动物营养学报    2021, Vol. 33 Issue (9): 5379-5390    PDF    
饲料中添加丁酸钠对黄颡鱼幼鱼非特异性免疫、抗氧化指标及肠道黏膜形态的影响
王海瑞1,2 , 胡俊茹2 *, 赵红霞2 , 曹俊明2 , 陈冰2,3 , 陈晓瑛2,3     
1. 上海海洋大学水产科学国家级实验教学示范中心, 上海 201306;
2. 广东省农业科学院动物科学研究所, 农业农村部华南动物营养与饲料重点实验室, 广东省畜禽育种与营养研究重点实验室, 广州 510640;
3. 广州飞禧特生物科技有限公司, 广州 510640
摘要: 本试验旨在探讨丁酸钠对黄颡鱼幼鱼非特异性免疫、抗氧化指标和肠道黏膜形态的影响。通过在基础饲料中添加0、250、500、1 000和2 000 mg/kg丁酸钠,配制5种等氮等脂的试验饲料。选取初始平均体重为(1.26±0.01)g黄颡鱼幼鱼600尾,随机分为5组,每组3个重复,每个重复40尾鱼,分别投喂5种试验饲料。试验期为56 d。结果表明:1)黄颡鱼血清溶菌酶(LZM)和一氧化氮合酶(NOS)活性在1 000 mg/kg丁酸钠组达到最高,血清碱性磷酸酶(AKP)活性在250 mg/kg丁酸钠组达到最高,均显著高于未添加组(P < 0.05)。黄颡鱼肝脏LZM和AKP活性在1 000 mg/kg丁酸钠组达到最高,显著高于未添加组(P < 0.05)。黄颡鱼肠道AKP和NOS活性在500 mg/kg丁酸钠组达到最高值,显著高于未添加组和2 000 mg/kg丁酸钠组(P < 0.05)。2)与未添加组相比,饲料中添加2 000 mg/kg丁酸钠显著提高了黄颡鱼血清过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-Px)活性(P < 0.05)。1 000 mg/kg丁酸钠组黄颡鱼血清超氧化物歧化酶(SOD)和肝脏GSH-Px活性显著高于未添加组(P < 0.05)。500 mg/kg丁酸钠组黄颡鱼肠道SOD、CAT和GSH-Px活性显著高于未添加组(P < 0.05),250、500、1 000和2 000 mg/kg丁酸钠组肠道丙二醛(MDA)含量显著低于未添加组(P < 0.05)。3)与未添加组相比,饲料中添加500 mg/kg丁酸钠显著提高黄颡鱼前肠的绒毛长度、绒毛宽度、肌层厚度和后肠的绒毛长度、肌层厚度(P < 0.05)。以黄颡鱼幼鱼血清NOS、SOD活性和前肠绒毛长度为评价指标,通过二次回归分析得出黄颡鱼幼鱼饲料中丁酸钠的适宜添加量分别为1 275、1 218和1 489 mg/kg。
关键词: 黄颡鱼    丁酸钠    非特异性免疫    抗氧化    肠道黏膜形态    
Effects of Dietary Sodium Butyrate on Non-Specific Immune, Antioxidant Indices and Intestinal Mucosal Morphology of Juvenile Yellow Catfish (Pelteobagrus fulvidraco)
WANG Hairui1,2 , HU Junru2 *, ZHAO Hongxia2 , CAO Junming2 , CHEN Bing2,3 , CHEN Xiaoying2,3     
1. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China;
2. Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
3. Guangzhou Fishtech Biotechnology Co., Ltd., Guangzhou 510640, China
Abstract: This experiment was conducted to investigate the effects of dietary sodium butyrate on non-specific immune, antioxidant indices and intestinal mucosal morphology of juvenile yellow catfish (Pelteobagrus fulvidraco). Five isonitrogenous and isolipidic experimental diets were formulated to contain sodium butyrate (SB) at 0, 250, 500, 1 000 and 2 000 mg/kg, respectively. A total of 600 juvenile yellow catfish with the average body weight of (1.26±0.01) g were randomly divided into 5 groups with 3 replicates per group and 40 fish per replicate, and fish in the 5 groups fed their respective diet from the five isonitrogenous and isolipids diets for 56 days. The results showed as follows: the activities of serum lysozyme (LZM)and nitric oxide synthase (NOS) in 1 000 mg/kg BS group and the activity of serum alkaline phosphatase (AKP) in 250 mg/kg SB group were the highest, and significantly higher than those in no-added group (P < 0.05). The activities of liver LZM and AKP in 1 000 mg/kg BS group were the highest, and significantly higher than those in no-added group (P < 0.05). The activities of intestinal AKP and NOS in 500 mg/kg BS group were the highest, and significantly higher than those in no-added and 2 000 mg/kg SB group (P < 0.05). Serum catalase (CAT) and glutathione peroxidase (GSH-Px) activities in 2 000 SB mg/kg group were significantly higher than those in no-added group (P < 0.05). The activities of serum superoxide dismutase (SOD) and liver GSH-Px in 1 000 mg/kg SB group were significantly higher than those in no-added group (P < 0.05). There were significantly higher activities of intestinal SOD, CAT and GSH-Px in 500 mg/kg SB group than those in no-added group (P < 0.05), and significantly lower content of intestinal malondialdehyde (MDA) in 250, 500, 1 000 and 2 000 mg/kg groups than those in no-added group (P < 0.05). Villus length, villus width and muscular thickness in proximal intestine and villus length, muscular thickness in distal intestine were significantly higher in 500 mg/kg SB group compared with no-added group (P < 0.05). With the serum NOS, SOD activities and villus length of proximal intestine as evaluation indices, the optimum dietary SB supplemental levels are 1 275, 1 218 and 1 489 mg/kg through quadratic regression analysis, respectively.
Key words: Pelteobagrus fulvidraco    sodium butyrate    non-specific immune    antioxidant    intestinal mucosal morphology    

有机酸是指一些具有酸性的有机化合物,包括柠檬酸、甲酸、丁酸、乳酸、丙酸和乙酸及其盐类。饲料中添加有机酸能够显著改善水产动物的生长性能、提高矿物质的生物利用率、改善机体健康和增强免疫、抗氧化功能[1-2]。丁酸被认为是厌氧细菌发酵碳水化合物的衍生物之一,因其对肠道有益而受到越来越多的关注[3]。对奥尼罗非鱼(Oreochromis niloticus)和虹鳟(Oncorhynchus mykiss)的研究发现,肠道鱼类微生物对碳水化合物的发酵导致了包括丁酸在内的短链脂肪酸分泌,这一潜在的丁酸来源可能有助于保护鱼类免受病原菌的入侵[4-5]。丁酸钠是丁酸与矿物质螯合形成的丁酸盐,分子式为C4H7O2Na。丁酸盐更加稳定,且气味没有丁酸强烈,因此更常用于鱼类和畜禽饲料中。在欧洲鲈(Dicentrarchus labrax)[6]、金头鲷(Sparus aurata)[7]、金鱼(Carassius auratus)[8]、凡纳滨对虾(Litopenaeus vannamei)[9]、尖吻鲈(Lates calcarifer)[10]、鲤鱼(Cyprinus carpio)[11]、尼罗罗非鱼(Oreochromis niloticus)[12]、草鱼(Ctenopharyngodon idella)[13]上的研究均表明丁酸或丁酸钠有显著的促生长作用。

黄颡鱼(Pelteobagrus fulvidraco),鲶形目、鲿科、黄颡鱼属,杂食性温水鱼类。黄颡鱼分布范围广,全国各水域均有分布。近年来,随着我国黄颡鱼规模化养殖不断增加,有关其健康状况和病害防治方面的研究也在不断增加。本实验室前期研究表明,饲料中添加适宜水平的丁酸钠能够显著提高黄颡鱼的生长性能和营养物质沉积[14]。但是,关于饲料中添加丁酸钠对黄颡鱼组织器官免疫功能和肠道健康的研究尚未见报道。本试验通过在饲料中添加不同水平的丁酸钠,探讨其对黄颡鱼非特异性免疫、抗氧化指标和肠道黏膜形态的影响,为丁酸钠在水产配合饲料中的应用提供参考。

1 材料与方法 1.1 试验饲料

配制5种等氮等脂(42%的蛋白质和9%的脂肪)的试验饲料,试验饲料中丁酸钠(纯度≥99%)添加量分别为0、250、500、1 000和2 000 mg/kg。试验饲料营养水平的设定等参照本实验室配方[15],试验饲料组成及营养水平见表 1。饲料原料粉碎后过60目筛,按照配方要求准确称量,并逐级混匀后,加入鱼油、豆油和30%的水,再次混合均匀后,用双螺杆制粒机(SLX-80,华南理工大学科技实业总厂)挤压成粒径为1.5 mm的颗粒饲料,55 ℃烘干,冷却后置于-20 ℃保存备用。

表 1 试验饲料组成及营养水平(风干基础) Table 1 Composition and nutrient levels of experimental diets (air-dry basis) 
1.2 试验鱼与饲养管理

试验用黄颡鱼幼鱼购自广州市锦龙渔业有限公司,试验地点为广东省农业科学院动物科学研究所水产研究室室内循环水养殖系统。将采购的黄颡鱼在室外水泥池中暂养2周,摄食未添加丁酸钠的试验饲料,每天投喂2次。试验开始时,选取初始平均体重为(1.26±0.01) g黄颡鱼幼鱼600尾,随机分为5组,每组3个重复,每个重复40尾鱼,分别投喂5种试验饲料。试验饲料投喂量为黄颡鱼体重的5%~6%,每天08:30和18:30各投喂1次,根据摄食情况调整投喂量,养殖试验为期56 d。养殖系统采取循环水过滤系统,试验鱼饲养于圆柱形玻璃纤维桶(直径80 cm,高70 cm)中,定期换水和测定水质。试验期间水温28~32 ℃,氨氮浓度 < 0.20 mg/L,亚硝酸盐浓度 < 0.01 mg/L,溶氧浓度>6.0 mg/L,pH 7.4~7.9,自然光源。

1.3 样品采集

养殖试验结束后停食24 h,从每个重复随机选取16尾鱼,放入120 mg/L的MS-222溶液中麻醉。选取其中8尾于尾静脉取血,4 000 r/min离心10 min,取上清液分装制备血清,-80 ℃冰箱保存,用于非特异性免疫和抗氧化指标测定;5尾于冰上迅速解剖、剥离肝脏和肠道,-80 ℃冰箱保存,用于非特异性免疫和抗氧化指标测定;3尾于冰上迅速解剖,分别取其前、中、后肠置于固定液中保存,用于肠道组织石蜡切片制作。

1.4 指标测定 1.4.1 饲料营养成分分析

饲料中各营养成分含量参照AOAC(1984)[16]中方法进行检测,其中水分含量采用105 ℃烘干干燥恒重法测定,粗蛋白质(氮×6.25)采用凯氏定氮法测定,粗脂肪含量采用索氏抽提法测定,粗灰分含量采用550 ℃高温马弗炉灰化法测定。

1.4.2 血清、肝脏、肠道中非特异性免疫和抗氧化指标测定

血清、肝脏、肠道中免疫和抗氧化指标均采用试剂盒检测,试剂盒均购自南京建成生物工程研究所,具体测定方法参照试剂盒所附说明书,测定指标包括:溶菌酶(LZM)、碱性磷酸酶(AKP)、一氧化氮合酶(NOS)、诱导型一氧化氮合酶(iNOS)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶(CAT)活性与丙二醛(MDA)含量。

1.4.3 肠道黏膜形态观察

肠道组织石蜡切片的制作和观察在武汉谷歌生物科技有限公司完成。采用光学显微镜(100×)观察前肠组织切片,并用成像系统进行图像采集。利用Image-Pro Plus 6软件对肠道组织绒毛长度、绒毛宽度和肌层厚度分别进行测定。

1.5 数据统计与分析

试验数据用平均值±标准差(mean±SD)表示,采用SPSS 20.0软件进行统计分析。先对试验数据开展方差齐性检验,满足方差齐性条件则进行单因素方差分析(one-way ANOVA),若存在显著差异,再用Tukey’s检验方法进行多重比较;若方差齐性条件不满足,则用Dunnett’s T3检验法进行多重比较。差异显著性水平为P < 0.05。

2 结果与分析 2.1 饲料中添加丁酸钠对黄颡鱼幼鱼非特异性免疫指标的影响

表 2可以看出,黄颡鱼血清LZM和NOS活性在1 000 mg/kg丁酸钠组达到最高值,血清AKP活性在250 mg/kg丁酸钠组达到最高值,均显著高于未添加组(P < 0.05)。黄颡鱼肝脏LZM和AKP活性在1 000 mg/kg丁酸钠组达到最高值,显著高于未添加组(P < 0.05)。黄颡鱼肠道AKP和NOS活性在500 mg/kg丁酸钠组达到最高值,显著高于未添加组和2 000 mg/kg丁酸钠组(P < 0.05)。饲料中添加丁酸钠对黄颡鱼血清、肝脏和肠道iNOS以及肝脏NOS活性和肠道LZM活性无显著影响(P>0.05)。利用二次回归模型拟合血清NOS活性和饲料丁酸钠添加量,通过分析表明黄颡鱼幼鱼饲料中丁酸钠的适宜添加量为1 275 mg/kg(图 1)。

表 2 饲料中添加丁酸钠对黄颡鱼幼鱼非特异性免疫指标的影响 Table 2 Effects of dietary SB on non-specific immune indices of juvenile yellow catfish (n=3)
图 1 饲料中丁酸钠添加量与黄颡鱼幼鱼血清NOS活性的关系 Fig. 1 Relationship between dietary SB supplemental level and serum NOS activity of juvenile yellow catfish
2.2 饲料中添加丁酸钠对黄颡鱼幼鱼抗氧化指标的影响

表 3可以看出,与未添加组相比,饲料中添加2 000 mg/kg丁酸钠显著提高了黄颡鱼血清CAT和GSH-Px活性(P < 0.05)。1 000 mg/kg丁酸钠组黄颡鱼血清SOD和肝脏GSH-Px活性显著高于未添加组(P < 0.05)。500 mg/kg丁酸钠组黄颡鱼肠道SOD和CAT活性显著高于未添加组(P < 0.05),500、1 000和2 000 mg/kg丁酸钠组黄颡鱼肠道GSH-Px活性显著高于未添加组(P < 0.05),250、500、1 000和2 000 mg/kg丁酸钠组肠道MDA含量显著低于未添加组(P < 0.05)。饲料中添加丁酸钠对黄颡鱼血清和肝脏MDA含量、肝脏SOD和CAT活性无显著影响(P>0.05)。利用二次回归模型拟合血清SOD活性和饲料丁酸钠添加量,通过分析表明黄颡鱼幼鱼饲料中丁酸钠的适宜添加量为1 218 mg/kg(图 2)。

表 3 饲料中添加丁酸钠对黄颡鱼幼鱼抗氧化指标的影响 Table 3 Effects of dietary SB on antioxidant indices of juvenile yellow catfish (n=3)
图 2 饲料中丁酸钠添加量与黄颡鱼幼鱼血清SOD活性的关系 Fig. 2 Relationship between dietary SB supplemental level and serum SOD activity of juvenile yellow catfish
2.3 饲料中添加丁酸钠对黄颡鱼幼鱼肠道黏膜形态的影响

黄颡鱼前肠、中肠和后肠的黏膜形态分别见图 3图 4图 5,黄颡鱼肠道绒毛长度、绒毛宽度和肌层厚度见表 4。与未添加组相比,饲料中添加500或1 000 mg/kg丁酸钠显著提高了黄颡鱼前肠的绒毛长度、绒毛宽度和肌层厚度(P < 0.05)。250、500和1 000 mg/kg丁酸钠组黄颡鱼后肠的绒毛长度和肌层厚度显著高于未添加组(P < 0.05)。饲料中添加丁酸钠对黄颡鱼中肠的绒毛长度、绒毛宽度、肌层厚度和后肠的绒毛宽度没有显著影响(P>0.05)。利用二次回归模型拟合前肠绒毛长度和饲料丁酸钠添加量,通过分析表明黄颡鱼幼鱼饲料中丁酸钠的适宜添加量为1 489 mg/kg(图 6)。

图 3 黄颡鱼幼鱼前肠黏膜形态 Fig. 3 Proximal intestine mucosal morphology of juvenile yellow catfish
图 4 黄颡鱼幼鱼中肠黏膜形态 Fig. 4 Mid intestine mucosal morphology of juvenile yellow catfish
图 5 黄颡鱼幼鱼后肠黏膜形态 Fig. 5 Distal intestine mucosal morphology of juvenile yellow catfish
表 4 饲料中添加丁酸钠对黄颡鱼幼鱼肠道绒毛长度、绒毛宽度和肌层厚度的影响 Table 4 Effects of dietary SB on intestinal villus length, villus width and muscular thickness of juvenile yellow catfish (n=3)  
图 6 饲料中丁酸钠添加量与黄颡鱼幼鱼前肠绒毛长度的关系 Fig. 6 Relationship between dietary SB supplemental level and villus length of proximal intestine of juvenile yellow catfish
3 讨论

有机酸(柠檬酸、甲酸、丁酸等及其盐类)在促进生长和增强抗病力等方面发挥的作用已受到广泛关注。饲料中添加有机酸能够显著改善水产动物的生长性能和提高矿物质的生物利用率。本实验室前期研究发现,饲料中添加丁酸钠能够显著促进黄颡鱼生长发育和提高饲料营养物质利用效率,以增重率为评价指标,丁酸钠在饲料中的适宜添加量为1 150.50 mg/kg[14]。本试验以黄颡鱼血清NOS、SOD活性和前肠绒毛长度为评价指标,通过二次回归分析得出黄颡鱼饲料中丁酸钠的适宜添加量分别为1 275、1 218和1 489 mg/kg。

3.1 丁酸钠对黄颡鱼幼鱼非特异性免疫指标的影响

鱼类和哺乳动物相似,具有非特异性和特异性免疫功能,通过血液、黏膜屏障和组织中各种免疫细胞和因子协同抵御病原侵袭[17]。非特异性免疫是鱼类免疫系统中的重要组成部分,主要由免疫酶和免疫因子构成,包括LZM、酸性磷酸酶(ACP)、AKP、NOS、凝集素和溶血素等。研究显示,饲料中添加0.2%和0.3%微囊化丁酸钠显著提高了欧洲鲈血清总免疫球蛋白含量、呼吸爆发活性、吞噬活性、吞噬指数、LZM活性和杀菌活性[6]。饲料中添加部分包膜丁酸钠可显著提高尼罗罗非鱼血清中LZM活性、呼吸爆发活性、杀菌活性和凝集活性[18]。Aalamifar等[10]研究发现,添加丁酸的饲料显著提高了卵形鲳鲹血清总蛋白、LZM、呼吸爆发活性和溶血活性。Mirghaed等[19]研究发现,饲料中添加1.5~5.0 g/kg丁酸钠能够显著增强虹鳟的非特异性免疫功能,如激活肠道的LZM活性及杀菌活性。与上述研究结果一致,本试验中,饲料中添加一定量的丁酸钠显著提高了黄颡鱼血清LZM、NOS、AKP活性,肝脏LZM、AKP活性及肠道AKP、NOS活性,表明饲料中添加适量丁酸钠能够增强黄颡鱼的非特异性免疫功能。然而,在尼罗罗非鱼饲料中添加丁酸钠对血液红细胞计数、红细胞比容积、血红蛋白浓度和白细胞计数均无显著影响[20]。摄食含不同丁酸钠水平的饲料后,巨骨舌鱼的血液学参数如免疫球蛋白、总蛋白、甘油三酯、葡萄糖和胆固醇含量均没有显著差异[21]。本试验也发现,饲料中添加丁酸钠对黄颡鱼血清、肝脏和肠道iNOS以及肝脏NOS和肠道LZM活性均无显著影响。丁酸钠对鱼体免疫功能的影响可能与养殖对象、组织器官、饲料组成、丁酸钠添加量、养殖条件等有关。目前,关于丁酸钠对水产动物免疫功能影响的研究还比较少,其作用机制还有待于进一步深入研究。

3.2 丁酸钠对黄颡鱼幼鱼抗氧化指标的影响

鱼类细胞的氧化应激是由于超氧阴离子、羟自由基等活性氧过量产生而引发的,其会引起脂质、蛋白质及暴露细胞DNA的严重氧化损伤,最终导致细胞凋亡[22]。鱼类主要通过2种机制减轻氧化损伤:1)提高GSH-Px、CAT、SOD和过氧化物酶(POD)等抗氧化酶的活性;2)产生还原型谷胱甘肽等抗氧化物质[23]。这些机制有助于减少活性氧的产量。鱼类血清、肝脏及肠道等组织中的抗氧化酶和抗氧化物也被认为是氧化应激的指示因子。此外,MDA、巴比妥酸反应物质(TBARS)和蛋白羰基(PC)含量可用于评估鱼类细胞内脂质和蛋白质的氧化损伤程度[24]。本试验中,饲料中添加一定量的丁酸钠显著提高了黄颡鱼血清和肠道CAT、SOD活性及血清、肝脏和肠道GSH-Px活性,并显著降低了肠道MDA含量,表明饲料中添加适量的丁酸钠能够有效增强黄颡鱼的抗氧自由基能力。与本研究结果相似,饲料中添加丁酸钠可以显著提高美洲鳗和黄鳝肝脏中总抗氧化能力(T-AOC)、SOD和CAT活性,降低MDA含量[25-26]。在草鱼中的研究也表明,饲料添加丁酸钠显著增加了肝脏SOD和GSH-Px活性,但对T-AOC和MDA含量没有显著影响[27-28]。在石斑鱼中的研究发现,饲料中添加1%的丁酸钠显著降低了石斑鱼血清TBARS含量[29]。高植物蛋白质饲料中添加0.3%的丁酸钠显著提高了大菱鲆幼鱼肝脏T-AOC和CAT活性,降低了肝脏MDA含量[30]。强俊等[31]研究报道,鱼类通过增加代谢来应对环境胁迫,氧自由基的产生也随之增加,SOD与CAT活性的增加可视为生物体对新陈代谢的适应,以减轻脂质过氧化损伤。因此,丁酸钠可能通过增加体内抗氧化酶活性,降低氧化应激损伤,减少体内自由基的产生。

3.3 丁酸钠对黄颡鱼幼鱼肠道黏膜形态的影响

鱼类肠道健康与肠道绒毛形态结构、细菌数量、消化酶活性等休戚相关。改善鱼类肠道组织形态,如绒毛长度、绒毛宽度、肌层厚度等,有助于提高营养物质的消化率,维护鱼体健康[12]。丁酸钠改善肠道物理屏障结构,主要表现为肠道皱壁高度和肌层厚度的增加[32]。摄食添加丁酸钠饲料的鞍带石斑鱼肠道黏膜上皮层排列有序,固有层致密[29]。郑瑞耕[33]发现,饲料中添加丁酸钠显著提高了鲤鱼中肠的绒毛长度、绒毛宽度和肌层厚度。饲料中添加0.2%的微囊丁酸钠增加了欧洲鲈的肠道肌层厚度、杯状细胞数量、绒毛长度和绒毛宽度[6]。饲料中添加丁酸钠显著增加了草鱼肠道绒毛长度[34]。本试验测定了黄颡鱼前肠、中肠和后肠的物理屏障结构,发现饲料中添加500 mg/kg丁酸钠显著提高了黄颡鱼前肠的绒毛长度、绒毛宽度、肌层厚度和后肠的绒毛长度、肌层厚度,表明丁酸钠有助于促进黄颡鱼肠道发育和维护肠道健康。丁酸盐已被证实能够为动物提供能量来源,并作为调节机体能量代谢的信号分子发挥重要作用,丁酸盐的高能量值可以为肠道上皮组织的恢复提供能量[35-36]。研究表明,饲料中添加微囊丁酸钠后,饲喂氧化大豆油饲料对鲤鱼肠道黏膜形态没有负面影响[11]。低鱼粉低鱼油饲料中添加0.4%丁酸钠饲养金头鲷9周,发现丁酸钠通过调节炎症反应、激活抗氧化系统、改变黏液分泌相关基因的表达、改变上皮细胞连接和减少跨膜电阻等促使肠道功能恢复至正常状态[37]。饲料中添加丁酸钠提高了黄鳝肠道绒毛高度与隐窝深度的比值,降低了隐窝深度,对肠道黏膜组织显著修复[25]。此外,丁酸钠还能够缓解和恢复高豆粕饲料导致的欧洲鲈后肠炎症反应[38]

4 结论

① 饲料中添加适量丁酸钠可显著提高黄颡鱼幼鱼血清LZM、NOS和AKP活性,肝脏LZM和AKP活性以及肠道AKP和NOS活性。

② 饲料中添加适量丁酸钠显著提高黄颡鱼幼鱼血清和肠道CAT、SOD活性及血清、肝脏和肠道GSH-Px活性,并显著降低肠道MDA含量。

③ 饲料中添加适量丁酸钠可显著提高黄颡鱼幼鱼前肠的绒毛长度、绒毛宽度、肌层厚度和后肠的绒毛长度、肌层厚度。

④ 以黄颡鱼血清NOS、SOD活性和前肠绒毛长度为评价指标,通过二次回归分析得出黄颡鱼幼鱼饲料中丁酸钠的适宜添加量分别为1 275、1 218和1 489 mg/kg。

参考文献
[1]
HOSEINIFAR S H, SAFARI R, DADAR M. Dietary sodium propionate affects mucosal immune parameters, growth and appetite related genes expression: insights from zebrafish model[J]. General and Comparative Endocrinology, 2017, 243: 78-83. DOI:10.1016/j.ygcen.2016.11.008
[2]
NG W K, KOH C B. The utilization and mode of action of organic acids in the feeds of cultured aquatic animals[J]. Reviews in Aquaculture, 2017, 9(4): 342-368. DOI:10.1111/raq.12141
[3]
BEDFORD A, GONG J. Implications of butyrate and its derivatives for gut health and animal production[J]. Animal Nutrition, 2018, 4(2): 151-159. DOI:10.1016/j.aninu.2017.08.010
[4]
KIHARA M, SAKATA T. Fermentation of dietary carbohydrates to short-chain fatty acids by gut microbes and its influence on intestinal morphology of a detritivorous teleost tilapia (Oreochromis niloticus)[J]. Comparative Biochemistry and Physiology Part A: Physiology, 1997, 118(4): 1201-1207. DOI:10.1016/S0300-9629(97)00052-2
[5]
KIHARA M, SAKATA T. Influences of incubation temperature and various saccharides on the production of organic acids and gases by gut microbes of rainbow trout Oncorhynchus mykiss in a micro-scale batch culture[J]. Journal of Comparative Physiology B, 2001, 171(6): 441-447. DOI:10.1007/s003600100190
[6]
ABDEL-MOHSEN H H, WASSEF E A, EL-BERMAWY N M, et al. Advantageous effects of dietary butyrate on growth, immunity response, intestinal microbiota and histomorphology of European seabass (Dicentrarchus labrax) fry[J]. Egyptian Journal of Aquatic Biology and Fisheries, 2018, 22(4): 93-110. DOI:10.21608/ejabf.2018.12055
[7]
ROBLES R, LOZANO A B, SEVILLA A, et al. Effect of partially protected butyrate used as feed additive on growth and intestinal metabolism in sea bream (Sparus aurata)[J]. Fish Physiology and Biochemistry, 2013, 39(6): 1567-1580. DOI:10.1007/s10695-013-9809-3
[8]
孙浪, 刘臻, 郝光, 等. 丁酸钠对鲫鱼生长和肠细胞增殖的影响[J]. 中国水产科学, 2013(4): 893-901.
SUN L, LIU Z, HAO G, et al. Effects of sodium butyrate on growth and intestinal cell proliferation of Carassius auratus[J]. Journal of Fishery Sciences of China, 2013(4): 893-901 (in Chinese).
[9]
DA SILVA B C, VIEIRA F D N, MOURIÑO J L P, et al. Butyrate and propionate improve the growth performance of Litopenaeus vannamei[J]. Aquaculture Research, 2016, 47(2): 612-623. DOI:10.1111/are.12520
[10]
AALAMIFAR H, SOLTANIAN S, VAZIRZADEH A, et al. Dietary butyric acid improved growth, digestive enzyme activities and humoral immune parameters in barramundi (Lates calcarifer)[J]. Aquaculture Nutrition, 2020, 26(1): 156-164. DOI:10.1111/anu.12977
[11]
LIU W S, YANG Y O, ZHANG J L, et al. Effects of dietary microencapsulated sodium butyrate on growth, intestinal mucosal morphology, immune response and adhesive bacteria in juvenile common carp (Cyprinus carpio) pre-fed with or without oxidised oil[J]. The British Journal of Nutrition, 2014, 112(1): 15-29. DOI:10.1017/S0007114514000610
[12]
DAWOOD M A O, EWEEDAH N M, ELBIALY Z I, et al. Dietary sodium butyrate ameliorated the blood stress biomarkers, heat shock proteins, and immune response of Nile tilapia (Oreochromis niloticus) exposed to heat stress[J]. Journal of Thermal Biology, 2020, 88: 102500. DOI:10.1016/j.jtherbio.2019.102500
[13]
LIU M M, GUO W, WU F, et al. Dietary supplementation of sodium butyrate may benefit growth performance and intestinal function in juvenile grass carp (Ctenopharyngodon idellus)[J]. Aquaculture Research, 2017, 48(8): 4102-4111. DOI:10.1111/are.13230
[14]
ZHAO H X, WANG G X, WANG H R, et al. Effects of dietary sodium butyrate on growth, digestive enzymes, body composition and nutrient retention-related gene expression of juvenile yellow catfish (Pelteobagrus fulvidraco)[J/OL]. Animal Nutrition, 2021. (2021-03-30)https://doi.org/10.1016/j.aninu.2020.12.007.
[15]
ZHAO H X, CAO J M, HUANG Y H, et al. Effects of dietary nucleotides on growth, physiological parameters and antioxidant responses of juvenile yellow catfish Pelteobagrus fulvidraco[J]. Aquaculture Research, 2017, 48(1): 214-222. DOI:10.1111/are.12875
[16]
AOAC. Official methods of analysis[S]. 14th ed. Arlington: Association of Official Analytical Chemists, 1984: 152-163.
[17]
ZHU L Y, NIE L, ZHU G, et al. Advances in research of fish immune-relevant genes: a comparative overview of innate and adaptive immunity in teleosts[J]. Developmental and Comparative Immunology, 2013, 39(1/2): 39-62.
[18]
EL-NABY A S A, KHATTABY A E R A, SAMIR F, et al. Stimulatory effect of dietary butyrate on growth, immune response, and resistance of Nile tilapia, Oreochromis niloticus against Aeromonas hydrophila infection[J]. Animal Feed Science and Technology, 2019, 254: 114212. DOI:10.1016/j.anifeedsci.2019.114212
[19]
MIRGHAED A T, YARAHMADI P, SOLTANI M, et al. Dietary sodium butyrate (Butirex C4) supplementation modulates intestinal transcriptomic responses and augments disease resistance of rainbow trout (Oncorhynchus mykiss)[J]. Fish & Shellfish Immunology, 2019, 92: 621-628.
[20]
ALI T E S, EL-SAYED A M, EISSA M A R, et al. Effects of dietary biogen and sodium butyrate on hematological parameters, immune response, and histological characteristics of Nile tilapia (Oreochromis niloticus) fingerlings[J]. Aquaculture International, 2018, 26(1): 139-150. DOI:10.1007/s10499-017-0205-3
[21]
LUZ J R, RAMOS A P S, MELO J F B, et al. Use of sodium butyrate in the feeding of Arapaima gigas (Schinz, 1822) juvenile[J]. Aquaculture, 2019, 510: 248-255. DOI:10.1016/j.aquaculture.2019.05.065
[22]
ABDEL-DAIM M M, EISSA I A M, ABDEEN A, et al. Lycopene and resveratrol ameliorate zinc oxide nanoparticles-induced oxidative stress in Nile tilapia, Oreochromis niloticus[J]. Environmental Toxicology and Pharmacology, 2019, 69: 44-50. DOI:10.1016/j.etap.2019.03.016
[23]
MARTÍNEZ-ÁLVAREZ R M, MORALES AE, SANZ A. Antioxidant defenses in fish: biotic and abiotic factors[J]. Reviews in Fish Biology and Fisheries, 2005, 15(1/2): 75-88.
[24]
VALAVANIDIS A, VLAHOGIANNI T, DASSENAKIS M, et al. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants[J]. Ecotoxicology and Environmental Safety, 2006, 64(2): 178-189. DOI:10.1016/j.ecoenv.2005.03.013
[25]
ZHANG J Z, ZHONG L, CHI S Y, et al. Sodium butyrate supplementation in high-soybean meal diets for juvenile rice field eel (Monopterus albus): effects on growth, immune response and intestinal health[J]. Aquaculture, 2020, 520: 734952. DOI:10.1016/j.aquaculture.2020.734952
[26]
张淞琳, 常建波, 叶继丹, 等. 丁酸钠对美洲鳗鲡摄食、生长性能和抗氧化能力的影响[J]. 福建农业学报, 2011, 26(4): 549-551.
ZHANG S L, CHANG J B, YE J D, et al. Effects of sodium butyrate on feeding, growth performance and antioxidant capacity of Anguilla rostrata[J]. Fujian Journal of Agricultural Sciences, 2011, 26(4): 549-551 (in Chinese). DOI:10.3969/j.issn.1008-0384.2011.04.010
[27]
吴凡. γ-氨基丁酸和丁酸钠对草鱼生长、抗氧化性能和肠道结构的影响[D]. 硕士学位论文. 武汉: 华中农业大学, 2016.
WU F. γ-effects of aminobutyric acid and sodium butyrate on growth, antioxidant activity and intestinal structure of grass carp (Ctenopharyngodon idellus)[D]. Master's Thesis. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[28]
LIU M M, GUO W, WU F, et al. Dietary supplementation of sodium butyrate may benefit growth performance and intestinal function in juvenile grass carp (Ctenopharyngodon idellus)[J]. Aquaculture Research, 2017, 48(8): 4102-4111. DOI:10.1111/are.13230
[29]
LIN Y H, CHENG M Y. Effects of dietary organic acid supplementation on the growth, nutrient digestibility and intestinal histology of the giant grouper Epinephelus lanceolatus fed a diet with soybean meal[J]. Aquaculture, 2017, 469: 106-111. DOI:10.1016/j.aquaculture.2016.11.032
[30]
魏朝青, 周慧慧, 王旋, 等. 高植物蛋白质饲料中添加丁酸钠对大菱鲆幼鱼生长性能、营养物质表观消化率及肝脏抗氧化功能的影响[J]. 动物营养学报, 2017, 29(9): 3392-3402.
WEI C Q, ZHOU H H, WANG X, et al. Effects of ading dfferent lvels of sdium btyrate in hgh pant potein dets on gowth prformance, ntrient aparent dgestibility cefficients and lver atioxidant fnction of juvenile turbot (Scophthalmus maximus L.)[J]. Chinese Journal of Animal Nutrition, 2017, 29(9): 3392-3402 (in Chinese). DOI:10.3969/j.issn.1006-267x.2017.09.045
[31]
强俊, 徐跑, 何杰, 等. 氨氮与拥挤胁迫对吉富品系尼罗罗非鱼幼鱼生长和肝脏抗氧化指标的联合影响[J]. 水产学报, 2011, 35(12): 1837-1848.
QIANG J, XU P, HE J, et al. The combined effects of external ammonia and crowding stress on growth and biochemical activities in liver of (GIFT) Nile tilapia juvenile (Oreochromis niloticus)[J]. Journal of Fisheries of China, 2011, 35(12): 1837-1848 (in Chinese).
[32]
WU X, WANG L G, XIE Q P, et al. Effects of dietary sodium butyrate on growth, diet conversion, body chemical compositions and distal intestinal health in yellow drum (Nibea albiflora, Richardson)[J]. Aquaculture Research, 51(1): 69-79. DOI:10.1111/are.14348
[33]
郑瑞耕. 丁酸钠对淡水鱼类生长性能及肠黏膜结构的影响[D]. 硕士学位论文. 福州: 福建农林大学, 2008.
ZHENG R G. Effects of sodium butyrate on growth performance and intestinal mucosal structure of freshwater fish[D]. Master's Thesis. Fuzhou: Fujian Agriculture and Forestry University, 2008. (in Chinese)
[34]
ZHOU J S, GUO P, YU H B, et al. Growth performance, lipid metabolism, and health status of grass carp (Ctenopharyngodon idella) fed three different forms of sodium butyrate[J]. Fish Physiology and Biochemistry, 2019, 45(1): 287-298. DOI:10.1007/s10695-018-0561-6
[35]
SAMUEL B S, SHAITO A, MOTOIKE T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(43): 16767-16772. DOI:10.1073/pnas.0808567105
[36]
YU S, REN E, XU J, et al. Effects of early intervention with sodium butyrate on lipid metabolism-related gene expression and liver metabolite profiles in neonatal piglets[J]. Livestock Science, 2017, 195: 80-86. DOI:10.1016/j.livsci.2016.11.013
[37]
ESTENSORO I, BALLESTER-LOZANO G, BENEDITO-PALOS L, et al. Dietary butyrate helps to restore the intestinal status of a marine teleost (Sparus aurata) fed extreme diets low in fish meal and fish oil[J]. PLoS One, 2016, 11(11): e0166564. DOI:10.1371/journal.pone.0166564
[38]
RIMOLDI S, FINZI G, CECCOTTI C, et al. Butyrate and taurine exert a mitigating effect on the inflamed distal intestine of European sea bass fed with a high percentage of soybean meal[J]. Fisheries and Aquatic Sciences, 2016, 19(1): 40. DOI:10.1186/s41240-016-0041-9