动物营养学报    2021, Vol. 33 Issue (10): 5475-5485    PDF    
硒的生物学作用及其在牛生产中的应用研究进展
刘旭光 , 熊康宁 , 汤小朋 , 池永宽     
贵州师范大学喀斯特研究院, 国家喀斯特石漠化防治工程技术研究中心, 贵阳 550001
摘要: 硒是动物必需的营养元素,广泛参与机体组织的生理过程和体内代谢,在动物生长发育过程中发挥着极其重要的营养生理功能。本文综述了硒的生物学功能及其在牛生产中的应用研究进展,并探讨了不同化学形式硒的使用效果,旨在为牛硒营养的研究提供参考,为生产上合理选择硒源提供借鉴。
关键词:     生物学功能    牛生产    应用    
Research Progress of Biological Function of Selenium and Its Application in Cattle Production
LIU Xuguang , XIONG Kangning , TANG Xiaopeng , CHI Yongkuan     
State Engineering Technology Institute for Karst Desertification Control, School of Karst Science, Guizhou Normal University, Guiyang 550001, China
Abstract: Selenium is an essential nutrient element for animals, which is widely involved in the physiological processes of body tissues and metabolism in the body, and plays an extremely important nutritional and physiological function during the growth and development of the animals. This paper reviewed the biological functions of selenium and its application research progress in cattle production, and discussed the effects of different chemical forms of selenium. The aim of this paper is to provide reference for the study of cattle selenium nutrition and the rational selection of selenium sources in production.
Key words: selenium    biological function    cattle production    application    

硒存在于器官、组织及体液中,其在牛体内具有重要的营养和生理功能。硒最重要的生理功能是参与硒蛋白的组成,如谷胱甘肽过氧化物酶(GSH-Px)、甲状腺素脱碘酶(DIOs)、硫氧还蛋白还原酶(TrxR),对机体生化代谢过程产生的过氧化物有很强的催化还原作用,保护生物膜的结构和功能免受脂质过氧化的影响[1-2]。此外,研究表明硒在影响动物生长性能与繁殖机能、增强免疫功能与抗病性、提高基础代谢率、补偿和协调某些维生素、拮抗有毒元素等方面也起着重要作用[3-7]。本文主要综述了硒的生物学功能、应用研究进展以及不同化学形式硒的使用效果,以期为硒在牛生产与应用中提供参考。

1 硒的生物学功能 1.1 硒对牛抗氧化功能的影响

硒的抗氧化功能主要体现在硒蛋白参与动物机体抗氧化体系的组成,是含硒酶的活性中心。GSH-Px、DIOs和TrxR是机体重要的含硒酶,硒主要通过参与这3种酶的催化还原过程来发挥抗氧化作用[8-9]。GSH-Px最早发现于牛红细胞中,也是机体组织中含量最丰富的一种过氧化物催化酶[10]。GSH-Px是发挥抗氧化作用、清除组织中有害过氧化物的主要酶类,目前发现其至少存在4种同工酶,即胞浆GSH-Px(GPx1)[11]、胃肠道专属性GSH-Px(GPx2)[12]、血浆GSH-Px(GPx3)[13]和磷脂过氧化氢GSH-Px(GPx4)[14]。GSH-Px的主要生理功能是催化过氧化氢及其他有机氢过氧化物,使其变为还原态,进而减少自由基的产生,保护细胞膜的结构和正常功能,免受脂质、蛋白质、DNA等因失去电子带来的损害与干扰[15-16]。TrxR属吡啶核苷酸-二硫化物氧化还原酶家族,按其分布区域分为胞浆TrxR(TrxR1)、线粒体TrxR(TrxR2)和硫氧还蛋白谷胱甘肽还原酶(TrxR3)3种同工酶,是一种由还原型烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate,NADPH)依赖性催化硫氧还蛋白还原的硒蛋白,它与NADPH和硫氧还蛋白构成硫氧还蛋白系统[17-18]。TrxR的主要生理功能是催化NADPH,依赖NADPH提供的电子还原硫氧还蛋白上的二硫键,即维持氧化型硫氧还蛋白的还原型,还原型硫氧还蛋白通过清除体内的活性氧(ROS)达到抗氧化的目的[19]。谷胱甘肽(GSH)/GSH-Px系统和过氧化物酶(Prxs)系统中,TrxR既能还原氧化型Prxs,也可以辅助血浆GSH-Px传递电子还原血液中的氧化型GSH-Px,对于系统维持胞质内过氧化物稳定具有重要作用[20]。因此,TrxR的表达水平和活性是影响机体细胞内还原状态的一个重要因素。DIOs酶系主要包括DIO1、DIO2和DIO3,是一种具有催化还原作用的含硒酶,与甲状腺关系密切,参与甲状腺激素的生成和代谢,对甲状腺发挥免疫作用和抗氧化作用意义重大[21]。DIOs则通过调节活性甲状腺素的合成和分泌,进而影响机体的抗氧化过程及其他生理活动[22]

大量饲喂试验表明,补充适量的硒可以改善牛的抗氧化功能。Salman等[23]通过泌乳奶牛试验研究表明,基础饲粮中添加酵母硒有助于提高奶牛血液硒含量,改善机体的抗氧化能力。呼显生等[24]研究发现,奶牛基础饲粮中硒含量达到0.6 mg/kg时,可显著提高血清中GSH-Px活性和硒含量,增加泌乳量,说明补充适量的硒可以减轻泌乳期奶牛的氧化应激。Warken等[25]研究表明,分别在奶牛产前20 d、产犊当天以及产后20 d,通过皮下注射方式补充10 mL的矿物质补充剂(含亚硒酸钠0.024 g)可提高血液中GSH-Px和超氧化物歧化酶(SOD)活性,降低ROS含量。Vedovatto等[26]探究注射微量元素(ITM)对内洛犊牛抗氧化能力和免疫功能的影响,注射量为每45 kg体重注射1 mL ITM,每毫升ITM含有60 mg锌、10 mg锰、5 mg硒和15 mg铜,结果表明,相较于对照组,注射ITM显著提高了血浆中SOD和GSH-Px活性,显著提高了白细胞数量,但对中性粒细胞和肥大细胞数量无显著影响。Wang等[27]在研究血清硒含量与隐性乳房炎奶牛机体免疫功能和抗氧化能力的关系时表明,GSH-Px活性随血清硒含量的增加而提高,饲粮长期缺硒则会增加隐性乳房炎的发病率。

1.2 硒对牛免疫功能的影响

硒在牛体内的水平与机体免疫系统的正常发育及功能维持密切相关,它是提高机体免疫力与抗病性不可或缺的微量元素之一。有研究表明,给离体培养的牛细胞加入维生素E和硒时,可以最大程度地提高淋巴细胞的增殖与分化速率[28],说明硒具有促进细胞增殖和提高机体免疫功能的作用。Aribi等[29]研究发现,硒也影响免疫细胞的反应水平,适当的补充硒可以增加巨噬细胞的活性和吞噬能力,并可以有效抑制病菌的增殖。Chung等[30]研究发现,加硒状态下体外培养的中性粒细胞对金黄色葡萄球菌具有更强的杀灭能力。这表明硒与吞噬细胞的关联在于硒会影响吞噬细胞的吞噬效率和杀菌活性,适量补硒可以提高机体免疫力。倪丽丽[31]通过奶牛试验研究表明,基础饲粮中有机硒含量为0.6 mg/kg DM时,显著提高了血清中可溶性辅助T淋巴细胞含量,可以有效增强机体的细胞免疫,同时酵母硒组比亚硒酸钠组具有更好的瘤胃环境、抗氧化能力及免疫反应。B淋巴细胞负责体液免疫,在抗原(BCR)刺激下会活化并产生大量活性氧,而活性氧的积累会降低白细胞分化抗原(CD19)的表达,导致体液免疫抑制[32-33]。同时,在这一过程中B淋巴细胞分化为浆细胞,浆细胞可生成各类免疫球蛋白,它们是构成体液免疫的关键。而免疫球蛋白G、免疫球蛋白A、免疫球蛋白M是体液中几种重要的免疫球蛋白,研究发现机体硒含量会影响免疫球蛋白的表达[34-35]。王传蓉等[36]研究表明,在母牛预产前60 d到产后30 d内补饲维生素E和硒可显著提高围产期母牛血清和初乳中免疫球蛋白G、免疫球蛋白A和免疫球蛋白M含量,同时也显著增加犊牛血清中免疫球蛋白G和免疫球蛋白A含量,有效改善犊牛的免疫水平,降低发病率。Kamada等[4]研究得出,在初乳中添加硒可显著提高新生犊牛血清中免疫球蛋白G含量,且适宜添加量为3.0 mg/kg。而缺硒则会降低血液和体液中免疫球蛋白含量,引发牛的免疫缺陷,增加患病几率[37-38]。以上研究表明,饲粮补充硒可以促进牛的体液免疫、细胞免疫和固有免疫,提高机体免疫系统的应答水平。

1.3 硒对牛对瘤胃环境的影响

硒对牛瘤胃发酵功能有重要影响,对于牛而言,硒的营养生理作用不仅针对机体组织,而且对瘤胃环境也同样重要。硒也是瘤胃微生物必需的微量元素,它参与瘤胃微生物的生化代谢,通过促进微生物的生长,提高瘤胃内菌群数量和微生物活性,进而影响瘤胃的发酵环境[39]。Liu等[40]研究发现,硒通过增加牛瘤胃总挥发性脂肪酸(VFA)含量,降低瘤胃pH和氨态氮浓度,同时在基础饲粮硒含量为0.3 mg/kg时补充硒,可以获得较好的瘤胃微生物数量和蛋白酶活性,提高牛对营养物质的消化吸收率。Zhang等[41]通过奶牛试验发现,瘤胃pH随饲粮含硒量增加而降低,但微生物数量和蛋白酶活性则随饲粮含硒量增加而增加,与对照组相比,富硒组具有较高的VFA含量和较低的乙酸/丙酸值,有效改善了瘤胃发酵功能,提高了养分消化率。Wei等[42]研究表明,补充硒可以改善泌乳中期奶牛的瘤胃发酵,同时补充硒代蛋氨酸羟基类似物与补充亚硒酸钠相比,具有更高的表观吸收率和VFA含量。饲粮添加酵母硒后,体外发酵24 h可以显著增加瘤胃VFA含量和单细胞蛋白含量,提高牛瘤胃发酵的能量效率[43]。武霞霞[44]研究发现,在含有基础饲粮的体外瘤胃培养液中加入硒发酵3~48 h,对照组的瘤胃发酵功能和营养物质消化率较硒补充组差。但是也存在不同的研究发现,西门塔尔牛饲粮中添加包被硒不会影响瘤胃总VFA含量[45],其具体原因尚不明确。

以上研究表明,饲粮补充硒可以通过增加瘤胃VFA浓度、影响瘤胃发酵的模式和发酵的能量利用效率来改善瘤胃发酵功能,提高牛对营养物质的消化吸收率。

2 硒对牛生长性能的影响及其作用机制 2.1 增重

动物体内的微量元素含量一定程度上决定于其生产地域,而饲粮缺硒是导致牛缺硒的主要原因,通过补充适量的硒,可以起到提高牛生长性能的作用。甲状腺激素是由甲状腺器官合成和分泌的碘化氨基酸,具有增加机体基础代谢的作用,可促进蛋白质的合成与周转,加速其他营养物质的代谢,同时可与生长激素起协同作用,调控生长激素的合成和表达,进而促进动物的生长发育[46]。硒对牛生长性能的影响主要是通过脱碘酶调控甲状腺激素的动态平衡来实现。甲状腺中三碘甲状腺原氨酸(T3)的含量是甲状腺素(T4)含量的5~8倍,但腺体中大部分为T4,只有少部分T3,脱碘酶可以催化T4转化为T3,增强胰岛素分泌,达到促进生长的目的[47-48]。因此,当动物机体缺硒时,T3含量会降低,生长发育受阻。有研究表明,围产期母牛注射亚硒酸钠和维生素E,可增加犊牛抗病性,且能促进犊牛的生长,显著提高初生重和平均日增重[49]。韩东魁[50]研究发现,补硒可显著提高黄牛的饲料转化率,但是对平均日增重的作用效果不显著。李春梅等[51]给妊娠后期母牦牛注射硒和维生素E,结果表明,与对照组相比,试验组犊牦牛平均日增重显著提高,而疾病发生率明显下降。但是也有部分研究认为,饲粮中补充硒未对动物生长性能产生显著影响,例如,Salles等[52]在研究饲粮添加有机硒对犊牛生长性能的影响时发现,补充硒可以提高饲料转化率,但不会显著影响犊牛的增重、体高、体长等指标。Haug等[53]的研究也表明,饲粮中补充硒未能对公牛的干物质采食量和生长性能产生影响。这可能与养殖环境、牛的年龄阶段和生理状态以及硒的添加形式、添加水平、添加时间等因素有关。

2.2 泌乳量和乳品质

硒对奶牛的泌乳性能和乳汁成分有重要影响。对于泌乳期奶牛而言,硒的营养生理功能不仅是增强乳腺组织的免疫能力,减少乳腺炎的发病率[54],而且也是DIOs的活性中心,可以通过调节甲状腺激素的表达而影响乳汁分泌[55]。另外,酵母硒等有机硒能提供氨基酸、维生素以及脂肪等多种营养物质和某些协调因子,调控糖类、脂质、蛋白质的转化与合成[56],进而影响乳品质。Wang等[57]研究发现,奶牛补充300 mg/kg DM的酵母硒,补充组产奶量和乳汁中硒含量显著高于对照组。呼显生等[24]研究发现,饲粮补充硒可显著提高奶牛泌乳性能,减少体细胞数量,提高乳品质。王治华等[58]在奶牛饲粮中添加150 IU/d的维生素E和0.3 mg/kg的硒,结果表明,补充组泌乳量较对照组提高了19.03%,但各组间乳汁成分无显著差异。郝宏晓等[59]研究补硒水平与奶牛生长性能的关系,饲粮中分别添加0.45、0.60 mg/kg的亚硒酸钠,结果表明,产奶量相较于对照组分别提高了1.7和1.3 kg/d,且乳蛋白率也显著上升。蒋昊[60]也研究发现,奶牛基础饲粮中添加硒有提高产奶量的趋势。Rabiee等[61]通过奶牛试验发现,产前至泌乳期结束给奶牛补充含有硒的有机微量元素,可明显提高乳脂率和乳蛋白率。Karkoodi等[62]报道,奶牛饲粮中添加有机硒可以有效改善乳成分,提高乳汁中乳脂和乳蛋白含量。但是,Ran等[63]研究发现,饲粮中添加酵母硒并不能显著提高奶牛的产奶量。以上研究表明,饲粮中添加硒影响泌乳量和乳品质的相关研究结果虽存在一定差异,但从整体上看,补充硒可改善泌乳性能,并且不会对乳品质产生负面影响。

综上所述,硒在提高牛的增重及泌乳量方面具有积极作用,对乳品质无不良影响。究其原因有三:一是硒能改善瘤胃微生物区系,通过增加瘤胃微生物的活性和丰度促进瘤胃发酵,提高牛对饲料的利用率;二是硒能提高机体抗氧化能力和免疫功能,使牛处于最佳的健康状态;三是硒参与调控生长激素的合成与表达,增加机体基础代谢,进而提高牛的生长性能,并在一定程度上改善乳品质。

3 硒对牛繁殖性能的影响

硒是维持牛生殖系统发育和繁殖机能正常运行的必需微量元素之一,其对繁殖性能的影响也是以硒蛋白形式实现的。氧化应激是导致牛繁殖性能受损的重要因子,硒蛋白及其代谢产物通过清除生殖系统和生殖细胞代谢过程中产生的过氧化氢与有机氢过氧化物,降低活性氧自由基对繁殖性能的影响[64-67]

3.1 母牛

硒在母牛生殖过程的每个阶段都起着重要作用。活性氧自由基能干扰包括前列腺素、卵泡素、黄体激素的合成以及卵母细胞成熟、受精过程、胚胎发育等繁殖机能[68-69],含硒酶作为抗氧化剂可以保护生殖系统的结构与功能免受过氧化物的干扰及损害,进而改善母牛的繁殖性能。有研究表明,荷斯坦奶牛饲粮中添加硒可提高产犊时和产犊后血浆硒含量,且产犊后血浆孕酮含量的升高早于对照组,说明奶牛产犊前后补硒有利于促进产犊后黄体功能的恢复[70]。Ullah等[71]研究发现,奶牛饲粮添加0.3 mg/kg的酵母硒可提高血清孕酮含量和产奶量,降低血清皮质醇含量。Lizarraga等[72]研究结果显示,给体外培养的亚伯丁安格斯牛初级卵母细胞补充硒之后,卵母细胞的活力和数量增加,补充10 ng/mL硒可显著提高卵母细胞的活力和数量,促进胚胎发育。Khatti等[73]研究发现,围产期奶牛基础饲粮中添加80 IU/kg的维生素E和0.3 mg/kg的硒可显著缩短产后首次发情时间,提高妊娠率,有效改善产后繁殖性能。还有研究表明,补充适量的硒可以降低围产期奶牛乳腺炎、子宫炎发生率以及产后胎盘滞留率[74-75]

3.2 公牛

硒除了对母牛生殖过程起重要作用,对公牛雄性激素分泌、生精组织发育和功能维持、精子发生、精液质量等也有重要影响。动物长期缺硒会损害生精组织,导致睾丸萎缩和曲精细管发育不良,影响精原细胞进行有丝分裂[64]。硒是维持精子发生的必需微量元素,精子成熟过程中硒被血浆硒蛋白P转运到睾丸,在脂蛋白受体作用下,经睾丸足细胞吸收、合成、分泌为睾丸硒蛋白,参与精子的正常发生[76-78]。硒蛋白P缺陷可导致精原细胞中硒含量降低,有丝分裂受阻或停止,畸形精子增多,精液质量下降[79]。此外,硒也通过GSH-Px参与抗氧化作用,保护成熟精子免受活性氧自由基损伤。睾丸硒含量下降可引起GPx4表达水平降低,造成线粒体代谢过程中产生的活性氧自由基积累,进而破坏生物膜的完整性,导致精子活力下降,甚至功能丧失[80]。El-Sharawy等[81]研究得出,补充硒可以有效改善公牛精液质量和部分血液成分,每周2次补充10 mg/头的赛乐硒或亚硒酸钠可以显著提高公牛的精子存活率、血清睾酮含量和精浆中果糖含量,降低精子畸形率,且有机硒的效果优于无机硒。Khalil等[82]研究硒纳米颗粒(Se-NPs)对低温保存荷斯坦公牛精子质量的影响,发现添加1.0 μg/mL Se-NPs可以提高解冻后的精子质量,降低脂质过氧化、细胞凋亡以及低温保存造成的精子损伤,从而提高受精率。杨文瑾[83]研究发现,硒影响冷冻公牛的精液品质,添加亚硒酸钠可显著降低精子畸形率,并能有效改善体外存活时间。

4 硒对牛肉品质的影响

色泽、风味和营养物质含量等是衡量牛肉品质的重要理化性质[84],它们反映肉的质地、新鲜程度、风味特征和营养特性。脂质氧化是肉质恶化的主要原因,肉中的氧化反应会影响肉色稳定性、风味物质含量和营养价值[85-86]。硒作为动物体内重要的抗氧化剂,其抗氧化功能对阻止肌红蛋白或氧合肌红蛋白变性、防止多不饱和脂肪酸氧化、减少滴水损失、维持肉色稳定、保持肉中营养成分具有重要作用。韩东魁[50]通过延边黄牛试验发现,基础饲粮中添加0.2%的富硒和富锗酵母培养物,肌肉中亚油酸和风味氨基酸含量均显著高于对照组,且饱和脂肪酸含量相对较低。这说明补充适量的硒能增加牛肉的风味物质含量,降低脂质氧化速率,改善肉品质。Rossi等[87]研究发现,与在生长育肥牛饲粮中添加0.2 mg/kg亚硒酸钠相比,添加相同水平的富硒酵母不仅有降低剪切力的趋势,而且肉色、风味、亮度也有显著改善。这说明补充有机硒提高了肉的嫩度和色泽稳定性,有利于延长货架期。Cozzi等[88]对夏洛莱牛肉品质做了研究分析,得出基础饲粮中添加硒可以有效改善肉品质,且富硒酵母组比亚硒酸钠组具有更好的肉色和嫩度。徐娥等[89]研究发现,在育肥牛饲粮中添加有机硒可显著提高牛肉中的硒沉积,硒的添加量为0.3 mg/kg时,牛肉的营养品质得到有效改善。

5 不同硒源的使用效果比较

在动物生产中,常见的硒源有两大类,即由生物转化而来的植物活性硒和金属矿藏中获取的无机硒。有机硒有富硒蛋氨酸、酵母硒、富硒藻等,酵母硒在动物营养中应用较为广泛,而无机硒主要包括硒酸钠和亚硒酸钠[90]。不同化学形态的硒有着不同的生物效价,因此在畜牧生产中有必要研究牛适宜的添加硒源。有研究发现,添加硒的化学形态对过渡期奶牛血液淋巴细胞、红细胞、血红蛋白和红细胞比容等无显著影响,但是有机硒更有助于改善奶牛的健康状况和繁殖性能[91]。El-Sharawy等[81]发现,添加不同来源硒的水牛血清睾酮和硒含量无显著差异,但是与添加亚硒酸钠相比,添加赛乐硒显著提高了精浆中果糖含量和精子存活率。Beck等[92]研究有机硒和无机硒对断奶犊牛营养状况和免疫答应的影响,结果表明,硒酵母与传统硒源相比,不仅具有更高的生物学利用效率,而且提高了血清硒含量和巨噬细胞吞噬功能。张清月等[43]研究表明,与添加亚硒酸钠相比,硒代蛋氨酸和酵母硒具有更好的瘤胃发酵功能。孙玲玲[93]研究发现,中国荷斯坦奶牛饲粮中添加不同化学形态的硒对血清GSH-Px活性、泌乳量和乳品质均无显著影响,Niwińska等[94]也研究发现,不同硒源对母牛-犊牛间硒转移效率无显著影响。表 1为不同化学形式的硒使用效果比较,大部分研究认为有机硒生物安全性、生物学效价和适口性高于无机硒。

表 1 不同化学形式的硒使用效果比较 Table 1 Comparison of effects of different chemical forms of selenium

有些研究认为,有机硒具有更高的生物学效价,有机硒的吸收率高于无机硒,组织中硒的沉积率显著增加,毒性较小,在动物生产中的效果也优于无机硒。但是目前有机硒发挥营养生理功能的分子机制和作用机理尚不清楚。尽管学者们从不同的角度揭示了有机硒在动物体内发挥营养作用的机制,但是不同的研究结果之间还存在一定差异[95],还需要继续深入研究。

6 小结

综上所述,硒在牛生产应用中发挥着重要作用,硒不仅参与物质代谢调控,而且在维持机体正常生理功能和生长发育过程中也起着重要作用。它通过参与机体GSH-Px活性中心的构成,发挥调节抗氧化功能的作用,还可通过促进机体免疫器官与免疫细胞的方式来提高机体的免疫水平。此外,缺硒时补充硒能改善牛的瘤胃发酵模式,提高牛对饲料中有机和无机营养物的吸收利用率,进而促进各组织器官的发育,改善牛的生长性能、繁殖机能和肉品质等。目前,关于硒的基础研究较多,但是硒在不同品种、不同性别或不同生长阶段牛生产中的添加量、添加形式及其在机体内的转化规律、作用效果等机理性研究还有待进一步研究。

参考文献
[1]
SORDILLO L M. Nutritional strategies to optimize dairy cattle immunity[J]. Journal of Dairy Science, 2016, 99(6): 4967-4982. DOI:10.3168/jds.2015-10354
[2]
BRIGELIUS-FLOHÉ R, MAIORINO M. Glutathione peroxidases[J]. Biochimica et Biophysica Acta: General Subjects, 2013, 1830(5): 3289-3303. DOI:10.1016/j.bbagen.2012.11.020
[3]
SILVA J S, RODRIGUEZ F D, TRETTEL M, et al. Performance, carcass characteristics and meat quality of Nellore cattle supplemented with supranutritional doses of sodium selenite or selenium-enriched yeast[J]. Animal, 2020, 14(1): 215-222. DOI:10.1017/S1751731119001265
[4]
KAMADA H, NONAKA I, UEDA Y, et al. Selenium addition to colostrum increases immunoglobulin G absorption by newborn calves[J]. Journal of Dairy Science, 2007, 90(12): 5665-5670. DOI:10.3168/jds.2007-0348
[5]
MISTRY H D, BROUGHTON PIPKIN F, REDMAN C W, et al. Selenium in reproductive health[J]. American Journal of Obstetrics and Gynecology, 2012, 206(1): 21-30. DOI:10.1016/j.ajog.2011.07.034
[6]
WICHTEL J J, CRAIGIE A L, FREEMAN D A, et al. Effect of selenium and lodine supplementation on growth rate and on thyroid and somatotropic function in dairy calves at pasture[J]. Journal of Dairy Science, 1996, 79(10): 1865-1872. DOI:10.3168/jds.S0022-0302(96)76554-2
[7]
HOEKSTRA W G. Biochemical function of selenium and its relation to vitamin E[J]. Federation Proceedings, 1975, 34(11): 2083-2089.
[8]
SALMAN S, KHOL-PARISINI A, SCHAFFT H, et al. The role of dietary selenium in bovine mammary gland health and immune function[J]. Animal Health Research Reviews, 2009, 10(1): 21-34. DOI:10.1017/S1466252308001588
[9]
GABEL-JENSEN C, GAMMELGAARD B, BENDAHL L, et al. Separation and identification of selenotrisulfides in epithelial cell homogenates by LC-ICP-MS and LC-ESI-MS after incubation with selenite[J]. Analytical and Bioanalytical Chemistry, 2006, 384(3): 697-702. DOI:10.1007/s00216-005-0178-3
[10]
马森. 谷胱甘肽过氧化物酶和谷胱甘肽转硫酶研究进展[J]. 动物医学进展, 2008, 29(10): 53-56.
MA S. Progress on GSH-Px and GST[J]. Progress in Veterinary Medicine, 2008, 29(10): 53-56 (in Chinese). DOI:10.3969/j.issn.1007-5038.2008.10.015
[11]
GROMER S, EUBEL J K, LEE B L, et al. Human selenoproteins at a glance[J]. Cellular and Molecular Life Sciences: CMLS, 2005, 62(21): 2414-2437. DOI:10.1007/s00018-005-5143-y
[12]
CHABORY E, DAMON C, LENOIR A, et al. Mammalian glutathione peroxidases control acquisition and maintenance of spermatozoa integrity[J]. Journal of Animal Science, 2010, 88(4): 1321-1331. DOI:10.2527/jas.2009-2583
[13]
HOFFMANN P R, HÖGE S C, LI P A, et al. The selenoproteome exhibits widely varying, tissue-specific dependence on selenoprotein P for selenium supply[J]. Nucleic Acids Research, 2007, 35(12): 3963-3973. DOI:10.1093/nar/gkm355
[14]
WINGLER K, MVLLER C, SCHMEHL K, et al. Gastrointestinal glutathione peroxidase prevents transport of lipid hydroperoxides in CaCo-2 cells[J]. Gastroenterology, 2000, 119(2): 420-430. DOI:10.1053/gast.2000.9521
[15]
BANSAL M P, OBORN C J, DANIELSON K G, et al. Evidence for two selenium-binding proteins distinct from glutathione peroxidase in mouse liver[J]. Carcinogenesis, 1989, 10(3): 541-546. DOI:10.1093/carcin/10.3.541
[16]
张夏明, 徐刚. 微量元素硒与肾脏疾病关系的研究进展[J]. 浙江医学, 2018, 40(5): 529-533, 549.
ZHANG X M, XU G. Research progress on the relationship between trace element selenium and renal disease[J]. Zhejiang Medical Journal, 2018, 40(5): 529-533, 549 (in Chinese).
[17]
HOLMGREN A. Redox regulation by thioredoxin and thioredoxin reductase[J]. BioFactors, 2010, 11(1/2): 63-64.
[18]
MUSTACICH D, POWIS G. Thioredoxin reductase[J]. The Biochemical Journal, 2000, 346(Pt 1): 1-8.
[19]
ARNÉR E S. Focus on mammalian thioredoxin reductases-important selenoproteins with versatile functions[J]. Biochimica et Biophysica Acta: General Subjects, 2009, 1790(6): 495-526. DOI:10.1016/j.bbagen.2009.01.014
[20]
BINDOLIA A, RIGOBELLO M P, SCUTARI G, et al. Thioredoxin reductase: a target for gold compounds acting as potential anticancer drugs[J]. Coordination Chemistry Reviews, 2009, 253(11/12): 1692-1707.
[21]
KÖHRLE J, JAKOB F, CONTEMPRÉ B, et al. Selenium, the thyroid, and the endocrine system[J]. Endocrine Reviews, 2005, 26(7): 944-984. DOI:10.1210/er.2001-0034
[22]
AVERY J C, HOFFMANN P R. Selenium, selenoproteins, and immunity[J]. Nutrients, 2018, 10(9): 1203. DOI:10.3390/nu10091203
[23]
SALMAN S, DINSE D, KHOL-PARISINI A, et al. Colostrum and milk selenium, antioxidative capacity and immune status of dairy cows fed sodium selenite or selenium yeast[J]. Archives of Animal Nutrition, 2013, 67(1): 48-61. DOI:10.1080/1745039X.2012.755327
[24]
呼显生, 刘玉茹, 尹柏双, 等. 酵母硒对奶牛血液抗氧化能力及泌乳性能的影响[J]. 畜牧与兽医, 2012, 44(12): 54-56.
HU X S, LIU Y R, YIN B S, et al. Effects of yeast selenium on blood antioxidant capacity and lactation performance of dairy cows[J]. Animal Husbandry & Veterinary Medicine, 2012, 44(12): 54-56 (in Chinese).
[25]
WARKEN A C, LOPES L S, BOTTARI N B, et al. Mineral supplementation stimulates the immune system and antioxidant responses of dairy cows and reduces somatic cell counts in milk[J]. Anais da Academia Brasileira de Ciências, 2018, 90(2): 1649-1658. DOI:10.1590/0001-3765201820170524
[26]
VEDOVATTO M, DA SILVA PEREIRA C, CORTADA NETO I M, et al. Effect of a trace mineral injection at weaning on growth, antioxidant enzymes activity, and immune system in Nellore calves[J]. Tropical Animal Health and Production, 2020, 52(2): 881-886. DOI:10.1007/s11250-019-02056-0
[27]
WANG D, JIA D Q, HE R H, et al. Association between serum selenium level and subclinical mastitis in dairy cattle[J]. Biological Trace Element Research, 2021, 199(4): 1389-1396. DOI:10.1007/s12011-020-02261-1
[28]
SORDILLO L M, HICKS C R, WILSON R, et al. Effects of selenium status on bovine mononuclear cell function[J]. Zentralblatt Fur Veterinarmedizin Reihe A, 1993, 40(8): 615-623.
[29]
ARIBI M, MEZIANE W, HABI S, et al. Macrophage bactericidal activities against Staphylococcus aureus are enhanced in vivo by selenium supplementation in a dose-dependent manner[J]. PLoS One, 2015, 10(9): e0135515. DOI:10.1371/journal.pone.0135515
[30]
CHUNG S, ZHOU R H, WEBSTER T J. Green synthesized BSA-coated selenium nanoparticles inhibit bacterial growth while promoting mammalian cell growth[J]. International Journal of Nanomedicine, 2020, 15: 115-124. DOI:10.2147/IJN.S193886
[31]
倪丽丽. 有机硒对奶牛瘤胃发酵、抗氧化功能及免疫功能的影响[D]. 硕士学位论文. 呼和浩特: 内蒙古农业大学, 2011.
NI L L. Effects of organic selenium on rumen fermentation, antioxidant function and immune function in dairy cows[D]. Master's Thesis. Hohhot: Inner Mongolia Agricultural University, 2011. (in Chinese)
[32]
WHEELER M L, DEFRANCO A L. Prolonged production of reactive oxygen species in response to B cell receptor stimulation promotes B cell activation and proliferation[J]. Journal of Immunology, 2012, 189(9): 4405-4416. DOI:10.4049/jimmunol.1201433
[33]
OGURA M, INOUE T, YAMAKI J, et al. Mitochondrial reactive oxygen species suppress humoral immune response through reduction of CD19 expression in B cells in mice[J]. European Journal of Immunology, 2017, 47(2): 406-418. DOI:10.1002/eji.201646342
[34]
PLAZA-DÍAZ J, FONTANA L, GIL A. Human milk oligosaccharides and immune system development[J]. Nutrients, 2018, 10(8): 1038. DOI:10.3390/nu10081038
[35]
WALLACE L G, BOBE G, VORACHEK W R, et al. Effects of feeding pregnant beef cows selenium-enriched alfalfa hay on selenium status and antibody titers in their newborn calves[J]. Journal of Animal Science, 2017, 95(6): 2408-2420. DOI:10.2527/jas.2017.1377
[36]
王传蓉, 王加启, 赵国琦, 等. 母牛补饲维生素E和硒对新生犊牛生长和免疫的影响[J]. 中国兽医学报, 2009, 29(12): 1625-1628.
WANG C R, WANG J Q, ZHAO G Q, et al. Effects of supplementary vitamin E and selenium for cows on growth and immune of neonatal calves[J]. Chinese Journal of Veterinary Science, 2009, 29(12): 1625-1628 (in Chinese).
[37]
吴凌, 夏成, 张洪友, 等. 泌乳奶牛血浆硒水平与机体抗氧化和免疫功能的关系[J]. 中国兽医学报, 2015, 35(12): 1974-1978.
WU L, XIA C, ZHANG H Y, et al. Plasma Se level and its relationship with antioxidant and immune function in lactation cows[J]. Chinese Journal of Veterinary Science, 2015, 35(12): 1974-1978 (in Chinese).
[38]
BATES A, WELLS M, LAVEN R A, et al. Reduction in morbidity and mortality of dairy calves from an injectable trace mineral supplement[J]. The Veterinary Record, 2019, 184(22): 680. DOI:10.1136/vr.105082
[39]
GENTHER O N, HANSEN S L. The effect of trace mineral source and concentration on ruminal digestion and mineral solubility[J]. Journal of Dairy Science, 2015, 98(1): 566-573. DOI:10.3168/jds.2014-8624
[40]
LIU Y J, WANG C, LIU Q, et al. Effects of sodium selenite addition on ruminal fermentation, microflora and urinary excretion of purine derivatives in Holstein dairy bulls[J]. Journal of Animal Physiology and Animal Nutrition, 2019, 103(6): 1719-1726. DOI:10.1111/jpn.13193
[41]
ZHANG Z D, WANG C, DU H S, et al. Effects of sodium selenite and coated sodium selenite on lactation performance, total tract nutrient digestion and rumen fermentation in Holstein dairy cows[J]. Animal, 2020, 14(10): 2091-2099. DOI:10.1017/S1751731120000804
[42]
WEI J Y, WANG J, LIU W, et al. Short communication: effects of different selenium supplements on rumen fermentation and apparent nutrient and selenium digestibility of mid-lactation dairy cows[J]. Journal of Dairy Science, 2019, 102(4): 3131-3135. DOI:10.3168/jds.2018-15455
[43]
张清月, 武霞霞, 赵艳丽, 等. 有机硒与无机硒对奶牛体外瘤胃发酵特性的影响[J]. 饲料与畜牧, 2018(11): 48-55.
ZHANG Q Y, WU X X, ZHAO Y L, et al. Effects of organic selenium and inorganic selenium on rumen fermentation characteristics of dairy cows in vitro[J]. Animal Agriculture, 2018(11): 48-55 (in Chinese).
[44]
武霞霞. 硒源及硒水平对奶牛体外瘤胃发酵及营养物质降解的影响[D]. 硕士学位论文. 呼和浩特: 内蒙古农业大学, 2012.
WU X X. Effects of selenium sources and selenium levels on rumen fermentation and nutrient degradation in vitro in dairy cows[D]. Master's Thesis. Hohhot: Inner Mongolia Agricultural University, 2012. (in Chinese)
[45]
刘强, 黄应祥, 王聪, 等. 包被硒对西门塔尔牛瘤胃发酵和尿嘌呤衍生物的影响[J]. 饲料工业, 2007, 28(18): 6-8.
LIU Q, HUANG Y X, WANG C, et al. Effects of dietary rumen-by-pass selenium supplementation on rumen fermentation and purine derivatives in Simmental steers[J]. Feed Industry, 2007, 28(18): 6-8 (in Chinese). DOI:10.3969/j.issn.1001-991X.2007.18.002
[46]
张颖, 姚旋, 宋宜云, 等. 甲状腺激素与代谢调控[J]. 生命科学, 2013, 25(2): 176-183.
ZHANG Y, YAO X, SONG Y Y, et al. Thyroid hormone and metabolic regulation[J]. Chinese Bulletin of Life Sciences, 2013, 25(2): 176-183 (in Chinese).
[47]
BECKETT G J, MACDOUGALL D A, NICOL F, et al. Inhibition of type Ⅰ and type Ⅱ iodothyronine deiodinase activity in rat liver, kidney and brain produced by selenium deficiency[J]. The Biochemical Journal, 1989, 259(3): 887-892. DOI:10.1042/bj2590887
[48]
THOMPSON K M, HAIBACH H, SUNDE R A. Growth and plasma triiodothyronine concentrations are modified by selenium deficiency and repletion in second-generation selenium-deficient rats[J]. The Journal of Nutrition, 1995, 125(4): 864-873.
[49]
李飞, 杨华, 侯延旭. 亚硒酸钠VE对犊牛生长发育的影响[J]. 中国草食动物, 2000, 2(5): 18-19.
LI F, YANG H, HOU Y X. Effect of sodium selenite VE on growing period of the calf[J]. China Herbivore Science, 2000, 2(5): 18-19 (in Chinese). DOI:10.3969/j.issn.2095-3887.2000.05.007
[50]
韩东魁. 富硒锗酵母培养物制作及其对延边黄牛生产性能的影响[D]. 硕士学位论文. 延吉: 延边大学, 2019.
HAN D K. Preparation of se-enriched germanium yeast culture and its effect on the production performance of Yanbian yellow cattle[D]. Master's Thesis. Yanji: Yanbian University, 2019. (in Chinese)
[51]
李春梅, 李国梅, 贺顺忠, 等. 妊娠后期母牦牛补Se和VE对犊牦牛生长发育的影响[J]. 青海畜牧兽医杂志, 2020, 50(1): 27-30.
LI C M, LI G M, HE S Z, et al. Effects of Se and VE supplementation on growth and development of calve yak in late pregnant female yak[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2020, 50(1): 27-30 (in Chinese). DOI:10.3969/j.issn.1003-7950.2020.01.006
[52]
SALLES M S V, ZANETTI M A, JÚNIOR L C R, et al. Performance and immune response of suckling calves fed organic selenium[J]. Animal Feed Science and Technology, 2014, 188: 28-35. DOI:10.1016/j.anifeedsci.2013.11.008
[53]
HAUG A N, VHILE S G, BERG J, et al. Feeding potentially health promoting nutrients to finishing bulls changes meat composition and allow for product health claims[J]. Meat Science, 2018, 145: 461-468. DOI:10.1016/j.meatsci.2018.07.015
[54]
MALBE M, KLAASSEN E, KAARTINEN L, et al. Effects of oral selenium supplementation on mastitis markers and pathogens in Estonian cows[J]. Veterinary Therapeutics: Research in Applied Veterinary Medicine, 2003, 4(2): 145-154.
[55]
杨钢. 内分泌生理与病理生理学[M]. 2版. 天津: 天津科学技术出版社, 2000.
YANG G. Endocrine physiology & pathphysiology[M]. 2nd ed. Tianjin: Tianjin Science and Technology Press, 2000 (in Chinese).
[56]
王玲, 吕永艳, 程志伟, 等. 复合酵母培养物对奶牛产奶性能、氮排放及血液生化指标的影响[J]. 草业学报, 2015, 24(12): 121-130.
WANG L, LYU Y Y, CHENG Z W, et al. Milk production, nitrogen excretion and blood biochemical parameter responses to dietary addition of compound yeast cultures in dairy cows[J]. Acta Prataculturae Sinica, 2015, 24(12): 121-130 (in Chinese). DOI:10.11686/cyxb2015124
[57]
WANG C, LIU Q, YANG W Z, et al. Effects of selenium yeast on rumen fermentation, lactation performance and feed digestibilities in lactating dairy cows[J]. Livestock Science, 2009, 126(1/2/3): 239-244.
[58]
王治华, 杨志飞, 王连仲, 等. 日粮中硒和维生素E对奶牛泌乳性能的影响[J]. 中国草食动物, 2005, 25(2): 33-34.
WANG Z H, YANG Z F, WANG L Z, et al. Effect of dietary Se and vitamin E on performance of dairy cows[J]. China Herbivore Science, 2005, 25(2): 33-34 (in Chinese). DOI:10.3969/j.issn.2095-3887.2005.02.013
[59]
郝宏晓, 刘光磊, 张佩华. 日粮添加硒对围产期奶牛生产性能和氧化应激状态的影响[J]. 黑龙江畜牧兽医, 2017(13): 40-45, 48.
HAO H X, LIU G L, ZHANG P H. The effects of dietary selenium supplementation on performance and oxidative stress status of transition dairy cows[J]. Heilongjiang Animal Science and Veterinary Medicine, 2017(13): 40-45, 48 (in Chinese).
[60]
蒋昊. 硒和维生素E对泌乳水牛乳房炎发病率、生产及繁殖性能的影响[D]. 硕士学位论文. 南宁: 广西大学, 2012.
JIANG H. Effects of selenium and vitamin E on the incidence, production and reproductive performance of lactating buffalo mastitis[D]. Master's Thesis. Nanning: Guangxi University, 2012. (in Chinese)
[61]
RABIEE A R, LEAN I J, STEVENSON M A, et al. Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: a meta-analysis[J]. Journal of Dairy Science, 2010, 93(9): 4239-4251. DOI:10.3168/jds.2010-3058
[62]
KARKOODI K, CHAMANI M, BEHESHTI M, et al. Effect of organic zinc, manganese, copper, and selenium chelates on colostrum production and reproductive and lameness indices in adequately supplemented Holstein cows[J]. Biological Trace Element Research, 2012, 146(1): 42-46. DOI:10.1007/s12011-011-9216-5
[63]
RAN L W, WU X S, SHEN X Z, et al. Effects of selenium form on blood and milk selenium concentrations, milk component and milk fatty acid composition in dairy cows[J]. Journal of the Science of Food and Agriculture, 2010, 90(13): 2214-2219. DOI:10.1002/jsfa.4073
[64]
AHSAN U, KAMRAN Z, RAZA I, et al. Role of selenium in male reproduction-a review[J]. Animal Reproduction Science, 2014, 146(1/2): 55-62.
[65]
QAZI I H, ANGEL C, YANG H X, et al. Selenium, selenoproteins, and female reproduction: a review[J]. Molecules, 2018, 23(12): 3053. DOI:10.3390/molecules23123053
[66]
STUSS M, MICHALSKA-KASICZAK M, SEWERYNEK E. The role of selenium in thyroid gland pathophysiology[J]. Endokrynologia Polska, 2017, 68(4): 440-465. DOI:10.5603/EP.2017.0051
[67]
CEKO M J, O'LEARY S, HARRIS H H, et al. Trace elements in ovaries: measurement and physiology[J]. Biology of Reproduction, 2016, 94(4): 86.
[68]
CEKO M J, HUMMITZSCH K, HATZIRODOS N, et al. X-ray fluorescence imaging and other analyses identify selenium and GPX1 as important in female reproductive function[J]. Metallomics, 2015, 7(1): 71-82. DOI:10.1039/C4MT00228H
[69]
RAYMAN M P. Selenium and human health[J]. The Lancet, 2012, 379(9822): 1256-1268. DOI:10.1016/S0140-6736(11)61452-9
[70]
KAMADA H. Effects of selenium-rich yeast supplementation on the plasma progesterone levels of postpartum dairy cows[J]. Asian-Australasian Journal of Animal Sciences, 2017, 30(3): 347-354.
[71]
ULLAH H, KHAN R U, MOBASHAR M, et al. Effect of yeast-based selenium on blood progesterone, metabolites and milk yield in Achai dairy cows[J]. Italian Journal of Animal Science, 2019, 18(1): 1445-1450. DOI:10.1080/1828051X.2019.1683475
[72]
LIZARRAGA R M, ANCHORDOQUY J M, GALARZA E M, et al. Sodium selenite improves in vitro maturation of Bos primigenius taurus oocytes[J]. Biological Trace Element Research, 2020, 197(1): 149-158. DOI:10.1007/s12011-019-01966-2
[73]
KHATTI A, MEHROTRA S, PATEL P K, et al. Supplementation of vitamin E, selenium and increased energy allowance mitigates the transition stress and improves postpartum reproductive performance in the crossbred cow[J]. Theriogenology, 2017, 104: 142-148. DOI:10.1016/j.theriogenology.2017.08.014
[74]
SPEARS J W, WEISS W P. Role of antioxidants and trace elements in health and immunity of transition dairy cows[J]. The Veterinary Journal, 2008, 176(1): 70-76. DOI:10.1016/j.tvjl.2007.12.015
[75]
SORDILLO L M. Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle[J]. Veterinary Medicine International, 2013, 2013: 154045.
[76]
KEHR S, MALINOUSKI M, FINNEY L, et al. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis[J]. Journal of Molecular Biology, 2009, 389(5): 808-818. DOI:10.1016/j.jmb.2009.04.024
[77]
BROWN K M, ARTHUR J R. Selenium, selenoproteins and human health: a review[J]. Public Health Nutrition, 2001, 4(2B): 593-599. DOI:10.1079/PHN2001143
[78]
SHETTY S, MARSICANO J R, COPELAND P R. Uptake and utilization of selenium from selenoprotein P[J]. Biological Trace Element Research, 2018, 181(1): 54-61. DOI:10.1007/s12011-017-1044-9
[79]
OLSON G E, WINFREY V P, NAGDAS S K, et al. Selenoprotein P is required for mouse sperm development[J]. Biology of Reproduction, 2005, 73(1): 201-211. DOI:10.1095/biolreprod.105.040360
[80]
ZHOU J C, ZHENG S J, MO J L, et al. Dietary selenium deficiency or excess reduces sperm quality and testicular mRNA abundance of nuclear glutathione peroxidase 4 in rats[J]. The Journal of Nutrition, 2017, 147(10): 1947-1953. DOI:10.3945/jn.117.252544
[81]
EL-SHARAWY M, EID E, DARWISH S, et al. Effect of organic and inorganic selenium supplementation on semen quality and blood enzymes in buffalo bulls[J]. Animal Science Journal, 2017, 88(7): 999-1005. DOI:10.1111/asj.12736
[82]
KHALIL W A, EL-HARAIRY M A, ZEIDAN A E B, et al. Impact of selenium nano-particles in semen extender on bull sperm quality after cryopreservation[J]. Theriogenology, 2019, 126: 121-127. DOI:10.1016/j.theriogenology.2018.12.017
[83]
杨文瑾. 亚硒酸钠维生素E对牛冷冻精液品质的影响[J]. 中国奶牛, 2012(2): 21-25.
YANG W J. Effect of sodium selenite-vitamin E mixture on the quality of bovine frozen semen[J]. China Dairy Cattle, 2012(2): 21-25 (in Chinese). DOI:10.3969/j.issn.1004-4264.2012.02.008
[84]
陈浩, 王纯洁, 斯木吉德, 等. 牛肉品质及其影响因素研究进展[J]. 动物营养学报, 2021, 33(2): 669-678.
CHEN H, WANG C J, SI M J D, et al. Research progress on beef quality and its influencing factors[J]. Chinese Journal of Animal Nutrition, 2021, 33(2): 669-678 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.02.008
[85]
JO C, AHN D U. Fluorometric analysis of 2-thiobarbituric acid reactive substances in turkey[J]. Poultry Science, 1998, 77(3): 475-480. DOI:10.1093/ps/77.3.475
[86]
SUN Q, SENECAL A, CHINACHOTI P, et al. Effect of water activity on lipid oxidation and protein solubility in freeze-dried beef during storage[J]. Journal of Food Science, 2002, 67: 2512-2516. DOI:10.1111/j.1365-2621.2002.tb08768.x
[87]
ROSSI C A, COMPIANI R, BALDI G, et al. The effect of different selenium sources during the finishing phase on beef quality[J]. Journal of Animal and Feed Sciences, 2015, 24(2): 93-99. DOI:10.22358/jafs/65633/2015
[88]
COZZI G, PREVEDELLO P, STEFANI A L, et al. Effect of dietary supplementation with different sources of selenium on growth response, selenium blood levels and meat quality of intensively finished Charolais young bulls[J]. Animal, 2011, 5(10): 1531-1538. DOI:10.1017/S1751731111000711
[89]
徐娥, 夏先林, 张运国. 添加有机硒对育肥牛肉质和血液生理生化指标的影响[J]. 黑龙江畜牧兽医, 2011(7): 65-66.
XU E, XIA X L, ZHANG Y G. Effects of organic selenium on quality and blood physiological and biochemical indexes of fattened beef[J]. Heilongjiang Animal Science and Veterinary Medicine, 2011(7): 65-66 (in Chinese).
[90]
SUNDE R A, BOWMAN B, RUSSELL R. Selenium in present knowledge in nutrition[J]. International Life Sciences, 2006, 9: 480-497.
[91]
KHALILI M, CHAMANI M, AMANLOU H, et al. The effect of feeding inorganic and organic selenium sources on the hematological blood parameters, reproduction and health of dairy cows in the transition period[J]. Acta Scientiarum Animal Sciences, 2020, 42(1): e45371.
[92]
BECK P A, WISTUBA T J, DAVIS M E, et al. Effects of feeding supplemental organic or inorganic selenium to cow-calf pairs on selenium status and immune responses of weaned beef calves[J]. The Professional Animal Scientist, 2005, 21(2): 114-120. DOI:10.15232/S1080-7446(15)31179-7
[93]
孙玲玲. 蛋氨酸硒羟基类似物或酵母硒对泌乳奶牛血清及乳中硒浓度、生产性能及抗氧化能力的影响[D]. 硕士学位论文. 北京: 中国农业科学院, 2018.
SUN L L. The effect of methionine selenium hydroxy analogue or yeast selenium on the selenium concentration, production performance and antioxidant capacity of lactating dairy cows[D]. Master's Thesis. Beijing: The Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[94]
NIWIŃSKA B, ANDRZEJEWSKI M. Effects of selenium supplement forms on the diet-cow-calf transfer of selenium in Simmental cattle[J]. Czech Journal of Animal Science, 2017, 62(5): 201-210. DOI:10.17221/86/2016-CJAS
[95]
MEHDI Y, DUFRASNE I. Selenium in cattle: a review[J]. Molecules, 2016, 21(4): 545. DOI:10.3390/molecules21040545
[96]
VIERO V, FISCHER V, MACHADO S C, et al. Efeito da suplementação com diferentes níveis de selênio orgȃnico e inorgȃnico na produção e na composição do leite e no sangue de vacas em lactação[J]. Arquivo Brasilro de Medicina Veterinária e Zootecnia, 2010, 62(2): 382-390. DOI:10.1590/S0102-09352010000200019
[97]
JUNIPER D T, PHIPPS R H, GIVENS D I, et al. Tolerance of ruminant animals to high dose in-feed administration of a selenium-enriched yeast[J]. Journal of Animal Science, 2008, 86(1): 197-204. DOI:10.2527/jas.2006-773
[98]
王尚. 不同硒源与添加水平对热应激奶牛饲喂效果的研究[D]. 硕士学位论文. 合肥: 安徽农业大学, 2017.
WANG S. Effects of different selenium sources and supplementation levels on the feeding of heat-stressed cows[D]. Master's Thesis. Hefei: Anhui Agricultural University, 2017. (in Chinese)
[99]
ORTMAN K, PEHRSON B. Effect of selenate as a feed supplement to dairy cows in comparison to selenite and selenium yeast[J]. Journal of Animal Science, 1999, 77(12): 3365-3370. DOI:10.2527/1999.77123365x