动物营养学报    2021, Vol. 33 Issue (10): 5627-5636    PDF    
微生态制剂对种母鸡生产性能、降血脂和抗氧化作用的研究
魏帅 , 刘慧 , 陈猜猜 , 张红星 , 谢远红 , 金君华 , 熊利霞     
北京农学院食品科学与工程学院, 微生态制剂关键技术开发北京市工程实验室, 食品质量与安全北京实验室, 北京 102206
摘要: 本试验旨在研究副干酪乳杆菌(Lactobacillus paracasei)KL1、枯草芽孢杆菌(Bacillus subtilis)Liu-c1微生态制剂对京红1号种母鸡生产性能、降血脂和抗氧化作用的影响。将384只健康、体重接近的54周龄京红1号种母鸡随机分成4组,每组6个重复,每个重复16只。空白组饲喂基础饲粮,试验组(KL1组、Liu-c1组和复合组)分别在基础饲粮中添加8×107 CFU/(只·d)的副干酪乳杆菌KL1、枯草芽孢杆菌Liu-c1和复合微生态制剂(副干酪乳杆菌KL1:枯草芽孢杆菌Liu-c1=1:1)。结果表明:1)与空白组相比,试验组产蛋率分别极显著增加5.77%、5.37%和8.84%(P < 0.01),种蛋合格率分别极显著增加12.65%、9.15%和14.43%(P < 0.01),料蛋比分别显著降低2.27%(P < 0.05),极显著降低4.09%和5.45%(P < 0.01);2)与空白组相比,试验组的红染脂肪滴皆有明显改善,粗脂肪含量显著降低28.43%、24.18%和27.08%(P < 0.05);3)与空白组相比,KL1组血清、肝脏中超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活性、总抗氧化能力(T-AOC)和高密度脂蛋白(HDL)含量极显著提高(P < 0.01),甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白(LDL)和丙二醛(MDA)含量极显著降低(P < 0.01);4)与空白组相比,Liu-c1组血清和肝脏中TG含量极显著降低(P < 0.01),SOD活性和HDL含量显著提高(P < 0.05),TC、LDL和MDA含量显著降低(P < 0.05),而GSH-Px活性和T-AOC有所增加(P>0.05);5)与空白组相比,复合组血清和肝脏中HDL含量极显著提高(P < 0.01),MDA含量极显著降低(P < 0.01),SOD、GSH-Px活性和T-AOC显著提高(P < 0.05),TG、TC和LDL含量则显著降低(P < 0.05)。综上所述,饲粮中添加枯草芽孢杆菌Liu-c1微生态制剂能够促进种母鸡消化吸收,提高生产性能;副干酪乳杆菌KL1具有降脂护肝、增强抗脂质过氧化能力;复合组微生态制剂兼顾提高种母鸡生产性能、抗氧化和降血脂能力,具有明显优势。
关键词: 种母鸡    微生态制剂    生产性能    抗氧化能力    降血脂    
Effects of Microecological Preparations on Performance, Blood Lipid Reduction and Antioxidant of Breeding Hens
WEI Shuai , LIU Hui , CHEN Caicai , ZHANG Hongxing , XIE Yuanhong , JIN Junhua , XIONG Lixia     
Beijing Laboratory of Food Quality and Safety, Beijing Engineering Laboratory of Key Technology Development of Microeconomics, College of Food Science and Engineering, Beijing University of Agricultural, Beijing 102206, China
Abstract: This experiment was conducted to study the effects on microecological preparations of Lactobacillus paracasei KL1 and Bacillus subtilis Liu-c1 on performance, blood lipid capability and antioxidant of Jinghong No.1 breeding hens. A total of 384 healthy, weight nearly 54-week-old Jinghong No.1 breeding hens were divided into 4 groups with 6 replicates per group and 16 hens per replicate. Breeding hens in the blank control group were fed a basal diet, and the others in experimental groups were fed the basal diets supplement with 8×107 CFU/(hen·d) microecological preparations of Lactobacillus paracasei KL1, Bacillus subtilis Liu-c1 and their composition (Lactobacillus paracasei KL1:Bacillus subtilis Liu-c1=1:1), respectively. The results showed as follows: 1) compared with the blank control group, there was no significant difference in the average egg weight of the KL1 group, and the egg production rate was extremely increased by 5.77%, 5.37% and 8.84% (P < 0.01), the qualified egg rate was extremely increased by 12.65%, 9.15% and 14.43% (P < 0.01), the feed/egg was significantly reduced by 2.27% (P < 0.05) and extremely reduced by 4.09% and 5.45% (P < 0.01). 2) Compared with the blank control group, red stained fat droplets in the KL1 group, Liu-c1 group and composite group had improved significantly, and crude fat content significantly reduced by 28.43%, 24.18% and 27.08% (P < 0.05). 3) In KL1 group, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activity, total antioxidant capacity (T-AOC) and high density lipoprotein (HDL) content in serum and liver were significantly increased (P < 0.01), triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL) and malondialdehyde (MDA) contents were extremely decreased (P < 0.01). 4) In Liu-c1 group, TG content in serum and liver was extremely decreased (P < 0.01), SOD activity and HDL content were significantly increased (P < 0.05), TC, LDL and MDA contents were significantly decreased (P < 0.05), while GSH-Px activity and T-AOC were no significantly change (P>0.05). 5) In composite group, HDL content in serum and liver was extremely increased (P < 0.01), MDA content was extremely decreased (P < 0.01), SOD, GSH-Px activities and T-AOC were significantly increased (P < 0.05), and TG, TC and LDL contents were significantly decreased (P < 0.05). In conclusion, dietary microecological preparations supplementation, Bacillus subtilis Liu-c1 can promote the digestion and absorption and improve performance of breeding hens, Lactobacillus paracasei KL1 can reduce fat and protect the liver, inhibit the formation of fatty liver, reduce fat accumulation, and enhance the ability of anti-lipid peroxidation, the composite group has obvious advantages for improving the performance of breeding hens, anti-oxidation and lowering blood lipid.
Key words: breeding hens    microecological formulation    performance    antioxidant ability    lower blood lipids    

2020年农业农村部指出在饲粮中禁用除中草药外其他促生长类药物添加剂,开发绿色、安全、无公害的抗生素替代产品是畜禽养殖发展的必然趋势[1],微生态制剂因其天然的安全性具有明显优势[2-3]。京红1号种母鸡品种是我国自主创新的新品种,具有生产性能优越、繁殖力高和适应性强的特性,但是养殖过程种母鸡会受到应激刺激、抵抗力下降、肠道功能紊乱、药物残留等影响,导致养殖成本不断攀升、疫病防控形式严峻和食品质量安全得不到保障,如何能够提高种禽生产性能和养殖

效益已成为当下研究的热点。脂肪肝综合征(fatty liver syndrome, FLS)又称脂肝病,多数母鸡产蛋后或产蛋率达不到高峰时才被发现患有FLS,主要是由于鸡体内脂肪代谢出现紊乱,大量脂类物质沉积在肝脏,导致肝脏出现脂肪变性的一种营养代谢性疾病[4]。邢冠润等[5]发现在饲粮中添加1×107 CFU/g凝结芽孢杆菌微生态制剂可显著提高产蛋后期蛋鸡生产性能和免疫能力,改善蛋品质和蛋鸡肠道健康;于雷等[6]发现芽孢杆菌微生态制剂能够显著提高京红1号蛋鸡产蛋率和平均蛋重,降低料蛋比。孙玲[7]研究在种母鸡饲粮中添加微生态制剂发现能显著降低血清甘油三酯(triglycerides, TG)、总胆固醇(total cholesterol, TC)、低密度脂蛋白(low density lipoprotein, LDL)和丙二醛(malondialdehyde, MDA)含量,显著增加血清高密度脂蛋白(high density lipoprotein, HDL)含量、超氧化物歧化酶(superoxide dismutase, SOD)活性和总抗氧化能力(total antioxidant capacity, T-AOC),表明微生态制剂能有效提高种母鸡的脂质抗氧化能力。芽孢杆菌作为新型饲料添加剂,具有安全、高效、耐高温、耐酸碱和抗逆性强等特点[8]。刘聪等[9]发现京红1号种母鸡感染沙门氏菌后,在基础饲粮中添加2.5×1010 CFU/kg的凝结芽孢杆菌可以明显增强机体抗氧化能力,降低脂质过氧化物MDA含量,缓解氧化应激;王腾等[10]在雪峰乌骨鸡饲粮中添加枯草芽孢杆菌,血清中的T-AOC和谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)活性显著提高。目前有关副干酪乳杆菌KL1、枯草芽孢杆菌Liu-c1对京红1号种母鸡提高生产性能、FLS的预防及其抗脂质过氧化能力的研究尚未见国内外报道。因此,本文以京红1号父母代种母鸡为试验对象,旨在研究基础饲粮中添加副干酪乳杆菌KL1、枯草芽孢杆菌Liu-c1和副干酪乳杆菌KL1 ∶枯草芽孢杆菌Liu-c1=1 ∶ 1复合微生态制剂对种母鸡生产性能和抗脂质过氧化能力的影响,并观察油红O染色的肝脏组织切片和测定肝脏粗脂肪含量,为微生态制剂在种母鸡生产应用提供科学的理论依据。

1 材料与方法 1.1 试验材料 1.1.1 试验菌株

副干酪乳杆菌KL1(CGMCC No.11533)为本课题组高产胆盐水解酶和胞外多糖的专利菌株;枯草芽孢杆菌Liu-c1(CGMCC No.20840)为本课题组高产中性蛋白酶和淀粉酶的专利菌株,上述菌株均在本课题组实验室冻藏保存。

1.1.2 微生态制剂

将副干酪乳杆菌KL1和枯草芽孢杆菌Liu-c1的甘油保藏管分别经活化、扩大培养、高密度发酵、离心浓缩和真空冷冻干燥后得到活菌数为8×1010 CFU/g的副干酪乳杆菌KL1和枯草芽孢杆菌Liu-c1微生态制剂,将2种微生态制剂分别用麦芽糊精稀释,得到活菌数为8×108 CFU/g的微生态制剂预混料,保存于-20 ℃冰箱备用。

1.2 试验设计与基础饲粮

试验预试期1周后,选取同一饲养条件下健康且体重接近的54周龄京红1号父母代种母鸡384只,随机分成空白组、KL1组、Liu-c1组和复合组,每组96只(每组6个重复,每重复16只)进行为期8周的正式试验,空白组饲喂基础饲粮,试验组(KL1组、Liu-c1组和复合组)分别在饲喂基础饲粮中添加1 g/kg的副干酪乳杆菌KL1、枯草芽孢杆菌Liu-c1和副干酪乳杆菌KL1 ∶枯草芽孢杆菌Liu-c1=1 ∶ 1的试验饲粮,使各试验组每日摄入活菌数量为8×107 CFU/只。基础饲粮由北京市某禽业有限公司提供,其组成及营养水平如表 1所示。

表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the basal diet (air-dry basis)  

饲养条件依据该禽业有限公司饲养管理规定操作:3层A字型阶梯式笼养(47 cm×47 cm),每笼4羽,光照强度10~15 lx,时长恒定15.5 h,温度18~25 ℃,相对湿度40%~70%。每日投料3次,鸡只自由采食、饮水,鸡舍内采用湿帘降温,风机通风,定期清理粪便,环境、用具皆消毒。

1.3 样品采集与指标测定 1.3.1 样品采集

产蛋性能:每天统计并记录各组产蛋总重量、产蛋总数、合格种蛋数量(非破、软、砂壳蛋、畸形蛋、钢皮蛋,并且蛋重在53~72 g)和日耗料量,计算第8周平均蛋重、平均日采食量、产蛋率、种蛋合格率和料蛋比。

血液采集:第8周末,从每个重复中选取1只种母鸡进行血液采集(采样前需空腹12 h),用无菌注射器从翅下静脉采血5 mL左右,于室温下凝血2 h得到血液样品。

肝脏组织:第8周末,从每个重复中血液采集后的种母鸡进行解剖,迅速剪取约1.5 cm3的肝脏组织块,经生理盐水清洗后,立即浸于中性福尔马林固定液中固定备用。

1.3.2 测定方法及指标 1.3.2.1 生产性能的测定
1.3.2.2 肝脏组织显微镜观察

肝脏油红O脂肪染色后,于CX21型生物显微镜(biological microscope)(日本奥林巴斯)下观察肝脏脂肪滴变化。

1.3.2.3 肝脏组织粗脂肪含量测定

剩余肝脏组织用锡箔纸包好,于液氮罐中速冻,-45 ℃保存备用,使用SoxtecTM-8000型索氏浸提系统(Soxhlet extraction system)(丹麦FOSS)依据《食品脂肪的测定》(GB/T 5009.6—2016)索氏抽提法[11]检测粗脂肪含量。

1.3.2.4 肝脏、血清抗氧化和脂代谢指标的测定

取肝脏2 g,剪碎并研磨后与18 mL的4 ℃生理盐水混匀并于均质袋中使用SCIENTZ-11型均质机拍打均质15 min得到肝脏匀浆液;将肝脏匀浆液和1.3.1血液样品在4 ℃、4 000 r/min条件下离心10 min,分别取上清液于离心管中,4 ℃冰箱保存备检。使用7080E型全自动生化分析仪(automatic chemistry analyzer,ACA,日本HITACHI)严格按照试剂盒的操作步骤测定肝脏和血清中TC、TG、HDL、LDL、MDA含量及SOD、GSH-Px活性和T-AOC,试剂盒由南京建成生物工程研究所提供。

1.4 数据统计分析

采用SPSS 22.0统计软件进行单因素方差分析(one-way ANOVA),并进行Duncan氏多重比较检验分析数据。试验数据用平均值±标准差(X±S)表示。

2 结果与分析 2.1 微生态制剂对种母鸡生产性能的影响

表 2可知,各组间平均蛋重均无显著差异(P>0.05);与空白组相比,KL1组、Liu-c1组和复合组产蛋率分别极显著增加5.77%、5.37%和8.84%(P<0.01);KL1组、Liu-c1组和复合组种蛋合格率分别极显著提高12.65%、9.15%和14.43%(P<0.01);各组间平均日采食量无显著差异(P>0.05),试验组平均日采食量均小于空白组,而KL1组料蛋比显著降低2.27%(P<0.05),Liu-c1组和复合组极显著降低4.09%和5.45%(P<0.01)。微生态制剂对于种母鸡产蛋率、种蛋合格率和料蛋比的优化中,复合组效果最佳。

表 2 微生态制剂对种母鸡产蛋性能的影响 Table 2 Effects of microecological preparations on egg laying performance of breeding hens (n=6)
2.2 微生态制剂对种母鸡肝脏组织切片和粗脂肪含量的影响

肝脏油红O染色观察结果如图 1所示,空白组可见大量红染脂肪滴,KL1组、Liu-c1组和复合组红染脂肪滴减少。肝脏粗脂肪含量如图 2所示,KL1组、Liu-c1组和复合组的粗脂肪含量较空白组皆显著降低(P<0.05),表明3种微生态制剂皆具有较强的抑制产蛋后期种母鸡脂肪肝、减少脂肪堆积的能力。

图 1 肝脏油红O染色切片 Fig. 1 Liver oil red O staining section (400×)
数据柱标注相同字母表示差异不显著(P>0.05),不同小写字母表示差异显著(P<0.05)。 Data bars with the same letters mean no significant difference (P > 0.05), while with different small letters mean significant difference (P < 0.05). 图 2 微生态制剂对种母鸡肝脏粗脂肪含量的影响 Fig. 2 Effects of microecological preparations on liver fat content of breeding hens
2.3 微生态制剂对种母鸡肝脏和血清抗氧化指标的影响

表 3可知,与空白组相比,KL1组血清、肝脏MDA含量分别极显著减少39.13%和52.58%(P<0.01),Liu-c1组则分别显著减少16.52%和37.32%(P<0.05),复合组则分别极显著减少34.78%和48.97%(P<0.01);KL1组血清、肝脏SOD活性分别极显著增加42.42%和57.65%(P<0.01),Liu-c1组则分别显著增加25.60%和23.16%(P<0.05),复合组则分别显著增加31.53%和26.28%(P<0.05);KL1组血清、肝脏GSH-Px活性分别极显著增加33.51%和94.61%(P<0.01),Liu-c1组则分别增加14.16%(P>0.05)和39.13%(P<0.05),复合组则分别增加18.28%(P>0.05)和42.72%(P<0.05);KL1组血清、肝脏T-AOC分别极显著增加47.22%和57.42%(P<0.01),Liu-c1组则分别显著增加25.00%和12.26%(P<0.05),复合组则分别显著增加27.78%和26.45%(P<0.05)。这2种微生态制剂单独和复合时能不同程度地增加种母鸡的抗氧化能力,其中KL1组效果最佳,复合组其次。

表 3 微生态制剂对种母鸡肝脏和血清抗氧化指标的影响 Table 3 Effects of microecological preparations on liver and serum antioxidant indices of breeding hens (n=6)
2.4 微生态制剂对种母鸡血清和肝脏脂代谢指标的影响

表 4可知,与空白组相比,KL1组血清和肝脏TC含量分别极显著减少42.73%和40.16%(P<0.01),Liu-c1组则分别显著减少23.55%和25.20%(P<0.05),复合组则分别极显著减少26.74%和33.86%(P<0.01);KL1组血清和肝脏TG含量分别极显著减少30.14%和70.70%(P<0.01),Liu-c1组则分别极显著减少22.27%和45.05%(P<0.01),复合组则分别极显著减少27.59%和47.25%(P<0.01);KL1组血清和肝脏LDL-C含量分别极显著减少41.26%和35.00%(P<0.01),Liu-c1组则分别显著减少32.87%和19.00%(P<0.05),复合组则分别显著减少34.97%和22.00%(P<0.05);KL1组血清和肝脏HDL-C含量分别极显著增加44.62%和123.08%(P<0.01),Liu-c1组则分别显著增加29.23%(P<0.05)和极显著增加84.62%(P<0.01),复合组则分别显著增加36.92%和115.38%(P<0.01)。这表明副干酪乳杆菌KL1和枯草芽孢杆菌Liu-c1单独和复合使用皆有较好地降血脂功能,以KL1组效果最好,复合组次之。副干酪乳杆菌KL1能调节肝脏脂质合成和分泌之间的平衡,显著改善肝脏脂肪堆积,有效抑制种母鸡脂肪肝的形成。

表 4 微生态制剂对种母鸡血清和肝脏脂代谢指标的影响 Table 4 Effects of microecological preparations on serum and liver lipid metabolism indices of breeding hens (n=6)
3 讨论 3.1 微生态制剂对种母鸡的生产性能的影响

产蛋量和蛋合格率是反映种母鸡产蛋性能的重要指标。由于种母鸡周龄的增加,产蛋性能不可避免地逐渐下降,降低生产经济效益。戴维等[12]在蛋鸡饲粮中添加3%复合微生态制剂可提高饲料利用率、抗氧化性能。Yörük等[13]在饲粮中添加微生态制剂显著提高种母鸡产蛋后期的产蛋量,降低种母鸡料蛋比。褚素乔等[14]在饲粮中添加1%枯草芽孢杆菌,罗曼褐蛋鸡产蛋率和平均蛋重分别提高1.32%和4.14%,料蛋比降低4.65%,与Abdelqader等[15]和蒋一秀等[16]试验结果基本一致。本试验中,复合微生态制剂对于种母鸡生产性能效果最佳。这是因为复合微生态制剂一方面通过自身合成的中性蛋白酶和淀粉酶,在功能上与种母鸡内源消化酶具有互补性[17],进入肠道后会消耗游离氧,进行肠道繁殖,从而调节肠道内微生物的菌群平衡,促进肠道内营养物质的消化吸收;另一方面复合组产生的胆盐水解酶和胞外多糖具有抗脂质过氧化的作用,提高种母鸡免疫和抗病能力。正是由于2种单一的微生态制剂益生机理相互叠加,复合微生态制剂提高种母鸡的生产性能,降低料蛋比具有明显优势。

3.2 微生态制剂对种母鸡的抗氧化能力的影响

活细胞抗氧化系统的第1道防线负责抑制自由基的生成和脂质过氧化,过量的自由基可损伤蛋白质、核酸等生物大分子物质,并产生大量的MDA,从而诱发许多疾病的发生[18],而经常摄入抗氧化物质能够提高种母鸡抗氧化防御能力,保持体内氧化还原平衡[19]。MDA是脂质过氧化反应终产物,能指示机体氧化损伤及老化[20]。SOD和GSH-Px是体内重要的抗氧化剂,T-AOC是衡量机体对自由基总体清除能力的指标[21-22]。聂彦芬等[23]研究证明副干酪乳杆菌KL1能显著提高农大3号矮小鸡血清中的SOD活性和T-AOC,增强机体抗氧化能力;彭豫东等[24]发现在石门土鸡饲粮中添加枯草芽孢杆菌,与对照组相比,300 mg/kg BS组石门土鸡的血清SOD活性显著提高,GSH-Px活性极显著提高;张鑫等[25]发现添加微生态制剂试验组的血液中SOD和GSH-Px活性与对照组相比显著提高,MDA含量显著降低。本试验通过在饲粮中添加不同的微生态制剂研究京红1号种母鸡的血清和肝脏的抗氧化能力,结果显示与对照组相比,KL1组、Liu-c1组和复合组种母鸡血清和肝脏中的T-AOC皆不同程度提高,其中KL1组效果最佳。戴维等[12]研究表明,在饲粮种添加3% EM菌使罗曼粉蛋鸡血清SOD、GSH-Px活性和T-AOC分别提高0.20%、1.80%、65.99%,MDA含量降低14.88%,而本试验添加副干酪乳杆菌KL1的种母鸡血清SOD、GSH-Px活性和T-AOC分别提高42.70%、33.50%、47.22%,MDA含量降低39.10%,与李嘉懿等[9]和聂彦芬等[23]研究结果基本一致。这是因为副干酪乳杆菌KL1能够高产(1 271 mg/L)胞外多糖(exopoly saccharides, EP)[26],EP能够清除机体二苯基苦基苯肼(DPPH)自由基和羟自由基或减少活性氧的产生,同时副干酪乳杆菌KL1可以直接或间接作用免疫细胞分泌各种细胞因子与免疫球蛋白,极显著提高SOD、GSH-Px活性和T-AOC,加速清除MDA等脂质过氧化物,保护细胞膜的结构及功能不受过氧化物的干扰,从而减少种母鸡氧化应激损伤,维持机体的健康状态[27-29]

3.3 微生态制剂对种母鸡的肝脏脂代谢及降血脂能力的影响

种母鸡在产蛋期间体内需要合成大量的脂类来形成蛋黄[30],特别容易诱发种母鸡的脂质代谢紊乱,从而诱发种母鸡FLS。患有FLS的病鸡在脂肪的堆积过程中,导致肝脏样变性,产蛋量急剧下降,且在产蛋后期更为严重[31]。姜延骞[32]在人工干预使其患有FLS的模型鸡试验中,其产蛋率由87%下降至45%,产蛋水平下降接近50%。本试验通过在饲粮中添加不同的微生态制剂研究京红1号种母鸡的降血脂能力和肝脏脂代谢,与对照组相比,KL1组和复合组对降低种母鸡血清和肝脏TC、TG含量以及提高HDL含量皆有极显著的作用。韦云路等[33]研究表明,植物乳杆菌LPL-1使高脂大鼠血清TC和TG含量分别降低10.1%和11.5%,而本试验种母鸡血清TC和TG含量分别降低42.7%和30.1%。目前促进体内胆固醇分解最直接途径是增加粪便胆汁酸的排泄[34],胆汁酸在人体内主要以牛磺胆酸和甘氨胆酸2种结合态形式存在。副干酪乳杆菌KL1产生的胆盐水解酶(bile salt hydrolase, BSH)一方面水解结合型胆盐,产成游离型胆盐和氨基酸[35],前者与胆固醇生成共沉淀复合物,随粪便排出体外,而降低血清胆固醇的含量;另一方面由于减少了游离态胆盐在肝肠循环次数,增加胆盐的生物合成,加速胆固醇的代谢,从而降低血清胆固醇的含量[36]。此外,油红O染色肝脏组织切片观察及粗脂肪含量测定证明副干酪乳杆菌KL1微生态制剂能够减少种母鸡脂肪堆积,降低LDL含量,具有保护肝脏和抑制脂肪肝形成的功效。

4 结论

① 饲粮中添加微生态制剂可提高种母鸡的生产性能,降低种母鸡血清和肝脏中的TG含量、肝脏粗脂肪含量,提高血清和肝脏SOD、GSH-Px活性和T-AOC,降低MDA含量。

② 副干酪乳杆菌KL1微生态制剂对于提高种母鸡抗氧化能力、降低血脂和胆固醇含量、保护肝脏效果最好;复合微生态制剂提高产蛋性能,抗氧化和降血脂能力具有明显优势,为复合微生态制剂在种母鸡生产应用提供科学的理论与实践依据。

参考文献
[1]
田志梅, 崔艺燕, 杜宗亮, 等. 抗生素替代物在畜禽养殖中的研究及应用进展[J]. 动物营养学报, 2020, 32(4): 1516-1525.
TIAN Z M, CUI Y Y, DU Z L, et al. Research and application progress of antibiotic substitutes in livestock and poultry breeding[J]. Chinese Journal of Animal Nutrition, 2020, 32(4): 1516-1525 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.04.007
[2]
AARESTRUP F M. The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370(1670): 20140085. DOI:10.1098/rstb.2014.0085
[3]
NAVARRO-GONZALEZ N, PORRERO M C, MENTABERRE G, et al. Antimicrobial resistance in indicator Escherichia coli isolates from free-ranging livestock and sympatric wild ungulates in a natural environment (Northeastern Spain)[J]. Applied and Environmental Microbiology, 2013, 79(19): 6184-6186. DOI:10.1128/AEM.01745-13
[4]
杨孟鸿. 鸡脂肪肝综合征防治[J]. 四川畜牧兽医, 2012, 39(9): 51-52.
YANG M H. Prevention and treatment of fatty liver syndrome in chickens[J]. Sichuan Animal and Veterinary Sciences, 2012, 39(9): 51-52 (in Chinese). DOI:10.3969/j.issn.1001-8964.2012.09.027
[5]
邢冠润, 吴吉安, 楼洪兴, 等. 凝结芽孢杆菌对产蛋鸡后期生产性能、蛋品质及免疫的影响[J]. 饲料研究, 2019, 42(3): 28-32.
XING G R, WU J A, LOU H X, et al. The effect of Bacillus coagulans on production performance, egg quality and immunity of laying hens in late stage[J]. Chinese Feed Research, 2019, 42(3): 28-32 (in Chinese).
[6]
于雷, 程高宾, 邹本革, 等. 芽孢杆菌微生态制剂对京红1号蛋鸡产蛋性能和蛋品质的影响[J]. 中国家禽, 2020, 42(4): 58-62.
YU L, CHENG G B, ZOU B G, et al. Effects of Bacillus microecological preparations on laying performance and egg quality of Jinghong No.1[J]. China Poultry, 2020, 42(4): 58-62 (in Chinese).
[7]
孙玲. 微生态制剂和蛋氨酸锌及其互作效应对蛋鸡生产性能、蛋品质和抗氧化性能的影响[D]. 硕士学位论文. 沈阳: 沈阳农业大学, 2017.
SUN L. Effects of microecological agents, zinc methionine and their interaction on production performance, egg quality and antioxidant capacity of breeder hens[D]. Master's Thesis. Shenyang: Shenyang Agricultural University, 2017. (in Chinese)
[8]
REIS M P, FASSANI E J, JÚNIOR A A P G, et al. Effect of Bacillus subtilis (DSM 17299) on performance, digestibility, intestine morphology, and pH in broiler chickens[J]. Journal of Applied Poultry Research, 2017, 26(4): 573-583. DOI:10.3382/japr/pfx032
[9]
刘聪, 计成, 赵丽红, 等. 凝结芽孢杆菌对感染肠炎沙门氏菌蛋鸡肠道形态、抗氧化能力及沙门氏菌定植的影响[J]. 中国农业大学学报, 2019, 24(1): 69-75.
LIU C, JI C, ZHAO L H, et al. Effects of Bacillus coagulans on intestinal morphology, antioxidant capacity and colonization of Salmonella in layers infected with Salmonella enteritidis[J]. Journal of China Agricultural University, 2019, 24(1): 69-75 (in Chinese).
[10]
王腾, 陈辉, 曲湘勇. 枯草芽孢杆菌对雪峰乌骨鸡产蛋性能和抗氧化性的影响[J]. 广东饲料, 2018, 27(9): 25-28.
WANG T, CHEN H, QU X Y. Effects of Bacillus subtilis on laying performance and antioxidant capacity of Xuefeng black bone chicken[J]. Chinese Guangdong Feed, 2018, 27(9): 25-28 (in Chinese).
[11]
国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB/T 5009.6-2016食品安全国家标准食品中脂肪的测定[S]. 北京: 中国标准出版社, 2017.
National Health and Family Planning Commission, State Food and drug administration. GB/T 5009.6-2016 national food safety standard determination of fat in food[S]. Beijing: China Standard Press, 2017. (in Chinese)
[12]
戴维, 薛俊敬, 班博, 等. 复合微生态制剂对蛋鸡生产性能、蛋品质及抗氧化性能的影响[J]. 饲料工业, 2020, 41(5): 23-29.
DAI W, XUE J J, BAN B, et al. Effects of compound probiotics on production performance, egg quality and antioxidant activity of laying hens[J]. Chinese Feed Industry, 2020, 41(5): 23-29 (in Chinese).
[13]
YÖRVK M A, GVL M, HAYIRLI A, et al. The effects of supplementation of humate and probiotic on egg production and quality parameters during the late laying period in hens[J]. Poultry Science, 2004, 83(1): 84-88. DOI:10.1093/ps/83.1.84
[14]
褚素乔, 谢艳华, 张瑞华, 等. 益生菌微生态制剂对蛋鸡生产性能和蛋品质影响的研究[J]. 中国饲料, 2019(23): 58-60.
CHU S Q, XIE Y H, ZHANG R H, et al. Study on the effect of probiotic microecological preparations on the production performance and egg quality of laying hens[J]. China Feed, 2019(23): 58-60 (in Chinese).
[15]
ABDELQADER A, AL-FATAFTAH A R, DAŞ G. Effects of dietary Bacillus subtilis and inulin supplementation on performance, eggshell quality, intestinal morphology and microflora composition of laying hens in the late phase of production[J]. Animal Feed Science and Technology, 2013, 179(1/2/3/4): 103-111.
[16]
蒋一秀, 李尚民, 范建华, 等. 枯草芽孢杆菌对如皋黄鸡生产性能、蛋品质和血液生化指标的影响[J]. 中国农学通报, 2018, 34(32): 139-143.
JIANG Y X, LI S M, FAN J H, et al. Effects of Bacillus subtilis on production performance, egg quality and blood biochemical indexes of Rugao yellow chicken[J]. Chinese Agricultural Science Bulletin, 2018, 34(32): 139-143 (in Chinese). DOI:10.11924/j.issn.1000-6850.casb18070014
[17]
于书坤. 饲料蛋白酶的最新研究与应用进展[J]. 饲料工业, 2019, 40(10): 22-26.
YU S K. The latest research and application progress of feed protease[J]. Chinese Feed Industry, 2019, 40(10): 22-26 (in Chinese).
[18]
杨家军, 钱坤, 章薇, 等. 复合芽胞杆菌对青脚麻鸡生产性能、抗氧化性能及盲肠菌群的影响[J]. 动物营养学报, 2014, 26(7): 1780-1786.
YANG J J, QIAN K, ZHANG W, et al. Effects of compound Bacillus on production performance, antioxidant capacity and cecal flora of Qingjiao partridge chickens[J]. Chinese Journal of Animal Nutrition, 2014, 26(7): 1780-1786 (in Chinese). DOI:10.3969/j.issn.1006-267x.2014.07.009
[19]
史东辉, 王彩玲, 杨江涛, 等. 家禽氧化应激的研究方法及抗氧化防御机制[J]. 动物营养学报, 2020, 32(9): 3961-3969.
SHI D H, WANG C L, YANG J T, et al. Research methods of poultry oxidative stress and antioxidant defense mechanism[J]. Chinese Journal of Animal Nutrition, 2020, 32(9): 3961-3969 (in Chinese).
[20]
GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. DOI:10.1016/j.plaphy.2010.08.016
[21]
HEFNAWY H T M, RAMADAN M F. Protective effects of Lactuca sativa ethanolic extract on carbon tetrachloride induced oxidative damage in rats[J]. Asian Pacific Journal of Tropical Disease, 2013, 3(4): 277-285. DOI:10.1016/S2222-1808(13)60070-5
[22]
RAMADAN M F. Quercetin increases antioxidant activity of soy lecithin in a trioleinmodel system[J]. LWT-Food Science and Technology, 2008, 41(4): 581-587. DOI:10.1016/j.lwt.2007.05.008
[23]
聂彦芬, 董牧群, 张策, 等. 藏灵菇源副干酪乳杆菌KL1对蛋鸡脂质过氧化的研究[J]. 食品科学, 2017, 38(7): 219-223.
NIE Y F, DONG M Q, LIU H, et al. Study on lipid peroxidation of breeding hens by Lactobacillus paracasei KL1 from Tibetan mushroom[J]. Food Science, 2017, 38(7): 219-223 (in Chinese).
[24]
彭豫东, 康克浪, 曲湘勇, 等. 枯草芽孢杆菌对石门土鸡生长性能、屠宰性能、血清抗氧化指标和肠道形态的影响[J]. 动物营养学报, 2019, 31(5): 2119-2126.
PENG Y D, KANG K L, QU X Y, et al. Effects of Bacillus subtilis on growth performance, slaughter performance, serum antioxidant indexes and intestinal morphology of Shimen native chickens[J]. Chinese Journal of Animal Nutrition, 2019, 31(5): 2119-2126 (in Chinese). DOI:10.3969/j.issn.1006-267x.2019.05.018
[25]
张鑫, 金锡九, 张敏. 不同微生态制剂饲喂蛋鸡对其血液生化指标及抗氧化能力的比较分析[J]. 饲料研究, 2015(15): 19-22.
ZHANG X, JIN X J, ZHANG M. Comparative analysis of blood biochemical indexes and antioxidant capacity of laying hens fed with different microecological preparations[J]. Feed Research, 2015(15): 19-22 (in Chinese).
[26]
刘慧, 熊利霞, 韩睿, 等. 藏灵菇源干酪乳杆菌KL1高产胞外多糖发酵条件的优化研究[J]. 中国农学通报, 2008, 24(11): 117-121.
LIU H, XIONG L X, ZHANG H X, et al. Optimization of fermentation conditions for exopolysaccharide production by Lactobacillus casei KL1 from Tibetan mushroom[J]. Chinese Agronomic Bulletin, 2008, 24(11): 117-121 (in Chinese).
[27]
刘慧, 王世平, 冉冉, 等. 藏灵菇源酸奶复合菌发酵剂对大鼠脂质过氧化的影响[J]. 中国食品学报, 2010, 10(3): 27-32.
LIU H, WANG S P, ZHANG H X, et al. Effects of Tibetan mushroom yoghurt compound starter on lipid peroxidation in rats[J]. Journal of Chinese Institute of Food Science and Technology, 2010, 10(3): 27-30 (in Chinese). DOI:10.3969/j.issn.1009-7848.2010.03.004
[28]
CAPCAROVA M, WEISS J, HRNCAR C, et al. Original article: effect of Lactobacillus fermentum and Enterococcus faecium strains on internal milieu, antioxidant status and body weight of broiler chickens[J]. Journal of Animal Physiology and Animal Nutrition, 2010, 94(5): e215-e224. DOI:10.1111/j.1439-0396.2010.01010.x
[29]
GALDEANO C M, PERDIGÓN G. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity[J]. Clinical and Vaccine Immunology, 2006, 13(2): 219-226. DOI:10.1128/CVI.13.2.219-226.2006
[30]
GAO X N, LIU P, WU C, et al. Effects of fatty liver hemorrhagic syndrom on the AMP-activated protein kinase signaling pathway in laying hens[J]. Poultry Science, 2019, 98(5): 2201-2210. DOI:10.3382/ps/pey586
[31]
武书庚, 王晶, 张海军, 等. 蛋鸡饲料营养调控研究进展[J]. 中国家禽, 2013, 35(11): 2-7.
WU S G, WANG J, ZHANG H J, et al. Research progress on feed nutrition regulation of breeding hens[J]. China Poultry, 2013, 35(11): 4-7 (in Chinese).
[32]
姜延骞. 蛋鸡脂肪肝综合征的综合防治[J]. 畜牧兽医科技信息, 2019(1): 133.
JIANG Y Q. Comprehensive prevention and treatment of fatty liver syndrome in laying hens[J]. Journal of Animal Husbandry and Veterinary Science and Technology, 2019(1): 133 (in Chinese). DOI:10.3969/J.ISSN.1671-6027.2019.01.123
[33]
韦云路, 刘义, 王瑶, 等. 3株益生菌体外降胆固醇能力及体内降血脂效果评价[J]. 食品科学, 2017, 38(23): 129-134.
WEI Y L, LIU Y, WANG Y, et al. Evaluation of cholesterol lowering ability in vitro and lipid lowering effect in vivo of three probiotics[J]. Food Science, 2017, 38(23): 129-134 (in Chinese). DOI:10.7506/spkx1002-6630-201723021
[34]
GORENJAK M, GRADISNIK L, TRAPEČAR M, et al. Improvement of lipid profile by probiotic/protective cultures: study in a non-carcinogenic small intestinal cell model[J]. New Microbiologica, 2014, 37(1): 51-64.
[35]
刘慧, 熊利霞, 李金锭, 等. 藏灵菇源干酪乳杆菌KL1高产胆盐水解酶发酵条件的优化研究[J]. 中国农学通报, 2008, 24(12): 114-118.
LIU H, XIONG L X, ZHANG H X, et al. Optimization of fermentation conditions for high production of bile hydrolase by Lactobacillus casei KL1 from Tibetan mushroom[J]. Chinese Agronomic Bulletin, 2008, 24(12): 114-118 (in Chinese).
[36]
黄文丽, 夏永军, 艾连中, 等. 益生菌降血脂作用及机制研究进展[J]. 工业微生物, 2018, 48(4): 63-70.
HUANG W L, XIA Y J, AI L Z, et al. Progress in research on the effect and mechanism of probiotics in lowering blood lipids[J]. Industrial Microbiology, 2018, 48(4): 63-70 (in Chinese). DOI:10.3969/j.issn.1001-6678.2018.04.011