动物营养学报    2021, Vol. 33 Issue (10): 5557-5568    PDF    
酶菌复合制剂对肉鸡生长性能、免疫功能和抗氧化功能的影响
陈丹蝶1,2 , 彭翔3 , 张广民3 , 陈凯旋2 , 苏艳芳2 , 萨仁娜2 , 黄艳玲1     
1. 西南民族大学畜牧兽医学院, 成都 610041;
2. 中国农业科学院北京畜牧兽医研究所, 动物营养学国家重点实验室, 北京 100193;
3. 天津博菲德科技有限公司, 天津 300000
摘要: 本试验旨在对比分析不同组合的酶菌复合制剂对肉鸡生长性能、免疫功能和抗氧化功能等的影响,为开发合理的抗生素生长促进剂的替代方案提供支撑。试验选用1日龄健康科宝500雏鸡1 120只,随机分为4个组,每组10个重复,每个重复28只鸡(公母各占1/2)。4个组分别为:1)空白对照组,饲喂基础饲粮;2)抗生素组,在基础饲粮中添加45 g/t金霉素(含量为15%)和10 g/t吉他霉素(含量为50%);3)酶菌复合制剂Ⅰ组,在基础饲粮中添加150 g/t非淀粉多糖酶、300 g/t葡萄糖氧化酶(GOD)和50 g/t乳酸菌;4)酶菌复合制剂Ⅱ组,在基础饲粮中添加500 g/t群体感应淬灭酶(QQE)、300 g/t GOD和50 g/t乳酸菌。基础饲粮为玉米-豆粕型。试验期42 d,期间鸡只自由采食和饮水。结果表明:1)与空白对照组相比,在生长前期(1~21日龄),抗生素组和酶菌复合制剂Ⅱ组肉鸡末重和平均日增重显著提高(P < 0.05),料重比显著降低(P < 0.05);抗生素组和酶菌复合制剂Ⅱ组肉鸡生长性能差异不显著(P>0.05)。在生长后期(22~42日龄)和生长全期(1~42日龄),各组肉鸡生长性能指标之间均无显著差异(P>0.05)。2)与空白对照组相比,抗生素组和酶菌复合制剂Ⅱ组肉鸡血清白细胞介素-6(IL-6)含量显著升高(P < 0.05),血清白细胞介素-10含量有升高的趋势(0.05≤P < 0.10)。3)与空白对照组相比,酶菌复合制剂Ⅱ组肉鸡血清谷胱甘肽过氧化物酶(GSH-Px)和过氧化氢酶(CAT)活性显著提高(P < 0.05),酶菌复合制剂Ⅰ组肉鸡血清CAT活性显著提高(P < 0.05),酶菌复合制剂Ⅰ组和酶菌复合制剂Ⅱ组肉鸡肝脏超氧化物歧化酶(SOD)活性显著提高(P < 0.05)。4)与空白对照组相比,抗生素组、酶菌复合制剂Ⅰ组和酶菌复合制剂Ⅱ组肉鸡粪便中尿酸含量显著降低(P < 0.05)。综上所述,饲粮添加由QQE、GOD和乳酸菌配伍组成的酶菌复合制剂能够提高肉鸡生长前期(1~21日龄)的生长性能,显著提高血清IL-6含量,显著提高血清CAT和GSH-Px活性以及肝脏SOD活性,显著降低粪便中尿酸含量,可有效替代抗生素。
关键词: 酶菌复合制剂    抗生素    肉鸡    生长性能    免疫功能    抗氧化功能    
Effects of Compound Preparation of Enzyme and Probiotics on Growth Performance, Immune Function and Antioxidant Function of Broilers
CHEN Dandie1,2 , PENG Xiang3 , ZHANG Guangmin3 , CHEN Kaixuan2 , SU Yanfang2 , SA Renna2 , HUANG Yanling1     
1. College of Animal and Veterinary Science, Southwest Minzu University, Chengdu 610041, China;
2. State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
3. Tianjin Bofeider Technology Limited Company, Tianjin 300000, China
Abstract: This experiment was conducted to compare and analyze the effects of different combinations of enzyme and probiotics compound preparation on growth performance, immune function and antioxidant function of broilers, so as to provide support for the development of reasonable alternatives to antibiotic growth promoters. A total of 1 120 healthy Cobb 500 broiler chickens of one-day-old were randomly assigned into 4 groups with 10 replicates per group and 28 chickens (half male and half female) per replicate. The four groups were as follows: 1) the blank control group, and the broilers were fed a basal diet; 2) the antibiotic group, and the broilers were fed the basal diet supplemented with 45 g/t aureomycin (15%) and 10 g/t kitasamycin (50%); 3) the compound preparation of enzyme and probiotics group Ⅰ, and the broilers were fed the basal diet supplemented with 150 g/t non-starch polysaccharide enzyme, 300 g/t glucose oxidase (GOD) and 50 g/t lactic acid bacteria; 4) the compound preparation of enzyme and probiotics group Ⅱ, and the broilers were fed the basal diet supplemented with 500 g/t quorum quenching enzyme (QQE), 300 g/t GOD and 50 g/t lactic acid bacteria. The basal diet was corn-soybean meal type. The experiment lasted for 42 days, during which the chickens were free to eat and drink. The results showed as follows: 1) compared with the blank control group, at the early growth stage (1 to 21 days of age), the final body weight and average daily gain of broilers in the antibiotic group and the compound preparation of enzyme and probiotics group Ⅱ were significantly increased (P < 0.05), and the ratio of feed to gain was significantly decreased (P < 0.05). There was no significant difference in growth performance between the antibiotic group and the compound preparation of enzyme and probiotics group Ⅱ (P < 0.05). There were no significant differences in the growth performance indices of broilers in the late growth period (22 to 42 days of age) and the whole growth period (1 to 42 days of age) among all groups (P>0.05). 2) Compared with the blank control group, the serum interleukin-6 (IL-6) content of broilers in the antibiotic group and the compound preparation of enzyme and probiotics group Ⅱ was significantly increased (P < 0.05), and the serum interleukin-10 content had a tendency to increase (0.05 ≤ P < 0.10). 3) Compared with the blank control group, the activities of glutathione peroxidase (GSH-Px) and catalase (CAT) in serum of broilers in the compound preparation of enzyme and probiotics group Ⅱ were significantly increased (P < 0.05), the serum CAT activity of broilers in the compound preparation of enzyme and probiotics group Ⅰ was significantly increased (P < 0.05), and the activity of superoxide dismutase (SOD) in liver of broilers in the compound preparation of enzyme and probiotics groups Ⅰ and Ⅱ was significantly increased (P < 0.05). 4) Compared with the blank control group, the uric acid content in feces of broilers in the antibiotic group, the compound preparation of enzyme and probiotics groups Ⅰ and Ⅱ was significantly decreased (P < 0.05). In conclusion, dietary enzyme and probiotics compound preparation composed of QQE, GOD and lactic acid bacteria can improve the growth performance of broilers during early growth period (1 to 21 days of age), significantly increase the serum IL-6 content, the serum CAT and GSH-Px activities and the liver SOD activity, and significantly reduce the fecal uric acid content, thus can effectively replace antibiotics.
Key words: compound preparation of enzyme and probiotics    antibiotics    broilers    growth performance    immune function    antioxidant function    

目前,我国饲料生产已经进入全面禁用抗生素的时代,开发高效、绿色和安全的饲料添加剂,充分激发畜禽生产潜能,维持机体健康水平,以获得较高的生产效率,是今后研究的目标,也是畜禽健康养殖发展的必然趋势。近些年研究表明,益生菌、酶制剂和植物提取物等均有较好改善生产性能并起到替抗的作用。益生菌能够增加肠道有益菌数量,减少有害菌数量,改善微生物平衡,激活动物免疫功能,提高肠道上皮黏膜完整性[1-3],从而维持动物健康水平并提高生产性能[4]。其中,乳酸菌是最常用的也是公认安全的益生菌,在美国和中国均被批准使用。酶制剂一方面能够补充畜禽体内消化酶分泌的不足;另一方面能够通过降解抗营养因子,降低消化道食糜黏度,改善饲粮消化率,从而提高日增重和饲料转化效率,是目前广泛使用的添加剂之一[5-7]。其中,葡萄糖氧化酶(glucose oxidase,GOD)是一种需氧脱氢酶,在饲粮添加GOD能够提高畜禽体重和饲料转化效率,获得与抗生素相近的促生长效果[8-10];非淀粉多糖(non-starch polysaccharide,NSP)酶通过水解可溶性的NSP,降低消化道食糜黏度,从而改善饲粮消化率,提高养分利用率,提高采食量和日增重[11-12];群体感应淬灭酶(quorum quenching enzyme,QQE)为群体感应抑制剂,能够干扰病原菌群体感应,阻断信号交流,影响致病因子的表达[13-14],目前主要应用于水产养殖中[15],在畜禽养殖中应用报道较少。益生菌和酶制剂是作用机理不同的2种添加剂,益生菌通过改善肠道形态及肠道免疫功能,起到促进畜禽健康的作用;酶制剂则通过改善饲粮结构提高养分消化率,起到促进畜禽生长的作用。单一菌(酶)或者复合菌(复合酶)均能对畜禽健康和生产性能起到促进作用。目前,酶菌联合使用主要用于饲料原料的加工处理,如酶菌协同发酵豆粕[16-18]、酶菌协同发酵菜籽粕[19],其通过降解大分子营养物质,降低抗营养因子含量,改善饲粮消化率,提高畜禽生长性能。酶制剂与益生菌作为安全的饲料添加剂,两者进行配伍组合,对畜禽生产性能是否具有叠加作用,或者具有相互抵消的作用,这方面研究报道较少。因此,本试验在肉鸡饲粮中添加不同配伍组合的酶菌复合制剂,并以抗生素作为对照,研究组合制剂对肉鸡生长性能、免疫功能和抗氧化功能的影响,为酶菌配伍使用以及替代抗生素提供理论依据。

1 材料与方法 1.1 试验材料

试验动物为科宝白羽肉鸡。抗生素预混剂为金霉素(含量为15%)与吉他霉素(含量为50%);益生菌为包被乳酸菌,活菌数为1×1012 CFU/g;酶制剂分别为NSP酶(酶活性为2 000 IU/g)、GOD(酶活性为1 000 IU/g)和QQE(酶活性为10 000 IU/g)。其中,NSP酶由纤维素酶(>100 IU/g)、β-葡聚糖酶(>1 200 IU/g)、木聚糖酶(>6 000 IU/g)和β-甘露聚糖酶(>3 000 IU/g)组成。试验基础饲粮为玉米-豆粕型,参照NRC(1994)和《鸡饲养标准》(NY/T 33—2004)进行配制,其组成及营养水平见表 1

表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of basal diets (air-dry basis) 
1.2 试验设计

试验采用单因素随机设计,选用1 120只1日龄健康科宝500雏鸡,随机分为4个组,每组10个重复,每个重复28只鸡(公母各占1/2)。4个组分别为:1)空白对照组,饲喂基础饲粮;2)抗生素组,在基础饲粮中添加抗生素;3)酶菌复合制剂Ⅰ组,在基础饲粮中添加酶菌复合制剂Ⅰ;4)酶菌复合制剂Ⅱ组,在基础饲粮中添加酶菌复合制剂Ⅱ。具体分组情况及添加剂量见表 2。试验各组在同一栋鸡舍内,采取立体笼养方式,3层笼只保留上层和中层进行饲养,每单笼饲养7只鸡。试验期为42 d,分为1~21日龄和22~42日龄2个阶段。

表 2 试验设计 Table 2 Experiment design
1.3 饲养管理

日常饲养管理按照饲养管理手册进行。温度、相对湿度和光照严格执行饲养手册要求,光照为自然光照与人工光照,自由采食和饮水,每天清粪1次。肉鸡免疫按常规程序进行,试验期间各组饲养管理条件一致。

1.4 指标检测 1.4.1 生长性能

每7 d以重复为单位,仔细称量剩余饲料量,计算每周的耗料量。分别于21和42日龄,以重复为单位,空腹12 h后称重,计算平均体重和平均耗料量,并计算1~21日龄、22~42日龄和1~42日龄的平均日采食量(ADFI)、平均日增重(ADG)和料重比(F/G)。

1.4.2 血液指标

试验第42天,空腹称重后每个重复取2只鸡(接近平均体重),翅静脉取全血10 mL,3 500×g离心10 min,分离血清,-20 ℃冻存待测,分别测定抗氧化指标以及免疫球蛋白和细胞因子含量。

1.4.3 肝脏指标

试验第42天,空腹称重后每个重复取2只鸡(接近平均体重),翅静脉取血后二氧化碳处死,取一小部分左侧肝脏,-20 ℃冻存后测定细胞因子含量和抗氧化指标。取-20 ℃冻存的肝脏样品,准确称取0.5 g放入10 mL离心管中,快速加入10 mL生理盐水,放入冷冻全自动碾磨仪中碾磨,制成匀浆,4 ℃、3 000 r/min离心15 min,吸取上清液分装,待测。

1.4.4 测定方法

血清和肝脏丙二醛(MDA)含量采用硫代巴比妥酸(TBA)法测定,谷胱甘肽过氧化物酶(GSH-Px)活性采用比色法测定,超氧化物歧化酶(SOD)活性采用黄嘌呤氧化酶法(羟胺法)测定,总抗氧化能力(T-AOC)采用微板法测定,过氧化氢酶(CAT)活性采用比色法测定,所用试剂盒购自南京建成生物工程研究所,操作方法参考说明书进行。血清免疫球蛋白A(IgA)、免疫球蛋白G(IgG)和免疫球蛋白M(IgM)含量采用免疫比浊法测定,所用试剂盒购自北京利得曼生化股份有限公司。血清和肝脏细胞因子白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)、白细胞介素-10(IL-10)和肿瘤坏死因子-α(TNF-α)含量采用酶联免疫吸附试验法测定,所需仪器为Multiskan MK3酶标仪,所用试剂盒购自中尚博奥生物科技有限公司。

1.4.5 粪便含氮物质

试验第42天,以重复为单位,取新鲜粪便冻存。采用尿素酶-谷氨酸脱氢酶法测定粪便尿素含量,用脲酶法测定尿酸含量,用纳氏试剂分光光度法测定氨态氮含量,仪器为日立7600全自动生化分析仪。

1.5 数据处理与分析

试验数据采用SAS 9.2 Means模块计算基本统计量,根据单因素随机设计的基本原理,采用GLM模块分析4个组间的差异显著性,采用Duncan氏法进行多重比较。结果用平均值和均值标准误(SEM)表示,以P < 0.01为极显著水平,P < 0.05为显著水平,0.05≤P < 0.10为有变化趋势。

2 结果与分析 2.1 酶菌复合制剂对肉鸡生长性能的影响

表 3可知,1~21日龄,抗生素组和酶菌复合制剂Ⅱ组肉鸡末重和ADG显著高于空白对照组和酶菌复合制剂Ⅰ组(P < 0.05),抗生素组和酶菌复合制剂Ⅱ组肉鸡末重和ADG之间无显著差异(P>0.05),空白对照组和酶菌复合制剂Ⅰ组肉鸡末重和ADG之间亦无显著差异(P>0.05);各组肉鸡ADFI之间均无显著差异(P>0.05);抗生素组肉鸡F/G显著低于其他各组(P < 0.05),酶菌复合制剂Ⅱ组肉鸡F/G显著低于空白对照组和酶菌复合制剂Ⅰ组(P < 0.05),空白对照组和酶菌复合制剂Ⅰ组肉鸡F/G之间无显著差异(P>0.05)。22~42日龄和1~42日龄,各组肉鸡生长性能指标之间均无显著差异(P>0.05)。

表 3 酶菌复合制剂对肉鸡生长性能的影响 Table 3 Effects of compound preparation of enzyme and probiotics on growth performance of broilers
2.2 酶菌复合制剂对肉鸡免疫功能的影响

表 4可知,各组肉鸡血清IgA、IgG和IgM含量之间无显著差异(P>0.05),各组肉鸡血清IL-1β和TNF-α含量之间无显著差异(P>0.05);与空白对照组相比,抗生素组和酶菌复合制剂Ⅱ组肉鸡血清IL-6含量显著升高(P < 0.05),血清IL-10含量有升高的趋势(0.05≤P < 0.10)。各组肉鸡肝脏细胞因子含量之间均无显著差异(P>0.05)。

表 4 酶菌复合制剂对肉鸡免疫功能的影响 Table 4 Effects of compound preparation of enzyme and probiotics on immune function of broilers
2.3 酶菌复合制剂对肉鸡抗氧化功能的影响

表 5可知,各组肉鸡血清MDA含量、SOD活性和T-AOC之间均无显著差异(P>0.05);酶菌复合制剂Ⅱ组肉鸡血清GSH-Px活性显著高于其他3组(P < 0.05),血清CAT活性显著高于空白对照组和抗生素组(P < 0.05);酶菌复合制剂Ⅰ组肉鸡血清CAT活性显著高于空白对照组(P < 0.05)。与空白对照组相比,酶菌复合制剂Ⅰ组和酶菌复合制剂Ⅱ组肉鸡肝脏SOD活性显著提高(P < 0.05);各组肉鸡肝脏其他抗氧化指标之间均无显著差异(P>0.05)。

表 5 酶菌复合制剂对肉鸡抗氧化功能的影响 Table 5 Effects of compound preparation of enzyme and probiotics on antioxidant function of broilers
2.4 酶菌复合制剂对肉鸡粪便含氮物质含量的影响

表 6可知,各组肉鸡粪便中尿素和氨态氮含量之间均无显著差异(P>0.05)。与空白对照组相比,抗生素组、酶菌复合制剂Ⅰ组和酶菌复合制剂Ⅱ组肉鸡粪便中尿酸含量显著降低(P < 0.05),且抗生素组、酶菌复合制剂Ⅰ组和酶菌复合制剂Ⅱ组肉鸡粪便中尿酸含量之间均无显著差异(P>0.05)。

表 6 酶菌复合制剂对肉鸡粪便含氮物质含量的影响 Table 6 Effects of compound preparation of enzyme and probiotics on content of substance containing nitrogen in feces of broilers
3 讨论 3.1 酶菌复合制剂对肉鸡生长性能的影响

研究表明,酶制剂能够提高1~21日龄肉鸡生长性能并获得与抗生素相近的促生长效果[10];益生菌能够改善生长前期肉鸡的生长性能,提高ADG,并降低F/G[20-21],而且其促进作用与抗生素相同[22]。本试验结果显示,与空白对照组相比,酶菌复合制剂Ⅱ组肉鸡1~21日龄ADG显著提高,且与抗生素组差异不显著,这表明酶菌复合制剂Ⅱ(QQE+GOD+乳酸菌)可以对家禽生长前期生长起到促进作用,达到与抗生素相类似的效果。同时,酶菌复合制剂Ⅰ组肉鸡生长性能与空白对照组无显著差异,表明酶菌复合制剂Ⅱ促生长作用显著优于酶菌复合制剂Ⅰ(NSP酶+GOD+乳酸菌)。研究表明,NSP酶作用效果与饲粮结构和NSP含量有关,NSP酶只在NSP含量高的饲粮中起到作用[23]。在小麦、大麦和黑麦饲粮中添加NSP酶,能够降解植物细胞壁,降低消化道食糜黏度,从而提高动物生长性能[5, 24-26]。而对于玉米-豆粕型饲粮,阿拉伯木聚糖是玉米中的主要NSP,其不易分解,常规的NSP酶(木聚糖酶)对其的降解能力有限[27-28]。因此,NSP酶在生产中的应用效果与饲粮结构、NSP含量和NSP酶组成有关。QQE是能够降解群体感应信号产生群体淬灭效应的酶,其通过阻止病原菌产生毒性从而降低致病性[29-30]。QQE改善动物的生长性能可能与其降低了存在于养殖环境和肠道中潜在致病菌的毒性有关,类似于抗生素的抑菌作用。由此可见,NSP酶与QQE的作用途径完全不同,NSP酶针对饲料原料,以改善饲粮的消化为主,且饲料的结构影响酶的发挥;而QQE针对潜在病原菌,通过降解群体信号而降低病原菌的致病性。在本试验中,酶菌复合制剂Ⅰ组肉鸡的生长性能与空白对照组相近,表明NSP酶、GOD和乳酸菌三者进行复合后,并无累加作用,推测可能与饲粮结构有关;酶菌复合制剂Ⅱ组肉鸡的生长性能与抗生素组相近,表明QQE在促生长中发挥了主要作用。在对酶菌复合制剂的研究中,促生长作用存在差异。Murugesan等[31]研究表明,5种乳酸菌与木聚糖酶联合使用,对1~21日龄肉鸡体增重和采食量无显著影响。Askelson等[32]研究表明,由3株解淀粉芽孢杆菌与淀粉酶、木聚糖酶和蛋白酶组成的复合制剂,能够改善不同生长阶段肉鸡的饲料转化效率。Wang等[33]研究表明,GOD与解淀粉芽孢杆菌联合应用对黄羽肉鸡生长性能无促进作用,也无累加作用。由此可见,酶菌配伍使用对畜禽生长性能的影响与饲粮结构、养分含量等有关,也与酶和菌的组成有关。本试验结果表明,饲粮添加由QQE、GOD和乳酸菌复合而成的酶菌复合制剂能够提高肉鸡生长性能,达到与抗生素相近的效果。

此外,本试验根据各组出栏体重、成活率以及饲料消耗,分析各组的经济效益,其中基础料价格按照3.4元/kg计算,雏鸡按照4.5元/只计算,疫苗和人工等成本不参与计算,各组毛利润=毛鸡收入-饲料成本-雏鸡成本,则抗生素组每只鸡毛利润比空白对照组增加了0.41元,酶菌复合制剂Ⅰ组比空白对照组增加了0.01元,酶菌复合制剂Ⅱ组比空白对照组增加了0.30元。因此,综合本试验生长性能和经济效益的结果,在基础饲粮中添加由QQE、GOD和乳酸菌复合而成的酶菌复合制剂能够达到替代抗生素的效果。

3.2 酶菌复合制剂对肉鸡免疫功能的影响

血液免疫球蛋白是经抗原诱导可转化为抗体的蛋白质,是机体对抗原物质产生免疫应答的重要产物。本试验结果显示,各组肉鸡血清免疫球蛋白含量无显著差异,表明在正常条件下,酶菌复合制剂不会使机体产生抗体,这与单独使用酶制剂或者益生菌的试验结果略有差异。在前期的研究中,大部分结果显示益生菌能够提高机体免疫球蛋白含量,其中枯草芽孢杆菌、乳酸菌和酵母菌的复合制剂能够显著提高断奶仔猪血清中IgG和IgM的含量[34];乳酸片球菌能够提高生长猪血清中IgG和IgA的含量[35]。酶制剂对机体免疫功能影响的研究结果并不一致。陈瑾等[36]研究表明,GOD能够显著提高仔猪血清IgG含量;Li等[37]研究表明,甘露聚糖酶可降低肉鸡血清IgG和IgM含量,抑制由甘露聚糖引起的免疫反应;Ferreira等[38]研究表明,甘露聚糖酶能够降低肉鸡血液中IgA、IgG和IgM的含量,减少免疫反应所消耗的营养物质;Arsenault等[39]研究表明,NSP酶能够减轻饲料源性造成的肠道免疫反应。本试验采用的是配伍复合制剂,含有活菌制剂,同时含有GOD与NSP酶(或QQE),乳酸菌能够促进免疫球蛋白的产生,酶制剂能够消除饲料抗原物质,减少免疫球蛋白的产生,使机体抗体反应达到一种免疫平衡状态,从而有利于饲粮养分充分用于生长,不过这一推测还需进一步验证。

细胞因子是一组参与许多生理过程调节和免疫调节蛋白[40]。IL-1β、IL-6和TNF-α等能够刺激细胞因子的分泌,增强免疫,为促炎性细胞因子,但分泌过多会对组织造成损伤,导致生长性能减弱。本试验结果显示,与空白对照组相比,抗生素组和酶菌复合制剂Ⅱ组肉鸡血清IL-6含量显著升高,血清IL-10含量有升高的趋势。IL-6是一种非特异性炎性细胞因子,IL-6含量的提高可诱发消化道黏膜的炎症反应。IL-10是重要的负调节因子,可抑制巨噬细胞分泌TNF-α、IL-6和趋化因子。有研究报道,杆菌肽改善生长前期肉鸡体增重和饲料转化效率与回肠IL-6和白细胞介素-13(IL-13)表达量的升高有关[41];GOD显著提高仔猪血清TNF-α和IL-6含量,显著降低白细胞介素-2(IL-2)含量[36];屎肠球菌可促进RAW264.7细胞分泌IL-10[42]。本试验与上述试验结果相近,抗生素和酶菌复合制剂Ⅱ促进细胞因子IL-6分泌的同时提高IL-10含量,从而平衡机体炎性反应,避免产生过度炎性反应,减少免疫反应消耗的营养物质,从而提高动物生长性能,这与本试验中抗生素和酶菌复合制剂Ⅱ显著改善生长性能的结果一致。这也进一步表明,酶菌复合制剂Ⅱ中的QQE与抗生素相似,能够降低环境中潜在致病菌对动物机体的危害,达到与抗生素相类似的抑菌和促生长效果。

3.3 酶菌复合制剂对肉鸡抗氧化功能的影响

在正常情况下,动物机体氧化代谢产生的自由基被抗氧化防御系统清除,过多的自由基会引起组织和细胞损伤,影响内部环境的相对稳定性[43-44]。本试验结果显示,与空白对照组相比,酶菌复合制剂Ⅱ组肉鸡血清CAT和GSH-Px活性显著提高,酶菌复合制剂Ⅰ组肉鸡血清CAT活性显著提高,酶菌复合制剂Ⅰ组和酶菌复合制剂Ⅱ组肉鸡肝脏SOD活性显著提高。本结果与单独使用酶制剂或者益生菌的研究结果相近。研究表明,GOD对临武鸭血清SOD和GSH-Px活性无显著影响,高剂量GOD能够降低血清MDA含量[45];枯草芽孢杆菌能够提高肥育猪血浆CAT活性,对肌肉抗氧化指标无显著影响[46];嗜酸乳杆菌能够提高氧化应激仔猪小肠上皮细胞SOD和GSH-Px活性[47]。本试验结果显示,酶菌复合制剂Ⅱ的配伍组合,其抵抗体内自由基的能力强于酶菌复合制剂Ⅰ的配伍组合,二者作用机理有所差异。酶菌复合制剂Ⅱ中含有QQE,具有一定的抗菌功能,可能与GOD和乳酸菌的抗氧化性能有一定的叠加效应。酶菌复合制剂Ⅰ的作用效果与饲料原料结构以及活性物质的含量有关,在玉米-豆粕饲粮中所体现的抗氧化功能有限。对于酶菌组合产生的叠加抗氧化功能,还需要进一步深入研究。

3.4 酶菌复合制剂对肉鸡粪便含氮物质含量的影响

家禽摄入的蛋白质等含氮物质最终产物是尿酸,因此粪尿混合物中含有较高的尿酸,这是体内蛋白质分解和肠道微生物共同作用的结果。本试验结果显示,与空白对照组相比,试验组(抗生素组、酶菌复合制剂Ⅰ组和酶菌复合制剂Ⅱ组)肉鸡粪便中尿酸含量显著降低。分析其原因可能在于酶菌配伍组合在一定程度上能够降低蛋白质的分解代谢,提高饲粮中含氮物质的利用率,减少其排出量,同时可能通过调节肠道微生物,减少降解氨基酸微生物的数量,使得粪尿混合物中尿酸含量降低。此外,本试验的酶菌复合制剂中均含有乳酸菌,有可能会降低粪便pH,从而减少氨的产生。研究表明,小麦饲粮中添加木聚糖酶能够提高肉鸡回肠蛋白质利用率[48];NSP酶能显著降低肉鸭血清中尿素氮含量[49];不同剂量GOD显著降低临武鸭血清尿素氮含量[45];NSP酶能够降低肉鸡粪中尿酸含量[50];饲粮添加丁酸梭菌显著降低肉鸡血清氨和尿酸含量[51]。本试验与上述研究结果相近,酶菌复合制剂通过提高饲粮消化率,改善肠道吸收功能,从而减少粪便中含氮物质的含量。

4 结论

饲粮添加由QQE、GOD和乳酸菌配伍组成的酶菌复合制剂能够提高肉鸡生长前期(1~21日龄)的生长性能,显著提高血清IL-6含量,显著提高血清CAT和GSH-Px活性以及肝脏SOD活性,显著降低粪便中尿酸含量,可有效替代抗生素。

参考文献
[1]
ARFC R F. Probiotics in man and animals[J]. Journal of Applied Bacteriology, 1989, 66(5): 365-378. DOI:10.1111/j.1365-2672.1989.tb05105.x
[2]
SHOKRYAZDAN P, FASELEH JAHROMI M, LIANG J B, et al. Effects of a Lactobacillus salivarius mixture on performance, intestinal health and serum lipids of broiler chickens[J]. PLoS One, 2017, 12(5): e0175959. DOI:10.1371/journal.pone.0175959
[3]
HOUSHMAND M, AZHAR K, ZULKIFLI I, et al. Effects of non-antibiotic feed additives on performance, tibial dyschondroplasia incidence and tibia characteristics of broilers fed low-calcium diets[J]. Journal of Animal Physiology and Animal Nutrition, 2011, 95(3): 351-358. DOI:10.1111/j.1439-0396.2010.01061.x
[4]
KHAKSEFIDI A, GHOORCHI T. Effect of probiotic on performance and immunocompetence in broiler chicks[J]. The Journal of Poultry Science, 2006, 43(3): 296-300. DOI:10.2141/jpsa.43.296
[5]
MENG X, SLOMINSKI B A, NYACHOTI C M, et al. Degradation of cell wall polysaccharides by combinations of carbohydrase enzymes and their effect on nutrient utilization and broiler chicken performance[J]. Poultry Science, 2005, 84(1): 37-47. DOI:10.1093/ps/84.1.37
[6]
SCHEIDELER S E, BECK M M, ABUDABOS A, et al. Multiple-enzyme (Avizyme) supplementation of corn-soy-based layer diets[J]. Journal of Applied Poultry Research, 2005, 14(1): 77-86. DOI:10.1093/japr/14.1.77
[7]
BRENES A, VIVEROS A, ARIJA I, et al. The effect of citric acid and microbial phytase on mineral utilization in broiler chicks[J]. Animal Feed Science and Technology, 2003, 110(1/4): 201-219.
[8]
TANG H, YAO B, GAO X, et al. Effects of glucose oxidase on the growth performance, serum parameters and faecal microflora of piglets[J]. South African Journal of Animal Science, 2016, 46(1): 14-20. DOI:10.4314/sajas.v46i1.2
[9]
穆淑琴, 李宁, 闫峻, 等. 葡萄糖氧化酶对仔猪生长性能和血清生化指标的影响[J]. 中国畜牧兽医, 2018, 45(8): 2212-2218.
MU S Q, LI N, YAN J, et al. Effect of glucose oxidase on the growth performance and serum biochemical indexes of piglets[J]. Chinese Journal Animal Husbandry & Veterinary Medicine, 2018, 45(8): 2212-2218 (in Chinese).
[10]
WU S R, LI T H, NIU H F, et al. Effects of glucose oxidase on growth performance, gut function, and cecal microbiota of broiler chickens[J]. Poultry Science, 2019, 98(2): 828-841. DOI:10.3382/ps/pey393
[11]
CHOCT M, HUGHES R J, BEDFORD M R. Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat[J]. British Poultry Science, 1999, 40(3): 419-422. DOI:10.1080/00071669987548
[12]
YUAN L, WANG M F, ZHANG X T, et al. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers[J]. PLoS One, 2017, 12(3): e0173941. DOI:10.1371/journal.pone.0173941
[13]
张力群, 田涛, 梅桂英. 群体感应淬灭——防治植物细菌病害的新策略[J]. 中国生物防治, 2010, 26(3): 241-247.
ZHANG L Q, TIAN T, MEI G Y, et al. Quorum quenching, a new strategy for controlling plant bacterial diseases[J]. Chinese Journal of Biological Cintrol, 2010, 26(3): 241-247 (in Chinese).
[14]
范兴辉, 王惠杉, 何杰华, 等. 细菌群体感应淬灭酶及其病害防治研究进展[J]. 生物技术通报, 2017, 33(10): 80-87.
FAN X H, WANG H S, HE J H, et al. Research progress on microbial quorum quenching enzymes and their control of plant diseases[J]. Biotechnology Bulletin, 2017, 33(10): 80-87 (in Chinese).
[15]
DONG Y H, WANG L H, XU J L, et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase[J]. Nature, 2001, 411(6839): 813-817. DOI:10.1038/35081101
[16]
CHENG Y H, HSIAO F S H, WEN C M, et al. Mixed fermentation of soybean meal by protease and probiotics and its effects on the growth performance and immune response in broilers[J]. Journal of Applied Animal Research, 2019, 47(1): 339-348. DOI:10.1080/09712119.2019.1637344
[17]
毛银, 陆春波, 李国辉, 等. 菌酶协同发酵豆粕工艺的优化[J]. 食品与发酵工业, 2019, 45(14): 108-114.
MAO Y, LU C B, LI G H, et al. Optimized fermentation process of soybean meal by bacteria with enzymes[J]. Food and Fermentation Industries, 2019, 45(14): 108-114 (in Chinese).
[18]
张煜, 石常友, 王成, 等. 菌酶协同发酵改善玉米-豆粕型饲料营养价值的研究[J]. 中国粮油学报, 2018, 33(3): 70-77.
ZHANG Y, SHI C Y, WANG C, et al. Improving nutrition value of maize-soybean meal based diet by microbial fermentation combined with multiple-enzymes[J]. Journal of the Chinese Cereals and Oils Association, 2018, 33(3): 70-77 (in Chinese). DOI:10.3969/j.issn.1003-0174.2018.03.012
[19]
帖余, 李丽, 刘军, 等. 菌酶协同处理对发酵菜粕的影响[J]. 食品与发酵工业, 2019, 45(17): 117-122.
TIE Y, LI L, LIU J, et al. Effects of cooperation of bacteria and enzyme on fermented rapeseed meal[J]. Food and Fermentation Industries, 2019, 45(17): 117-122 (in Chinese).
[20]
BAI S P, WU A M, DING X M, et al. Effects of probiotic-supplemented diets on growth performance and intestinal immune characteristics of broiler chickens[J]. Poultry Science, 2013, 92(3): 663-670. DOI:10.3382/ps.2012-02813
[21]
SARANGI N R, BABU L K, KUMAR A, et al. Effect of dietary supplementation of prebiotic, probiotic, and synbiotic on growth performance and carcass characteristics of broiler chickens[J]. Veterinary World, 2016, 9(3): 313-319. DOI:10.14202/vetworld.2016.313-319
[22]
SALIM H M, KANG H K, AKTER N, et al. Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens[J]. Poultry Science, 2013, 92(8): 2084-2090. DOI:10.3382/ps.2012-02947
[23]
SMEETS N, NUYENS F, VAN CAMPENHOUT L, et al. Interactions between the concentration of non-starch polysaccharides in wheat and the addition of an enzyme mixture in a broiler digestibility and performance trial[J]. Poultry Science, 2018, 97(6): 2064-2070. DOI:10.3382/ps/pey038
[24]
MENG X, SLOMINSKI B A, GUENTER W. The effect of fat type, carbohydrase, and lipase addition on growth performance and nutrient utilization of young broilers fed wheat-based diets[J]. Poultry Science, 2004, 83(10): 1718-1727. DOI:10.1093/ps/83.10.1718
[25]
COWIESON A J, ADEOLA O. Carbohydrases, protease, and phytase have an additive beneficial effect in nutritionally marginal diets for broiler chicks[J]. Poultry Science, 2005, 84(12): 1860-1867.
[26]
MASEY O'NEILL H V, LIU N, WANG J P, et al. Effect of xylanase on performance and apparent metabolisable energy in starter broilers fed diets containing one maize variety harvested in different regions of china[J]. Asian-Australasian Journal of Animal Sciences, 2012, 25(4): 515-523. DOI:10.5713/ajas.2011.11314
[27]
AGGER J, VIKSØ-NIELSEN A, MEYER A S. Enzymatic xylose release from pretreated corn bran arabinoxylan: differential effects of deacetylation and deferuloylation on insoluble and soluble substrate fractions[J]. Journal of Agricultural and Food Chemistry, 2010, 58(10): 6141-6148.
[28]
YEGANI M, KORVER D R. Effects of corn source and exogenous enzymes on growth performance and nutrient digestibility in broiler chickens[J]. Poultry Science, 2013, 92(5): 1208-1220.
[29]
FUQUA W C, WINANS S C, GREENBERG E P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators[J]. Journal of Bacteriology, 1994, 176(2): 269-275.
[30]
ALLEN R C, POPAT R, DIGGLE S P, et al. Targeting virulence: can we make evolution-proof drugs?[J]. Nature Reviews Microbiology, 2014, 12(4): 300-308.
[31]
MURUGESAN G R, PERSIA M E. Influence of a direct-fed microbial and xylanase enzyme on the dietary energy uptake efficiency and performance of broiler chickens[J]. Journal of the Science of Food and Agriculture, 2015, 95(12): 2521-2527.
[32]
ASKELSON T E, FLORES C A, DUNN-HORROCKS S L, et al. Effects of direct-fed microorganisms and enzyme blend co-administration on intestinal bacteria in broilers fed diets with or without antibiotics[J]. Poultry Science, 2018, 97(1): 54-63.
[33]
WANG Y Y, WANG Y B, XU H, et al. Direct-fed glucose oxidase and its combination with B. amyloliquefaciens SC06 on growth performance, meat quality, intestinal barrier, antioxidative status, and immunity of yellow-feathered broilers[J]. Poultry Science, 2018, 97(10): 3540-3549.
[34]
高林, 贾卿, 宋良敏, 等. 枯草芽孢杆菌、乳酸菌、酵母菌复合制剂对断奶仔猪生产性能和血清免疫指标的影响[C]//中国畜牧兽医学会动物微生态学分会第十一次全国学术研讨会暨第五届会员代表大会论文集. 重庆: 中国畜牧兽医学会, 2014: 159.
GAO L, JIA Q, SONG L M, et al. Effect of B. Subtilis, lactobacillus and yeast compound micro-ecological preparation on weaning piglet reproductive performance and serum immune index[C]//Proceedings of the 11th National Symposium and the 5th Member Representative Conference of Animal Microecology Branch of Chinese Society of Animal Science and Veterinary Medicine. Chongqing: Chinese Association of Animal Science and Veterinary Medicine, 2014, 159. (in Chinese)
[35]
刘辉, 季海峰, 王四新, 等. 乳酸片球菌对生长猪生长性能、粪便菌群、血清生化和免疫指标的影响[J]. 动物营养学报, 2020, 32(6): 2558-2566.
LIU H, JI H F, WANG S X, et al. Effects of Pediococcus acidilactici on growth performance, fecal microbiota, serum biochemical and immune indexes of growing pigs[J]. Chinese Journal of Animal Nutrition, 2020, 32(6): 2558-2566 (in Chinese).
[36]
陈瑾, 杨加豹, 邓卉, 等. 葡萄糖氧化酶替代饲用抗生素对川藏黑猪配套系商品仔猪生长性能、抗氧化能力及免疫功能的影响[J]. 饲料工业, 2020, 41(12): 11-15.
CHEN J, YANG J B, DENG H, et al. Effects of glucose oxidase on growth performance, antioxidant capacity and immune function of Chuanzang black commercial piglets[J]. Feed Industry, 2020, 41(12): 11-15 (in Chinese).
[37]
LI Y H, CHEN X, CHEN Y Q, et al. Effects of β-mannanase expressed by Pichia pastoris in corn-soybean meal diets on broiler performance, nutrient digestibility, energy utilization and immunoglobulin levels[J]. Animal Feed Science and Technology, 2010, 159(1): 59-67.
[38]
FERREIRA H C, J r, HANNAS M I, ALBINO L F T, et al. Effect of the addition of β-mannanase on the performance, metabolizable energy, amino acid digestibility coefficients, and immune functions of broilers fed different nutritional levels[J]. Poultry Science, 2016, 95(8): 1848-1857.
[39]
ARSENAULT R J, LEE J T, LATHAM R, et al. Changes in immune and metabolic gut response in broilers fed β-mannanase in β-mannan-containing diets[J]. Poultry Science, 2017, 96(12): 4307-4316.
[40]
KIM E Y, MOUDGIL K D. Immunomodulation of autoimmune arthritis by pro-inflammatory cytokines[J]. Cytokine, 2017, 98: 87-96.
[41]
GADDE U, OH S T, LEE Y S, et al. The effects of direct-fed microbial supplementation, as an alternative to antibiotics, on growth performance, intestinal immune status, and epithelial barrier gene expression in broiler chickens[J]. Probiotics and Antimicrobial Proteins, 2017, 9(4): 397-405. DOI:10.1007/s12602-017-9275-9
[42]
任亚雪, 郭乾鹏, 李媛媛, 等. 屎肠球菌活菌和热灭活菌对RAW264.7细胞肿瘤坏死因子-α/白细胞介素-10平衡以及丝裂原活化蛋白激酶信号通路的影响[J]. 动物营养学报, 2020, 32(9): 4345-4357.
REN Y X, GUO Q P, LI Y Y, et al. Effects of viable and heat-inactivated Enterocuccus faecium on tumor necrosis factor-α/interleukin-10 balance and mitogen-activated protein kinase signaling pathway in RAW264.7 cells[J]. Chinese Journal of Animal Nutrition, 2020, 32(9): 4345-4357 (in Chinese).
[43]
SINGH A, KUKRETI R, SASO L, et al. Oxidative stress: a key modulator in neurodegenerative diseases[J]. Molecules, 2019, 24(8): 1583.
[44]
MURAKAMI A E, RODRIGUEIRO R J B, SANTOS T C, et al. Effects of dietary supplementation of meat-type quail breeders with guanidinoacetic acid on their reproductive parameters and progeny performance[J]. Poultry Science, 2014, 93(9): 2237-2244.
[45]
王前光, 李闯, 黄璇, 等. 葡萄糖氧化酶对1~6周龄临武鸭生长性能、血清生化和抗氧化指标、肠道形态结构和微生物多样性的影响[J]. 动物营养学报, 2020, 32(8): 3605-3614.
WANG Q G, LI C, HUANG X, et al. Effects of glucose oxidase on growth performance, serum biochemical and antioxidant indexes, intestinal morphology and microbial diversity of 1 to 6-week-old Linwu ducks[J]. Chinese Journal of Animal Nutrition, 2020, 32(8): 3605-3614 (in Chinese).
[46]
朱瑾, 匡佑华, 陈继发, 等. 枯草芽孢杆菌对肥育猪生长性能、肉品质和抗氧化能力的影响[J]. 动物营养学报, 2019, 31(6): 2572-2578.
ZHU J, KUANG Y H, CHEN J F, et al. Effects of Bacillus subtilis on growth performance, meat quality and antioxidant capacity of finishing pigs[J]. Chinese Journal of Animal Nutrition, 2019, 31(6): 2572-2578 (in Chinese).
[47]
罗波文, 邹田德, 陈丽玲, 等. 嗜酸乳杆菌对氧化应激仔猪小肠上皮细胞抗氧化能力和紧密连接蛋白表达的影响[J]. 动物营养学报, 2020, 32(5): 2108-2115.
LUO B W, ZOU T D, CHEN L L, et al. Effects of Lactobacillus acidophilus on antioxidative ability and expression of tight junction protein in intestinal epithelial cells of piglets under oxidative stress[J]. Chinese Journal of Animal Nutrition, 2020, 32(5): 2108-2115 (in Chinese).
[48]
NIAN F, GUO Y M, RU Y J, et al. Effect of exogenous xylanase supplementation on the performance, net energy and gut microflora of broiler chickens fed wheat-based diets[J]. Asian-Australasian Journal of Animal Sciences, 2011, 24(3): 400-406.
[49]
任美琦, 颜瑞, 安文俊, 等. 小麦日粮中添加NSP酶对肉鸭生长性能及血清生化指标的影响[J]. 畜牧与兽医, 2011, 43(1): 53-56.
REN M Q, YAN R, AN W J, et al. Effects of NSP enzyme supplementation in wheat diets on growth performance and serum biochemical indices of meat ducks[J]. Animal Husbandry & Veterinary Medicine, 2011, 43(1): 53-56 (in Chinese).
[50]
SAKI A A, MIRZAYI S, HARSINI S G, et al. Effect of various level of treated barley on small intestinal content viscosity, litter moisture, uric acid and broiler chickens performance[J]. Journal of Animal and Veterinary Advances, 2010, 8(3): 825-836.
[51]
郑爱娟, 吴正可, AHMED P S, 等. 丁酸梭菌对肉鸡生长性能和血清生化指标的影响[J]. 动物营养学报, 2019, 31(12): 5519-5525.
ZHENG A J, WU Z K, AHMED P S, et al. Effects of Clostridium butyricum on growth performance and serum biochemical indices of broilers[J]. Chinese Journal of Animal Nutrition, 2019, 31(12): 5519-5525 (in Chinese).