang Forestry, 2019(2): 4-7 (in Chinese). DOI:10.3969/j.issn.1005-3522.2019.02.003
[5]
新疆维吾尔自治区统计局. 新疆统计年鉴2019[M]. 北京: 中国统计出版社, 2019.
Xinjiang Uygur Autonomous Region Bureau of Statistics. Xinjiang statistical yearbook 2019[M]. Beijing: China Statistics Press, 2019 (in Chinese).
[6]
李雪冬, 李玉春, 姜中武. 新疆阿克苏地区苹果生产现状及发展前景[J]. 烟台果树, 2020(3): 10-12.
LI X D, LI Y C, JIANG Z W. Current status and development prospects of apple production in Aksu, Xinjiang[J]. Yantai Fruit Tree, 2020(3): 10-12 (in Chinese). DOI:10.3969/j.issn.1005-9938.2020.03.005
[7]
王虎玄. 浓缩苹果汁全产业链高渗酵母分离鉴定及电子鼻快速检测方法研究[D]. 博士学位论文. 杨凌: 西北农林科技大学, 2016: 1-3.
WANG H X. Study on the isolation and identification of hyperosmotic yeast from the whole industry chain of apple juice concentrate and the rapid detection method of electronic nose[D]. Ph. D. Thesis. Yangling: Northwest A&F University, 2016: 1-3. (in Chinese)
[8]
胡仲秋. 苹果酒酵母BAT2基因和支链氨基酸代谢对香气形成的影响[D]. 博士学位论文. 杨凌: 西北农林科技大学, 2015: 1-2.
HU Z Q. Effect of cider yeast BAT2 gene and branched-chain amino acid metabolism on aroma formation[D]. Ph. D. Thesis. Yangling: Northwest A&F University, 2015: 1-2. (in Chinese)
[9]
王磊. 南疆林果业发展存在的问题及对策建议[J]. 新疆林业, 2018(3): 28-31.
WANG L. Problems in the development of forest fruit industry in southern Xinjiang and suggestions for countermeasures[J]. Xinjiang Forestry, 2018(3): 28-31 (in Chinese). DOI:10.3969/j.issn.1005-3522.2018.03.011
[10]
宋振宇, 张一为, 孙志颖, 等. 饲喂苹果渣与麦秸混合青贮对荷斯坦公牛增重及血液生化指标的影响[J]. 中国奶牛, 2016(10): 5-8.
SONG Z Y, ZHANG Y W, SUN Z Y, et al. Effects of mixed silage of apple pomace and wheat straw on the weight gain and blood biochemical indexes of Holstein bulls[J]. China Dairy Cow, 2016(10): 5-8 (in Chinese).
[11]
FANG J C, XIA G J, CAO Y. Effects of replacing commercial material with apple pomace on the fermentation quality of total mixed ration silage and its digestibility, nitrogen balance and rumen fermentation in wethers[J]. Grassland Science, 2019, 66(2): 124-131.
[12]
张英杰, 杨增. 苹果渣和葡萄渣在反刍动物上的应用[J]. 饲料工业, 2016, 37(10): 1-3.
ZHANG Y J, YANG Z. The application of apple pomace and grape pomace in ruminants[J]. Feed Industry, 2016, 37(10): 1-3 (in Chinese).
[13]
任海伟, 孙安琪, 任军乐, 等. 添加白菜尾菜和甲酸对干玉米秸秆贮存品质的影响[J]. 草业学报, 2019, 28(8): 61-71.
REN H W, SUN A Q, REN J L, et al. Effects of adding cabbage tail vegetables and formic acid on the storage quality of dried corn stalks[J]. Acta Prataculturae Sinica, 2019, 28(8): 61-71 (in Chinese).
[14]
任海伟, 窦俊伟, 赵拓, 等. 添加剂对玉米秸秆和莴笋叶混贮品质的影响[J]. 草业学报, 2016, 25(10): 142-152.
REN H W, DOU J W, ZHAO T, et al. Effects of additives on the quality of mixed storage of corn stalks and lettuce leaves[J]. Acta Prataculturae Sinica, 2016, 25(10): 142-152 (in Chinese). DOI:10.11686/cyxb2015519
[15]
HE L W, WANG C, XING Y Q, et al. Ensiling characteristics, proteolysis and bacterial community of high-moisture corn stalk and stylo silage prepared with Bauhinia variegate flower[J]. Bioresource Technology, 2020, 296: 122336. DOI:10.1016/j.biortech.2019.122336
[16]
张丽英. 饲料分析及饲料质量检测技术[M]. 2版. 北京: 中国农业大学出版社, 2003.
ZHANG L Y. Feed analysis and feed quality testing techniques[M]. 2nd Edition. Beijing: China Agricultural University Press, 2003 (in Chinese).
[17]
VAN SOEST P J, ROBERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 1991, 74(10): 3583-3597. DOI:10.3168/jds.S0022-0302(91)78551-2
[18]
DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. DOI:10.1021/ac60111a017
[19]
王凤林, 张莉娟, 孟媛, 等. 不同比例微生物组合对玉米秸秆青贮品质的影响[J]. 基因组学与应用生物学, 2017, 36(11): 4701-4706.
WANG F L, ZHANG L J, MENG Y, et al. Effect of different ratios of microbial combinations on silage quality of maize stover[J]. Genomics and Applied Biology, 2017, 36(11): 4701-4706 (in Chinese).
[20]
柳俊超, 姜俊芳, 宋雪梅, 等. 青贮饲料中主要有机酸的高效液相色谱分离分析[J]. 畜牧与兽医, 2015, 47(10): 47-52.
LIU J C, JIANG J F, SONG X M, et al. Separation and analysis of main organic acids in silage by high performance liquid chromatography[J]. Animal Husbandry and Veterinary Medicine, 2015, 47(10): 47-52 (in Chinese).
[21]
陈雷, 原现军, 郭刚, 等. 添加乳酸菌制剂和丙酸对全株玉米全混合日粮青贮发酵品质和有氧稳定性的影响[J]. 畜牧兽医学报, 2015, 46(1): 104-110.
CHEN L, YUAN X J, GUO G, et al. The effect of adding lactic acid bacteria and propionic acid on the fermentation quality and aerobic stability of whole-plant corn silage[J]. Journal of Animal Husbandry and Veterinary Medicine, 2015, 46(1): 104-110 (in Chinese).
[22]
黄文明, 陈红跃, 殷丽, 等. 样品前处理方法对全株玉米青贮pH和氨态氮测定值的影响[J]. 中国畜牧杂志, 2019, 55(2): 90-93.
HUANG W M, CHEN H Y, YIN L, et al. Effects of sample preparation methods on the determination of pH and ammonia nitrogen in whole-plant corn silage[J]. Chinese Journal of Animal Husbandry, 2019, 55(2): 90-93 (in Chinese).
[23]
张养东, 杨军香, 王宗伟, 等. 青贮饲料理化品质评定研究进展[J]. 中国畜牧杂志, 2016, 52(12): 37-42.
ZHANG Y D, YANG J X, WANG Z W, et al. Research progress on physical and chemical quality assessment of silage[J]. Chinese Journal of Animal Husbandry, 2016, 52(12): 37-42 (in Chinese). DOI:10.3969/j.issn.0258-7033.2016.12.007
[24]
牟林林, 宦海琳, 许能祥, 等. 凋萎时间对多花黑麦草青贮品质及微生物动态变化的影响[J]. 南方农业学报, 2019, 50(12): 2771-2777.
MOU L L, HUAN H L, XU N X, et al. Effect of withering time on silage quality and microbial dynamics of multiflora ryegrass[J]. Southern Journal of Agriculture, 2019, 50(12): 2771-2777 (in Chinese).
[25]
李艳芬, 程金花, 田川尧, 等. 双乙酸钠对苜蓿青贮品质、营养成分及蛋白分子结构的影响[J]. 草业学报, 2020, 29(2): 163-171.
LI Y F, CHENG J H, TIAN C Y, et al. Effects of sodium diacetate on the quality, nutritional components and protein molecular structure of alfalfa silage[J]. Acta Prataculturae Sinica, 2020, 29(2): 163-171 (in Chinese).
[26]
周瑞, 刘立山, 郎侠, 等. 甜菜块根和玉米秸秆混贮营养品质及有氧暴露期微生物数量分析[J]. 草地学报, 2019, 27(1): 192-198.
ZHOU R, LIU L S, LANG X, et al. Nutritional quality of mixed storage of sugar beet roots and corn stalks and microbial quantity analysis during aerobic exposure period[J]. Acta Grassland, 2019, 27(1): 192-198 (in Chinese).
[27]
杨道兰, 汪建旭, 冯炜弘, 等. 花椰菜茎叶与玉米秸秆的混贮品质[J]. 草业科学, 2014, 31(3): 551-557.
YANG D L, WANG J X, FENG W H, et al. Mixed storage quality of cauliflower stems and leaves and corn stalks[J]. Pragmatic Science, 2014, 31(3): 551-557 (in Chinese).
[28]
李树成, 黄晓辉, 王静, 等. 白花草木樨与玉米秸秆混合青贮的发酵品质及有毒成分分析[J]. 草业科学, 2014, 31(2): 321-327.
LI S C, HUANG X H, WANG J, et al. Fermentation quality and toxic components analysis of the mixed silage of white clover and corn stalks[J]. Pragmatic Science, 2014, 31(2): 321-327 (in Chinese).
[29]
任海伟, 赵拓, 李金平, 等. 玉米秸秆与废弃白菜的混贮品质及乳酸菌多样性研究[J]. 草业学报, 2016, 25(1): 197-206.
REN H W, ZHAO T, LI J P, et al. Mixed storage quality of corn stover and waste cabbage and lactic acid bacteria diversity[J]. Acta Prataculturae Sinica, 2016, 25(1): 197-206 (in Chinese).
[30]
徐生阳, 闵旭东, 云颖, 等. 短乳杆菌对有氧暴露过程中不同品种全株玉米青贮品质的影响[J]. 草业科学, 2019, 36(1): 252-260.
XU S Y, MIN X D, YUN Y, et al. The effect of Lactobacillus brevis on the quality of whole-plant corn silage of different varieties during aerobic exposure[J]. Pragmatic Science, 2019, 36(1): 252-260 (in Chinese).
[31]
梁小玉, 季杨, 易军, 等. 混合比例和添加剂对菊苣与青贮玉米混合青贮品质的影响[J]. 草业学报, 2018, 27(2): 173-181.
LIANG X Y, JI Y, YI J, et al. Effect of mixing ratio and additives on silage quality of chicory mixed with maize silage[J]. Acta Prataculturae Sinica, 2018, 27(2): 173-181 (in Chinese).
[32]
李真真, 白春生, 余奕东, 等. 刈割期及添加剂对苜蓿青贮品质及CNCPS蛋白组分的影响[J]. 草业学报, 2016, 25(11): 167-172.
LI Z Z, BAI C S, YU Y D, et al. Effects of cutting time and additives on alfalfa silage quality and CNCPS protein components[J]. Acta Prataculturae Sinica, 2016, 25(11): 167-172 (in Chinese). DOI:10.11686/cyxb2016029
[33]
郭晓军, 郭威, 周贤, 等. 产有机酸芽孢杆菌对玉米秸秆青贮品质及有氧稳定性的影响[J]. 江苏农业科学, 2017, 45(8): 163-165.
GUO X J, GUO W, ZHOU X, et al. Effects of Bacillus producing organic acids on the quality and aerobic stability of corn straw silage[J]. Jiangsu Agricultural Sciences, 2017, 45(8): 163-165 (in Chinese).
[34]
KE W C, YANG F Y, UNDERSANDER D J, et al. Fermentation characteristics, aerobic stability, proteolysis and lipid composition of alfalfa silage ensiled with apple or grape pomace[J]. Animal Feed Science and Technology, 2015, 202: 12-19. DOI:10.1016/j.anifeedsci.2015.01.009
[35]
孙雨坤, 王林, 孙启忠, 等. 添加苹果渣对苜蓿青贮品质的影响[J]. 中国草地学报, 2015, 37(1): 83-89.
SUN Y K, WANG L, SUN Q Z, et al. The effect of adding apple pomace on the quality of alfalfa silage[J]. Chinese Journal of Grassland, 2015, 37(1): 83-89 (in Chinese).
[36]
王旭哲, 张凡凡, 马春晖, 等. 添加乳酸菌对开窖后玉米青贮品质及有氧稳定性的影响[J]. 中国草地学报, 2019, 41(3): 115-123.
WANG X Z, ZHANG F F, MA C H, et al. Effects of adding lactic acid bacteria on corn silage quality and aerobic stability after opening the pit[J]. Chinese Journal of Grassland, 2019, 41(3): 115-123 (in Chinese).
[37]
ZUO S S, JIANG D, NIU D Z, et al. A lower cost method of preparing corn stover for Irpex lacteus treatment by ensiling with lactic acid bacteria[J]. Asian-Australasian Journal of Animal Sciences, 2019, 33(8): 1273-1283.
[38]
万学瑞, 豆思远, 李玉, 等. 复合乳酸菌对全株玉米青贮及有氧暴露后微生物及饲料品质的影响[J]. 草业学报, 2020, 29(11): 83-90.
WAN X R, DOU S Y, LI Y, et al. Effect of Lactobacillus complex on microbial and feed quality of whole plant maize after silage and aerobic exposure[J]. Acta Prataculturae Sinica, 2020, 29(11): 83-90 (in Chinese). DOI:10.11686/cyxb2019581
[39]
FERRERO F, TABACCO E, BORREANI G. Effects of a mixture of monopropionine and monobutyrin on the fermentation quality and aerobic stability of whole crop maize silage[J]. Animal Feed Science and Technology, 2019, 258: 114319. DOI:10.1016/j.anifeedsci.2019.114319