动物营养学报    2021, Vol. 33 Issue (9): 4801-4809    PDF    
水产动物色氨酸研究进展
王连生1 , 张圆圆1 , 李晋南1 , 杨喆1,2     
1. 中国水产科学研究院黑龙江水产研究所, 黑龙江省水生动物病害与免疫重点实验室, 哈尔滨 150070;
2. 湖州师范学院生命科学学院, 中国水产科学研究院水生动物繁育与营养重点实验室, 浙江省水生生物资源养护与开发技术研究重点实验室, 湖州 313000
摘要: 色氨酸是一种中性、芳香族氨基酸,是5-羟色胺、褪黑素、烟酸等代谢物的前体物质,也是水产动物生长和健康的必需氨基酸。色氨酸除蛋白质合成功能外,还具有调控摄食量、缓解应激反应及提高免疫、抗氧化能力等生理生化功能。本文就色氨酸的代谢途径、水产动物对色氨酸的需要量及色氨酸对摄食、免疫等方面的调控进行综述,以期为色氨酸在水产动物中的研究与应用提供参考。
关键词: 水产动物    色氨酸    需要量    应激    免疫    
Research Progress of Tryptophan in Aquatic Animals
WANG Liansheng1 , ZHANG Yuanyuan1 , LI Jinnan1 , YANG Zhe1,2     
1. Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China;
2. Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition of Chinese Academy of Fishery Sciences, College of Life Science, Huzhou University, Huzhou 313000, China
Abstract: Tryptophan is a neutral, aromatic amino acid. It is the precursor for the synthesis of the serotonin, melatonin, niacin and other metabolites, and is an essential amino acid for the growth and health of aquatic animals. Tryptophan has physiological and biochemical functions such as regulating feed intake, alleviating stress response, and improving immunity and antioxidant ability, in addition to its participation in protein synthesis. This review covers the metabolic pathways of tryptophan, the requirement of tryptophan in aquatic animals, and the regulation of tryptophan on feed intake and immunity, so as to provide reference for the research and application of tryptophan in aquaculture animals.
Key words: aquatic animals    tryptophan    requirement    stress    immune    

色氨酸(tryptophan)又称β-吲哚基丙氨酸,化学式为C11H12N2O2,是水产动物的必需氨基酸。色氨酸是饲料蛋白质的重要组成成分,是高脂肉粉、骨粉的第一限制性氨基酸,是玉米蛋白粉、血粉、禽下脚料及蚕豆的第二限制性氨基酸,是羽扇豆、羽毛粉的第三限制性氨基酸[1]。色氨酸缺乏导致虹鳟(Oreochromis niloticus)生长性能降低、脊柱侧凸、前凸及白内障,肝脏、肾脏中钙、镁、钠及钾的含量升高[2]。在色氨酸缺乏饲料中补充晶体色氨酸,可以提高虹鳟、非洲鲶鱼(Clarias gariepinus)、杂交条纹鲈(Morone chrysop×M. saxatilis)、露斯塔野鲮(Labeo rohita)及凡纳滨对虾(Litopenaeus vannamei)的生长性能[3-7]。色氨酸是5-羟色胺的前体物质,5-羟色胺是一种重要神经递质,可以调节水产动物的摄食及攻击行为[8-11]。本文就色氨酸代谢途径、水产动物对色氨酸的需要量、色氨酸对摄食、应激、免疫的影响进行综述,以期为色氨酸在水产动物中开展深入研究提供参考。

1 色氨酸的代谢途径

饲料中的色氨酸被消化、吸收后,除用于蛋白质合成外,还有以下3条主要代谢途径(图 1)。色氨酸在色氨酸羧化酶和芳香族氨基酸脱羧酶催化作用下合成5-羟色胺,进一步通过芳香烷基胺-N-乙酰基转移酶和羟基吲哚-氧-甲基转移酶催化合成褪黑素,此途径主要受机体生理状态和外部环境调节[12]。色氨酸主要通过犬尿氨酸-烟酸途径在肝脏中进行分解代谢生成N-甲酰犬尿氨酸,并受吲哚胺2,3-双加氧酶(IDO)和色氨酸2,3-双加氧酶(TDO)的调控,其中IDO是色氨酸代谢的限速酶[13]。N-甲酰犬尿氨酸在犬尿氨酸甲酰胺酶作用下生成L-犬尿氨酸,进一步生成3-羟基犬尿氨酸和3-羟基邻氨基苯甲酸,最后生成完全氧化的乙酰辅酶A,或者进一步生成喹啉酸和烟酸[14]

TpOH:色氨酸羟化酶tryptophan hydroxylase;AAAD:芳香族氨基酸脱羧酶aromatic amino acid decarboxylase;AANAT:芳香烷基胺-N-乙酰基转移酶arylalkylamine-N-acetyltransferase;HIOMT:羟基吲哚-氧-甲基转移酶hydroxyindole-O-methyltransferase;TDO:色氨酸2, 3-双加氧酶tryptophan 2, 3-dioxygenase;IDO:吲哚胺2, 3-双加氧酶indoleamine 2, 3-dioxygenase;AF:犬尿氨酸甲酰胺酶kynurenine formamidase;KAT:犬尿氨酸氨基转移酶kynurenine aminotransferase;KMO:犬尿氨酸3-单加氧酶kynurenine 3-monooxygenase;3-HAAO:3-羟基邻氨基苯甲酸3, 4-双氧化酶3-hydroxyanthranilic acid 3, 4-dioxygenase;kynureninase:犬尿氨酸酶;non-enzymatic cyclization:非酶环化。 图 1 色氨酸的代谢途径 Fig. 1 Metabolic pathways of tryptophan[15]
2 水产动物对色氨酸的需要量

色氨酸是水产动物机体蛋白质组成中含量最低的氨基酸,因此,水产动物饲料中色氨酸的需要量也低于其他必需氨基酸。水产动物的色氨酸需要量与养殖品种、饲料组成、试验动物初始体重等多种因素有关,此外,饲料中蛋白质、氨基酸及能量消化率也会影响水产动物的色氨酸需要量[16]表 1中展示了17种水产动物的色氨酸需要量,不同养殖品种色氨酸需要量不同,研究结果的总体范围为0.13%~0.48%。由表 1可知,鲤鱼(Cyprinus carpio)色氨酸需要量为0.13%,而麦瑞加拉鲮(Cirrhinus mrigala)色氨酸需要量为0.48%;即使是同一品种,不同规格、不同统计模型、不同参考指标,色氨酸的需要量也不同,例如,露斯塔野鲮、罗非鱼(Oreochromis niloticus)的色氨酸需要量分别为0.21%~0.38%、0.25%~0.38%。色氨酸缺乏或过量均抑制水产动物生长,降低消化酶活性及免疫功能[17-18]。给少带重牙鲷(Diplodus sargus)投喂对照组饲料以及添加2.1%赖氨酸或0.4%色氨酸的饲料时,添加色氨酸组增重率显著低于对照组、添加赖氨酸组,其可能是由饲料总色氨酸过量造成的[19]。适量的色氨酸可以提高水产动物肠道长度、重量、指数及褶皱高度,肝胰腺和肠道蛋白酶、脂肪酶及淀粉酶的活性,进而提高蛋白质、氨基酸、干物质的表观消化率[20-21],同时提高其他必需氨基酸、非必需氨基酸的沉积率,进而促进水产动物生长[22]。胰岛素样生长因子-Ⅰ(IGF-Ⅰ)在水产动物生长、发育过程中发挥重要作用,色氨酸参与IGF-Ⅰ的合成调控,适量色氨酸促进IGF-Ⅰ的合成、分泌[23]。此外,成肌调节因子(MRFs)和肌生成抑制蛋白是水产动物肌肉生长的重要调节因子,这些调节因子受营养素的调控,特别是色氨酸,其具有促进肌肉生长的作用[24]。罗非鱼饲料中色氨酸含量为0.37%时,具有活化增殖肌卫星细胞作用的肌分化因子和肌细胞生成素的基因表达量显著升高,具有抑制肌肉生长作用的肌生成抑制蛋白的基因表达量显著减低[25-26]。上述研究结果表明,适量色氨酸通过改善肠道形态结构、提高消化酶活性、促进IGF-Ⅰ的合成及肌肉生长,提高水产动物的生长性能。

表 1 水产动物的色氨酸需要量(以饲料干物质计) Table 1 Tryptophan requirement of aquatic animals (by dry matter of diet)
3 色氨酸对水产动物摄食量的影响

适量色氨酸能促进水产动物的摄食。在罗非鱼高植物蛋白质饲料中分别添加0.4 g/kg二甲基-β-丙酸噻亭、0.6 g/kg二甲基乙酸噻亭(DMP)、1.8 g/kg色氨酸、6 g/kg甜菜碱,结果发现,色氨酸组和DMP组的摄食量显著高于对照组,其主要原因是色氨酸促进脑神经肽Y的基因表达,DMP促进胃饥饿素的基因表达[41]。饲料色氨酸含量为0.24%和0.27%组印度囊鳃鲶(Heteropneustes fossilis)的摄食量显著高于饲料色氨酸含量为0.10%和0.15%组[31]。在牙鲆(Paralichthys olivaceus)饲料中分别添加0.12%、0.30%和0.50%色氨酸时,摄食量随着色氨酸添加量的增加显著升高[42]。当色氨酸含量高于需要量时,随着色氨酸含量的增加,摄食量显著降低。建鲤(Cyprinus carpio Jian)饲料中色氨酸含量为0.11%~0.38%时,随着饲料色氨酸含量的增加,摄食量显著提高;色氨酸含量为0.38%~0.69%时,随着饲料色氨酸含量的增加,摄食量显著降低[21]。适量的色氨酸提高水产动物的生长性能,可能与提高其摄食量有关[31, 35]。草鱼(Ctenopharyngodon idella)饲料中色氨酸含量为0.07%~0.31%时,摄食量和增重率随着饲料色氨酸含量的升高而显著提高,且增重率与摄食量呈显著正相关[34]。然而,对罗非鱼的研究结果显示,饲料色氨酸含量对摄食量没有显著影响[3]。色氨酸对摄食量影响不一致的可能原因是试验饲料中色氨酸的含量、试验饲料原料及水产动物品种等存在差异。

4 色氨酸对水产动物应激反应的影响

适量色氨酸能缓解亚硝酸盐、高铜、拉网、细菌感染、拥挤等造成的应激胁迫。在露斯塔野鲮饲料中添加0.75%或1.00%色氨酸显著改善了亚硝酸盐应激导致的增重率、特定生长率显著降低,饲料系数显著升高,肝脏、肌肉谷草转氨酶和谷丙转氨酶活性显著降低的问题,缓解了亚硝酸盐的应激反应[43];此外,色氨酸可以缓解温度、盐度对露斯塔野鲮的应激反应[44]。在拟鲤(Rutilus rutilus caspicus)饲料中添加0.25%色氨酸显著降低了高铜应激死亡率[45]。在加利福尼亚湾石首鱼(Totoaba macdonaldi)饲料中添加需要量1倍或2倍的色氨酸时,拉网应激后端脑5-羟基吲哚乙酸和5-羟色胺含量显著升高;然而,添加需要量3倍或4倍的色氨酸时两者含量显著降低[46]。在锯缘青蟹(Scylla serrata)饲料中添加0.75%或1.00%色氨酸后显著降低了其攻击强度和攻击频率,添加0.50%、0.75%或1.00%色氨酸后显著提高了血淋巴中5-羟色胺的含量和青蟹成活率,但增重率、特定生长率均显著降低[47]

此外,为提高水产动物单位面积产量,高密度养殖是最常用的养殖模式,但高密度养殖通常会带来拥挤胁迫应激,导致皮质醇释放增加,长期胁迫影响水产动物健康[48-49]。高密度养殖组海参(Apostichopus japonicus Selenka)的特定生长率显著低于低密度养殖组,饲料中添加1%或3%色氨酸通过改变机体能量分配,提高用于生长的能量,降低机体皮质醇、葡萄糖及乳酸的含量,显著提高海参的特定生长率[50]。在麦瑞加拉鲮饲料中添加2.72%的色氨酸能够缓解高密度养殖对皮质醇含量及生长的负面影响[51]。在虹鳟饲料中添加0.5%的色氨酸显著提高了低密度养殖条件下的生长性能、肌肉粗脂肪含量,显著降低了血清皮质醇、葡萄糖的含量;添加0.5%或1.0%的色氨酸显著降低了高密度养殖条件下虹鳟的饲料系数[52]。上述研究结果表明,色氨酸可以缓解高密度养殖带来的拥挤胁迫,提高水产动物的生长性能。

色氨酸缓解应激胁迫的可能机制是:1)色氨酸可以促进机体5-羟色胺的生物合成,合成的5-羟色胺直接抑制皮质醇的合成和攻击行为,进而缓解应激反应[8, 15, 53]。欧洲鲈鱼(Dicentrarchus labrax)经美人鱼发光杆菌攻毒48和72 h后,色氨酸添加组血清中皮质醇含量显著低于色氨酸缺乏组,从而缓解了攻毒应激反应[54]。2)应激反应产生的皮质醇激活糖酵解和糖异生,产生大量葡萄糖用于抗应激,饲料中添加色氨酸可以缓解应激反应,降低血清中葡萄糖的含量[55-56]。罗非鱼饲料中色氨酸含量为0.37%和0.48%时,血清中皮质醇和葡萄糖的含量均显著低于色氨酸含量为0.26%时[26]。团头鲂(Megalobrama amblycephala)饲料中色氨酸添加量对血清葡萄糖含量的影响未达到显著水平,但随着色氨酸添加量的增加,血清葡萄糖含量先降低后升高,色氨酸调控糖代谢的主要途径是降低糖酵解葡萄糖激酶的基因表达量和提高糖异生磷酸烯醇丙酮酸羧激酶、葡萄糖-6-磷酸酶的基因表达量[17]

5 色氨酸对水产动物抗病力、抗氧化和免疫功能的影响

色氨酸代谢产物具有广泛的生理作用,除上述缓解应激外,色氨酸还有提高抗病力、抗氧化和免疫功能等作用。欧洲鲈鱼摄食色氨酸缺乏饲料、色氨酸含量正常饲料、正常饲料添加0.13%和0.17%色氨酸饲料,经美人鱼发光杆菌攻毒8 d后,色氨酸缺乏组死亡率最高,其次是正常饲料添加0.17%色氨酸组,正常组和正常饲料添加0.13%色氨酸组死亡率最低,表明色氨酸缺乏或过量均降低欧洲鲈鱼的抗病力[54]。虹鳟在低密度和高密度养殖条件下,通过在饲料中添加0.5%色氨酸可显著提高血清溶菌酶及过氧化氢酶(CAT)活性,显著降低血清丙二醛(MDA)含量,提高机体的抗氧化性能;高密度养殖条件下,添加0.5%色氨酸显著提高肠道免疫因子肿瘤坏死因子-α(TNF-α)与抗炎因子白细胞介素-1β(IL-1β)、白细胞介素-8(IL-8)的基因表达量,提高抗氧化酶超氧化物歧化酶(SOD)、CAT、谷胱甘肽过氧化物酶(GPx)的基因表达量及活性;添加1.0%色氨酸提高TNF-α的基因表达量及SOD活性,降低促炎因子白细胞介素-6(IL-6)和SOD的基因表达量[57-58]。在欧洲鲈鱼饲料中添加0.5%色氨酸投喂15 d后,血细胞比容、血红蛋白含量、红细胞及白细胞数量与对照组相比均没有显著变化;经美人鱼发光杆菌攻毒后,0.5%色氨酸组红细胞平均血红蛋白浓度、中性粒细胞数量显著提高[59]。上述研究结果表明,色氨酸通过提高抗氧化酶活性及基因表达,抑制促炎因子、提高抗炎因子的基因表达,从而提高机体抗病力。

色氨酸调控水产动抗病力、抗氧化和免疫功能的可能机制为:1)色氨酸作为神经内分泌物5-羟色胺和褪黑素的前体物,在水产动物应激条件下添加能够增加二者的合成量,进而提高下游抗氧化酶的活性,起到抗氧化作用[60]。在中华绒螯蟹(Eriocheir sinensis)饲料中添加色氨酸可显著提高肝胰腺的SOD活性,这与褪黑素注射1 d后肝胰腺的总抗氧化(T-AOC)、SOD活性显著提高的效果相似[61]。2)色氨酸分解代谢IDO可诱导γ-干扰素、释放细胞因子、激活免疫细胞、提高机体抗氧化和抗菌活性,进而提高机体的免疫功能[12]。3)色氨酸通过核因子E2相关因子2(Nrf2)/Kelch样环氧氯丙烷相关蛋白1(Keap1)信号通路提高抗氧化酶活性及其基因表达量,通过磷脂酰肌醇-3-激酶(PI3K)-雷帕霉素靶蛋白(TOR)、核转录因子-κB(NF-κB)信号通路降低促炎因子的基因表达量,提高抗炎因子的基因表达量[62]。适量的色氨酸可提高草鱼抗炎因子白细胞介素-10(IL-10)、转化生长因子-β(TGF-β)、核转录因子-κB抑制因子α(IκBα)的基因表达量,降低促炎因子TNF-αIL-8及白细胞介素-1β(IL-1β)的基因表达量,提高SODCATGPx、谷胱甘肽还原酶(GR)、谷胱甘肽-S-转移酶(GST)的基因表达量[18]。4)色氨酸调控机体健康还与肠道免疫有关。在中华绒螯蟹(Eriocheir sinensis)饲料中添加0.47%或0.73%的色氨酸,可显著提高嗜水气单胞菌攻毒后的成活率,提高肠道菌群丰度和多样性指数,提高变形菌门、厚壁菌门、放线菌门优势菌群的丰度,改善肠道健康[63]。在草鱼饲料中添加色氨酸显著提高了铜胁迫后肠道溶菌酶、酸性磷酸酶活性及补体3(C3)的含量,提高了抗氧化酶SOD、GPx的活性及谷胱甘肽的含量,降低了MDA、蛋白质羰基的含量;通过提高肠道TGF-βIL-10、闭合蛋白、闭锁小带、SODGPx的基因表达量,降低IL-8、TNF-αKeap1等基因表达量,改善肠道健康,提高机体抗病力[34]

6 小结与展望

目前,关于水产动物的色氨酸需要量及色氨酸营养生理功能已有大量研究,现有研究得出的水产动物色氨酸需要量为0.13%~0.48%(色氨酸占饲料干物质的百分比),适量的色氨酸可以提高水产动物的摄食量,缓解水产动物对高养殖密度、高铜、亚硝酸盐等的应激反应,通过提高免疫、抗氧化功能,进而提高抗病力。但是,关于色氨酸在水产动物体内的代谢途径、色氨酸对机体糖、脂肪等代谢的影响机制、大规格水产动物对色氨酸的需要量等方面仍需开展更为全面的研究。

参考文献
[1]
LALL S P, DAVIS D A. Technology and nutrition[M]//DAVIS D A. Feed and feeding practices in aquaculture. Cambridge: Woodhead Publishing, 2015: 287.
[2]
WALTON M J, COLOSO R M, COWEY C B, et al. The effects of dietary tryptophan levels on growth and metabolism of rainbow trout (Salmo gairdneri)[J]. British Journal of Nutrition, 1984, 51(2): 279-287. DOI:10.1079/BJN19840032
[3]
ZAMINHAN M, BOSCOLO W R, NEU D H, et al. Dietary tryptophan requirements of juvenile Nile tilapia fed corn-soybean meal-based diets[J]. Animal Feed Science and Technology, 2017, 227: 62-67. DOI:10.1016/j.anifeedsci.2017.03.010
[4]
FAGBENRO O A, NWANNA L C. Dietary tryptophan requirement of the African catfish, Clarias gariepinus[J]. Journal of Applied Aquaculture, 1999, 9(1): 65-72. DOI:10.1300/J028v09n01_06
[5]
GAYLORD T G, RAWLES S D, DAVIS K B. Dietary tryptophan requirement of hybrid striped bass (Morone chrysops×M. saxatilis)[J]. Aquaculture Nutrition, 2005, 11(5): 367-374. DOI:10.1111/j.1365-2095.2005.00360.x
[6]
ABIDI S F, KHAN M A. Dietary tryptophan requirement of fingerling rohu, Labeo rohita (Hamilton), based on growth and body composition[J]. Journal of the World Aquaculture Society, 2010, 41(5): 700-709. DOI:10.1111/j.1749-7345.2010.00412.x
[7]
SUN Y P, GUAN L C, XIONG J H, et al. Effects of L-tryptophan-supplemented dietary on growth performance and 5-HT and GABA levels in juvenile Litopenaeus vannamei[J]. Aquaculture International, 2014, 23(1): 235-251.
[8]
MARTINS C I M, SILVA P I M, COSTAS B, et al. The effect of tryptophan supplemented diets on brain serotonergic activity and plasma cortisol under undisturbed and stressed conditions in grouped-housed Nile tilapia Oreochromis niloticus[J]. Aquaculture, 2013, 400/401: 129-134. DOI:10.1016/j.aquaculture.2013.02.035
[9]
BASIC D, KROGDAHL Å, SCHJOLDEN J, et al. Short-and long-term effects of dietary L-tryptophan supplementation on the neuroendocrine stress response in seawater-reared Atlantic salmon (Salmo salar)[J]. Aquaculture, 2013, 388/389/390/391: 8-13.
[10]
HSEU J R, LU F I, SU H M, et al. Effect of exogenous tryptophan on cannibalism, survival and growth in juvenile grouper, Epinephelus coioides[J]. Aquaculture, 2003, 218(1/2/3/4): 251-263.
[11]
HARLIOǦLU M M, HARLIOǦLU A G, YONAR S M, et al. Effects of dietary L-tryptophan on the agonistic behavior, growth, and survival of freshwater crayfish Astacus leptodactylus Eschscholtz[J]. Aquaculture International, 2014, 22(2): 733-748. DOI:10.1007/s10499-013-9702-1
[12]
LE FLOC'H N, OTTEN W, MERLOT E. Tryptophan metabolism, from nutrition to potential therapeutic applications[J]. Amino Acids, 2011, 41(5): 1195-1205. DOI:10.1007/s00726-010-0752-7
[13]
CORTÉS J, ALVAREZ C, SANTANA P, et al. Indoleamine 2, 3-dioxygenase: first evidence of expression in rainbow trout (Oncorhynchus mykiss)[J]. Developmental & Comparative Immunology, 2016, 65: 73-78.
[14]
NG W K, SERRINI G, ZHANG Z, et al. Niacin requirement and inability of tryptophan to act as a precursor of NAD+ in channel catfish, Ictalurus punctatus[J]. Aquaculture, 1997, 152(1/2/3/4): 273-285.
[15]
HOSEINI S M, PÉREZ-JIMÉNEZ A, COSTAS B, et al. Physiological roles of tryptophan in teleosts: current knowledge and perspectives for future studies[J]. Reviews in Aquaculture, 2019, 11(1): 3-24. DOI:10.1111/raq.12223
[16]
DE SILVA S S, GUNASEKERA R M, GOOLEY G. Digestibility and amino acid availability of three protein-rich ingredient-incorporated diets by murray cod Maccullochella peelii peelii (Mitchell) and the Australian shortfin eel Anguilla australis Richardson[J]. Aquaculture Research, 2000, 31(2): 195-205. DOI:10.1046/j.1365-2109.2000.00432.x
[17]
JI K, LIANG H, CHISOMO-KASIYA H, et al. Effects of dietary tryptophan levels on growth performance, whole body composition and gene expression levels related to glycometabolism for juvenile blunt snout bream, Megalobrama amblycephala[J]. Aquaculture Nutrition, 2018, 24(5): 1474-1483. DOI:10.1111/anu.12684
[18]
JIANG W D, WEN H L, LIU Y, et al. The tight junction protein transcript abundance changes and oxidative damage by tryptophan deficiency or excess are related to the modulation of the signalling molecules, NF-κB p65, TOR, caspase-(3, 8, 9) and Nrf2 mRNA levels, in the gill of young grass carp (Ctenopharyngodon idellus)[J]. Fish & Shellfish Immunology, 2015, 46(2): 168-180.
[19]
SAAVEDRA M, BARR Y, POUSÃO-FERREIRA P, et al. Supplementation of tryptophan and lysine in Diplodus sargus larval diet: effects on growth and skeletal deformities[J]. Aquaculture Research, 2010, 40(10): 1191-1201.
[20]
孙育平, 裘金木, 王国霞, 等. 低蛋白质饲料中添加色氨酸对凡纳滨对虾饲料表观消化率、消化酶活和全虾氨基酸组成的影响[J]. 水生生物学报, 2016, 40(4): 720-727.
SUN Y P, QIU J M, WANG G X, et al. Effects of tryptophan supplemented in low protein diets on apparent digestibility coefficients, digestive enzyme activity and amino acids composition of Litopenaeus vannamei[J]. Acta Hydrobiologica Sinica, 2016, 40(4): 720-727 (in Chinese).
[21]
TANG L, FENG L, SUN C Y, et al. Effect of tryptophan on growth, intestinal enzyme activities and TOR gene expression in juvenile Jian carp (Cyprinus carpio var. Jian): studies in vivo and in vitro[J]. Aquaculture, 2013, 412: 23-33.
[22]
ZAMINHAN M, MICHELATO M, FURUYA V R B, et al. Total and available tryptophan requirement of Nile tilapia, Oreochromis niloticus, fingerlings[J]. Aquaculture Nutrition, 2018, 24(5): 1553-1562. DOI:10.1111/anu.12792
[23]
DYER A R, BARLOW C G, BRANSDEN M P, et al. Correlation of plasma IGF-Ⅰ concentrations and growth rate in aquacultured finfish: a tool for assessing the potential of new diets[J]. Aquaculture, 2004, 236(1/2/3/4): 583-592.
[24]
JOHNSTON I A, LEE H T, MACQUEEN D J, et al. Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes[J]. Journal of Experimental Biology, 2009, 212(12): 1781-1793. DOI:10.1242/jeb.029918
[25]
LEE C Y, HU S Y, GONG H Y, et al. Suppression of myostatin with vector-based RNA interference causes a double-muscle effect in transgenic zebrafish[J]. Biochemical and Biophysical Research Communications, 2009, 387(4): 766-771. DOI:10.1016/j.bbrc.2009.07.110
[26]
PRABU E, FELIX N, UMA A, et al. Metabolic responses of juvenile GIFT strain of Nile tilapia (Oreochromis niloticus) to dietary L-tryptophan supplementation[J]. Aquaculture Nutrition, 2020, 26(5): 1713-1723. DOI:10.1111/anu.13122
[27]
MURTHY H S, VARGHESE T J. Dietary tryptophan requirement for the growth of Rohu, Labeo rohita[J]. Journal of Applied Aquaculture, 1997, 7(2): 71-79. DOI:10.1300/J028v07n02_08
[28]
ZEHRA S, KHAN M A. Dietary tryptophan requirement of fingerling catla catla (Hamilton) based on growth, protein gain, RNA/DNA ratio, haematological parameters and carcass composition[J]. Aquaculture Nutrition, 2015, 21(5): 690-701. DOI:10.1111/anu.12198
[29]
NGUYEN L, SALEM S M R, SALZE G P, et al. Tryptophan requirement in semi-purified diets of juvenile Nile tilapia Oreochromis niloticus[J]. Aquaculture, 2018, 502: 258-267.
[30]
PEWITT E, CASTILLO S, VELÁSQUEZ A, et al. The dietary tryptophan requirement of juvenile red drum, Sciaenops ocellatus[J]. Aquaculture, 2017, 469: 112-116. DOI:10.1016/j.aquaculture.2016.11.030
[31]
FARHAT, KHAN M A. Dietary L-tryptophan requirement of fingerling stinging catfish, Heteropneustes fossilis (Bloch)[J]. Aquaculture Research, 2014, 45(7): 1224-1235. DOI:10.1111/are.12066
[32]
AHMED I, KHAN M A. Dietary tryptophan requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton)[J]. Aquaculture Research, 2005, 36(7): 687-695. DOI:10.1111/j.1365-2109.2005.01275.x
[33]
BENAKAPPA S, VARGHESE T J. Dietary requirement of tryptophan for growth and survival of the Indian major carp, Cirrhinus mrigala (Hamilton-Buchanan) fry[J]. Indian Journal of Experimental Biology, 2003, 41(11): 1342-1345.
[34]
WEN H L, FENG L, JIANG W D, et al. Dietary tryptophan modulates intestinal immune response, barrier function, antioxidant status and gene expression of TOR and Nrf2 in young grass carp (Ctenopharyngodon idella)[J]. Fish & Shellfish Immunology, 2014, 40(1): 275-287.
[35]
AHMED I. Dietary amino acid L-tryptophan requirement of fingerling Indian catfish, Heteropneustes fossilis (Bloch), estimated by growth and haemato-biochemical parameters[J]. Fish Physiology and Biochemistry, 2012, 38(4): 1195-1209. DOI:10.1007/s10695-012-9609-1
[36]
COLOSO R M, MURILLO-GURREA D P, BORLONGAN I G, et al. Tryptophan requirement of juvenile Asian sea bass Lates calcarifer[J]. Journal of Applied Ichthyology, 2004, 20(1): 43-47. DOI:10.1111/j.1439-0426.2004.00478.x
[37]
COLOSO R M, TIRO L B, BENITEZ L V. Requirement for tryptophan by milkfish (Chanos chanos Forsskal) juveniles[J]. Fish Physiology and Biochemistry, 1992, 10(1): 35-41. DOI:10.1007/BF00004652
[38]
AKIYAMA T, ARAI S, MURAI T, et al. Tryptophan requirement of chum salmon fry[J]. Nippon Suisan Gakkaishi, 1985, 51(6): 1005-1008. DOI:10.2331/suisan.51.1005
[39]
DABROWSKI K R. Tryptophan requirement of common carp (Cyprinus carpio L.) fry[J]. Zeitschrift für Tierphysiologie Tierernährung und Futtermittelkunde, 1981, 46(1/2/3/4/5): 64-71.
[40]
王用黎. 凡纳滨对虾幼虾对苏氨酸、亮氨酸、色氨酸和缬氨酸需要量的研究[D]. 硕士学位论文. 湛江: 广东海洋大学, 2013: 31-32.
WANG Y L. Study on the requirements of threonine, leucine, tryptophanand valine for juvenile Pacific white shrimp, Litopenaeus vannamei[D]. Master's Thesis. Zhanjiang: Guangdong Ocean University, 2013: 31-32. (in Chinese)
[41]
ZOU Q, HUANG Y, CAO J, et al. Effects of four feeding stimulants in high plant-based diets on feed intake, growth performance, serum biochemical parameters, digestive enzyme activities and appetite-related genes expression of juvenile GIFT tilapia (Oreochromis sp.)[J]. Aquaculture Nutrition, 2017, 23(5): 1076-1085. DOI:10.1111/anu.12475
[42]
HAN Y H, KOSHIO S, ISHIKAWA M, et al. Optimum supplementations and interactive effects of methionine and tryptophan on growth and health status of juvenile Japanese flounder Paralichthys olivaceus[J]. Aquaculture Science, 2013, 61(3): 239-251.
[43]
CIJI A, SAHU N P, PAL A K, et al. Dietary L-tryptophan modulates growth and immuno-metabolic status of Labeo rohita juveniles exposed to nitrite[J]. Aquaculture Research, 2015, 46(8): 2013-2024. DOI:10.1111/are.12355
[44]
AKHTAR M S, PAL A K, SAHU N P, et al. Physiological responses of dietary tryptophan fed Labeo rohita to temperature and salinity stress[J]. Journal of Animal Physiology and Animal Nutrition, 2013, 97(6): 1075-1083. DOI:10.1111/jpn.12017
[45]
FATTAHI S, HOSEINI S M. Effect of dietary tryptophan and betaine on tolerance of Caspian roach (Rutilus rutilus caspicus) to copper toxicity[J]. International Journal of Aquatic Biology, 2013, 1(2): 76-81.
[46]
CABANILLAS-GÁMEZ M, LÓPEZ L M, GALAVIZ M A, et al. Effect of L-tryptophan supplemented diets on serotonergic system and plasma cortisol in Totoaba macdonaldi (Gilbert, 1890) juvenile exposed to acute stress by handling and hypoxia[J]. Aquaculture Research, 2018, 49(2): 847-857. DOI:10.1111/are.13529
[47]
LARANJA J L Q, J r, QUINITIO E T, CATACUTAN M R, et al. Effects of dietary L-tryptophan on the agonistic behavior, growth and survival of juvenile mud crab Scylla serrata[J]. Aquaculture, 2010, 310(1/2): 84-90.
[48]
YOUSEFI M, PAKTINAT M, MAHMOUDI N, et al. Serum biochemical and non-specific immune responses of rainbow trout (Oncorhynchus mykiss) to dietary nucleotide and chronic stress[J]. Fish Physiology and Biochemistry, 2016, 42(5): 1417-1425. DOI:10.1007/s10695-016-0229-z
[49]
MIRGHAED A T, HOSEINI S M, GHELICHPOUR M. Effects of dietary 1, 8-cineole supplementation on physiological, immunological and antioxidant responses to crowding stress in rainbow trout (Oncorhynchus mykiss)[J]. Fish & Shellfish Immunology, 2018, 81: 182-188.
[50]
ZHANG E D, DONG S L, WANG F, et al. Effects of L-tryptophan on the performance, energy partitioning and endocrine response of Japanese sea cucumber (Apostichopus japonicus Selenka) exposed to crowding stress[J]. Aquaculture Research, 2018, 49(1): 471-479. DOI:10.1111/are.13478
[51]
TEJPAL C S, PAL A K, SAHU N P, et al. Dietary supplementation of L-tryptophan mitigates crowding stress and augments the growth in Cirrhinus mrigala fingerlings[J]. Aquaculture, 2009, 293(3/4): 272-277.
[52]
HOSEINI S M, MIRGHAED A T, GHELICHPOUR M, et al. Effects of dietary tryptophan supplementation and stocking density on growth performance and stress responses in rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 2020, 519: 734908. DOI:10.1016/j.aquaculture.2019.734908
[53]
HOSEINI S M, HOSSEINI S A. Effect of dietary L-tryptophan on osmotic stress tolerance in common carp, Cyprinus carpio, juveniles[J]. Fish Physiology and Biochemistry, 2010, 36(4): 1061-1067. DOI:10.1007/s10695-010-9383-x
[54]
MACHADO M, AZEREDO R, DOMINGUES A, et al. Dietary tryptophan deficiency and its supplementation compromises inflammatory mechanisms and disease resistance in a teleost fish[J]. Scientific Reports, 2019, 9: 7689. DOI:10.1038/s41598-019-44205-3
[55]
HOSEINI S M, HOSSEINI S A, SOUDAGAR M. Dietary tryptophan changes serum stress markers, enzyme activity, and ions concentration of wild common carp Cyprinus carpio exposed to ambient copper[J]. Fish Physiology and Biochemistry, 2012, 38(5): 1419-1426. DOI:10.1007/s10695-012-9629-x
[56]
LEPAGE O, TOTTMAR O, WINBERG S. Elevated dietary intake of L-tryptophan counteracts the stress-induced elevation of plasma cortisol in rainbow trout (Oncorhynchus mykiss)[J]. Journal of Experimental Biology, 2002, 205: 3679-3687. DOI:10.1242/jeb.205.23.3679
[57]
HOSEINI S M, MIRGHAED A T, GHELICHPOUR M. Effects of dietary tryptophan levels and fish stocking density on immunological and antioxidant responses and bactericidal activity against Aeromonas hydrophila in rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture Research, 2020, 51(4): 1455-1463. DOI:10.1111/are.14491
[58]
HOSEINI S M, YOUSEFI M, MIRGHAED A T, et al. Effects of rearing density and dietary tryptophan supplementation on intestinal immune and antioxidant responses in rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 2020, 528: 735537. DOI:10.1016/j.aquaculture.2020.735537
[59]
MACHADO M, AZEREDO R, DÍAZ-ROSALES P, et al. Dietary tryptophan and methionine as modulators of European seabass (Dicentrarchus labrax) immune status and inflammatory response[J]. Fish & Shellfish Immunology, 2015, 42(2): 353-362.
[60]
ESTEBAN M Å, RODRÍGUEZ A, AYALA A G, et al. Effects of high doses of cortisol on innate cellular immune response of seabream (Sparus aurata L.)[J]. General and Comparative Endocrinology, 2004, 137(1): 89-98. DOI:10.1016/j.ygcen.2004.02.006
[61]
徐敏杰, 张佳鑫, 黄根勇, 等. L-色氨酸和褪黑激素对中华绒螯蟹血清血糖水平及肝胰腺抗氧化能力的影响[J]. 水产学报, 2018, 42(1): 91-99.
XU M J, ZHANG J X, HUANG G Y, et al. Effects of L-tryptophan and melatonin on the serum glucose level and antioxidant capacity in the hepatopancreas of Chinese mitten crab (Eriocheir sinensis)[J]. Journal of fisheries of China, 2018, 42(1): 91-99 (in Chinese).
[62]
JI K, LIANG H L, REN M C, et al. Effects of dietary tryptophan levels on antioxidant status and immunity for juvenile blunt snout bream (Megalobrama amblycephala) involved in Nrf2 and TOR signaling pathway[J]. Fish & Shellfish Immunology, 2019, 93: 474-483.
[63]
YANG X Z, XU M J, HUANG G Y, et al. Effect of dietary L-tryptophan on the survival, immune response and gut microbiota of the Chinese mitten crab, Eriocheir sinensis[J]. Fish & Shellfish Immunology, 2019, 84: 1007-1017.