动物营养学报    2021, Vol. 33 Issue (10): 5917-5926    PDF    
植物炭黑对饲喂脱氧雪腐镰刀菌烯醇污染饲粮断奶仔猪生长性能、血清抗氧化指标和肠道二糖酶活性的影响
吴杰1 , 邓波1 , 陈雪颖2 , 王翰阳2 , 徐子伟1     
1. 浙江省农业科学院畜牧兽医研究所, 杭州 310021;
2. 东北农业大学动物科学与技术学院, 哈尔滨 150000
摘要: 本试验旨在研究在脱氧雪腐镰刀菌烯醇(DON)污染的饲粮中添加植物炭黑对断奶仔猪生长性能、血清抗氧化指标和肠道二糖酶活性的影响。试验选取48头24日龄、体重为(7.76±0.24) kg、健康的"杜×大×长"断奶仔猪(公猪),随机分为4组,每组3个重复,每个重复4头猪。4组分别为:对照组,饲喂基础饲粮;植物炭黑组,饲喂基础饲粮+0.1%植物炭黑;DON组,饲喂基础饲粮+1.5 mg/kg DON;DON+植物炭黑组,饲喂基础饲粮+1.5 mg/kg DON+0.1%植物炭黑。试验期为21 d。结果表明:1)饲粮添加DON显著降低断奶仔猪末重及第11~21天和第1~21天平均日增重(ADG)(P < 0.05),显著降低第10天血液白细胞计数(WBC)、血红蛋白(HGB)含量以及血清总抗氧化能力(T-AOC)和过氧化氢酶活性(P < 0.05),显著降低第21天血液WBC、HGB含量以及血清超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶活性和T-AOC (P < 0.05),显著提高第10天和第21天血清丙二醛(MDA)含量(P < 0.05),并引起十二指肠蔗糖酶活性以及空肠麦芽糖酶和蔗糖酶活性的异常提高(P < 0.05)。2)与DON组相比,在DON污染的饲粮中添加0.1%植物炭黑显著提高了断奶仔猪第1~10天平均日采食量以及第21天血清SOD活性(P < 0.05),并且能缓解DON引起的仔猪末重、第11~21天和第1~21天ADG、第10天红细胞计数以及第21天WBC的降低,抑制第10天和第21天血清MDA含量以及空肠蔗糖酶活性的异常升高,并且各指标与对照组相比均无显著差异(P>0.05)。3)正常饲粮中添加植物炭黑对断奶仔猪生长性能、血常规指标、血清抗氧化指标和小肠二糖酶活性均无负面影响(P>0.05)。综上所述,在本试验条件下,饲粮添加0.1%植物炭黑能缓解DON引起的断奶仔猪生长性能和血清抗氧化能力的下降,抑制DON造成的空肠蔗糖酶活性的异常升高。
关键词: 植物炭黑    断奶仔猪    脱氧雪腐镰刀菌烯醇    生长性能    血常规指标    血清抗氧化指标    二糖酶活性    
Effects of Plant Carbon Black on Growth Performance, Serum Antioxidant Indices and Intestinal Disaccharidase Activity of Weaned Piglets Fed Deoxynivalenol Contaminated Diets
WU Jie1 , DENG Bo1 , CHEN Xueying2 , WANG Hanyang2 , XU Ziwei1     
1. Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
2. College of Animal Science and Technology, Northeast Agriculture University, Harbin 150000, China
Abstract: The present study was conducted to investigate the effects of dietary plant carbon black on growth performance, serum antioxidant indices and intestinal disaccharidase activity of weaned piglets fed deoxynivalenol contaminated diets. Forty-eight healthy Duroc×Yorkshire×Landrace weaned piglets (boars) with body weight of (7.76±0.24) kg at the age of 24 days were randomly divided into 4 groups with 3 replicates per group and 4 pigs per replicate. The four groups were as follows: control group, fed a basal diet; plant carbon black group, fed the basal diet+0.1% plant carbon black; DON group, fed the basal diet+1.5 mg/kg DON; DON+plant carbon black group, fed the basal diet+1.5 mg/kg DON+0.1% plant carbon black. The experiment lasted for 21 days. The results showed as follows: 1) dietary DON significantly decreased the final body weight and average daily gain (ADG) of weaned piglets from days 11 to 21 and days 1 to 21 (P < 0.05), significantly decreased the white blood cell count (WBC) and hemoglobin (HGB) content in blood, as well as the total antioxidant capacity (T-AOC) and catalase activity in serum on day 10 (P < 0.05), significantly decreased the WBC and HGB content in blood and the activity of superoxide dismutase (SOD) and glutathione peroxidase as well as the T-AOC in serum on day 21 (P < 0.05), significantly increased the malondialdehyde (MDA) content in serum on days 10 and 21 (P < 0.05), and abnormally increased the sucrase activity in duodenum and the activity of maltase and sucrase in jejunum (P < 0.05). 2) Compared with the DON group, dietary 0.1% plant carbon black in the DON contaminated diet significantly increased the average daily feed intake from days 1 to 10 and the serum SOD activity on day 21 of weaned piglets (P < 0.05), alleviated the decrease of final weight, ADG from days 11 to 21 and days 1 to 21, red blood cell count on day 10 and WBC on day 21 of piglets induced by DON, inhibited the abnormal increase of serum MDA content and jejunal sucrase activity on days 10 and 21, and there was no significant difference in each index compared with the control group (P>0.05). 3) Dietary plant carbon black in normal diet had no negative effects on growth performance, blood routine indices, serum antioxidant indices and disaccharidase activity in small intestine of weaned piglets (P>0.05). In conclusion, under the conditions of this study, dietary 0.1% plant carbon black can alleviate the decrease of growth performance and serum antioxidant capacity of weaned piglets, and inhibit the abnormal increase of jejunal sucrase activity induced by DON.
Key words: plant carbon black    weaned piglets    deoxynivalenol    growth performance    blood routine indices    serum antioxidant indices    disaccharidase activity    

脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)又名呕吐毒素,是单端孢霉烯族毒素中的一种,主要由禾谷镰刀菌、尖孢镰刀菌和雪腐镰刀菌产生,其广泛存在于小麦、玉米等谷类作物及其加工副产物中[1],全球每年因DON污染谷物而造成的经济损失可达数十亿美元[2]。畜禽在食用DON污染的谷物制品后可能会出现拒食、呕吐、生长性能下降、免疫抑制以及肠道功能失调等症状,严重危害畜禽健康[3-4]。不同动物对DON的耐受性有所不同,反刍动物的耐受性较高,而猪是最为敏感的,当饲粮中DON含量达到1 mg/kg时,仔猪便可能出现拒食、生长滞缓和肠道菌群紊乱[5];另有研究表明,饲粮中DON每增加1 mg/kg,生长育肥猪采食量会降低6%,当达到10 mg/kg时即完全拒食[6]。此外,由于目前的猪饲粮配方中会使用大量的玉米、小麦等原料,猪也有更高风险接触到DON污染原料。DON一般在田间产生,特别是近些年全球气候异常,干旱、洪涝等极端天气大大增加了DON在田间的污染,并且在谷物采收后的贮藏过程中DON也会产生,很难对其进行预防。目前处理霉变饲粮最为常见的方法是使用霉菌毒素吸附剂,然而由于DON所带基团极性较弱,亲电性差,大多数的吸附剂对DON的吸附率并不高[7-8]

植物炭黑是以天然植物、壳等为原料经高温碳化、活化后得到,其主要成分是活性炭。研究表明,饲粮中添加活性炭类添加剂能促进肉鸡肠道绒毛发育[9];改善仔猪免疫功能,降低腹泻[10];提高育肥猪生长性能,改善菌群结构[11]。植物炭黑具有较大的比表面积,对包括DON等多种霉菌毒素在体外缓冲液体系中均具有较好的吸附效果[7, 12],2020年农业农村部第258号公告已批准植物炭黑为新饲料添加剂,可在猪饲料中使用。然而,有关植物炭黑或活性炭类吸附剂对霉菌毒素特别是DON在体内吸附效果的研究还较少,并且结果也并不一致[13-14]。因此,本试验在DON污染饲粮中添加植物炭黑,研究其对断奶仔猪生长性能、血清抗氧化指标和肠道二糖酶活性的影响,为其在霉变饲粮中的应用提供参考。

1 材料与方法 1.1 试验材料

植物炭黑由福建某生物科技有限公司提供。

1.2 试验设计及饲粮

试验选取48头24日龄、体重为(7.76±0.24) kg、健康的“杜×大×长”断奶仔猪(公猪),按照体重随机分为4组,每组3个重复,每个重复4头猪。4组分别为:对照组(CON组),饲喂基础饲粮;植物炭黑组(PCB组),饲喂基础饲粮+0.1%植物炭黑;DON组,饲喂基础饲粮+1.5 mg/kg DON;DON+植物炭黑组(DON+PCB组),饲喂基础饲粮+1.5 mg/kg DON+0.1%植物炭黑。试验期为21 d。基础饲粮参照NRC(2012)猪营养需要配制,其组成及营养水平见表 1

表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the basal diet (air-dry basis) 
1.3 饲养管理

本试验在浙江省杭州正兴牧业有限公司内进行,所有栏舍为封闭式、漏缝地板。每日饲喂3次(08:00、14:00和20:00),每次饲喂遵循少量多次原则,自由饮水,免疫程序按照猪场常规方法进行。每天对圈舍进行清扫,定期对猪舍进行消毒。试验期早晚观察仔猪精神状态。

1.4 测定指标及方法 1.4.1 生长性能测定

分别于试验开始、试验第10天和试验结束时,对所有仔猪进行空腹称重;试验期间每日记录断奶仔猪采食量;试验结束时计算平均日增重(ADG)、平均日采食量(ADFI)和料重比(F/G)。

1.4.2 血常规及血清抗氧化指标测定

分别于试验第10天和第21天08:00对所有仔猪进行采血,每头猪采血2份,一份打入含肝素钠抗凝管中进行血常规检测,包括测定白细胞计数(white blood cell count,WBC)、红细胞计数(red blood cell count,RBC)、血小板计数(platelet count,PLT)、红细胞压积(hematokrit,HCT)和血红蛋白(hemoglobin,HGB)含量;另一份静置30 min后以3 000 r/min离心10 min,分离得到血清,置于-20 ℃保存,测定血清超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)、谷胱甘肽过氧化物酶(glutathion peroxidase,GSH-Px)活性、总抗氧化能力(total antioxidant capacity,T-AOC)和丙二醛(malondialdehyde,MDA)含量。

1.4.3 小肠样品的采集及二糖酶活性测定

试验第21天,每重复随机挑选2头仔猪进行屠宰采样。仔猪采样电击致死后放血,剖开腹腔,分离出十二指肠、空肠和回肠,然后十二指肠从靠近胃贲门部2 cm处开始取样,空肠在空肠中段取样,回肠从距盲肠5 cm处开始取样。将取得肠段剪开,用生理盐水冲洗干净后用滤纸吸干水分,载玻片刮取黏膜后装入冻存管中,立即放入液氮中速冻待测。肠道乳糖酶、麦芽糖酶和蔗糖酶活性严格按照试剂盒(南京建成生物工程研究所)说明书进行测定。

1.5 数据统计及分析

所有试验数据经Excel 2019初步分析后,使用SPSS 17.0软件对4组数据进行双因素方差分析,当有显著互作效应或有显著互作效应趋势时,采用LSD多重比较检测4组间的差异显著性。所有数据均以平均值和均值标准误表示,以P < 0.05为差异显著,以0.05 < P < 0.10为有显著性趋势。

2 结果 2.1 植物炭黑对饲喂DON污染饲粮断奶仔猪生长性能的影响

表 2可知,饲粮添加1.5 mg/kg DON显著降低断奶仔猪末重以及第11~21天和第1~21天ADG(P<0.05),并有提高第11~21天F/G的趋势(0.05 < P<0.10);饲粮添加0.1%植物炭黑有提高第1~10天和第1~21天ADFI的趋势(0.05 < P<0.10);DON与植物炭黑对第1~10天ADFI有显著互作效应(P<0.05),对末重以及第11~21天和第1~21天ADG有互作效应趋势(0.05 < P<0.10)。多重比较结果显示,与DON组相比,DON+PCB组断奶仔猪第1~10天ADFI显著提高(P<0.05),末重以及第11~21天和第1~21天ADG有提高趋势(P>0.05),且与CON组相比均无显著差异(P>0.05)。

表 2 植物炭黑对饲喂DON污染饲粮断奶仔猪生长性能的影响 Table 2 Effects of plant carbon black on growth performance of weaned piglets fed DON contaminated diets
2.2 植物炭黑对饲喂DON污染饲粮断奶仔猪血常规指标的影响

表 3可知,饲粮添加1.5 mg/kg DON显著降低断奶仔猪第10天和第21天WBC和HGB含量(P<0.05),并有降低第10天和第21天HCT以及第21天RBC的趋势(0.05 < P<0.10);饲粮添加0.1%植物炭黑对断奶仔猪血常规指标无显著影响(P>0.05);DON与植物炭黑对第21天WBC和第10天RBC有互作效应趋势(0.05 < P<0.10)。多重比较结果显示,与DON组相比,DON+PCB组断奶仔猪第10天RBC以及第21天WBC有提高趋势(P>0.05),且与CON组相比无显著差异(P>0.05)。

表 3 植物炭黑对饲喂DON污染饲粮断奶仔猪血常规指标的影响 Table 3 Effects of plant carbon black on blood routine indices of weaned piglets fed DON contaminated diets
2.3 植物炭黑对饲喂DON污染饲粮断奶仔猪血清抗氧化指标的影响

表 4可知,饲粮添加1.5 mg/kg DON显著降低断奶仔猪第10天血清T-AOC和CAT活性以及第21天血清SOD、GSH-Px活性和T-AOC(P<0.05),显著提高第10天和第21天血清MDA含量(P<0.05);饲粮添加0.1%植物炭黑对血清抗氧化指标无显著影响(P>0.05);DON与植物炭黑对第10天血清MDA含量以及第21天血清SOD活性有显著互作效应(P<0.05),对第21天血清MDA含量有互作效应趋势(0.05 < P<0.10)。多重比较结果显示,与DON组相比,DON+PCB组断奶仔猪第21天血清SOD活性显著提高(P<0.05),第10天和第21天血清MDA含量有降低趋势(P>0.05),且与CON组相比均无显著差异(P>0.05)。

表 4 植物炭黑对饲喂DON污染饲粮断奶仔猪血清抗氧化指标的影响 Table 4 Effects of plant carbon black on serum antioxidant indices of weaned piglets fed DON contaminated diets
2.4 植物炭黑对饲喂DON污染饲粮断奶仔猪小肠二糖酶活性的影响

表 5可知,饲粮添加1.5 mg/kg DON显著提高断奶仔猪十二指肠蔗糖酶活性以及空肠麦芽糖酶和蔗糖酶活性(P<0.05),并有提高十二指肠和回肠麦芽糖酶活性的趋势(0.05 < P<0.10);饲粮添加0.1%添加植物炭黑对小肠二糖酶活性均无显著影响(P>0.05);DON与植物炭黑对空肠蔗糖酶活性有互作效应趋势(0.05 < P<0.10)。多重比较结果显示,与DON组相比,DON+PCB组断奶仔猪空肠蔗糖酶活性有降低趋势(P>0.05),且与CON组相比无显著差异(P>0.05)。

表 5 植物炭黑对饲喂DON污染饲粮断奶仔猪小肠二糖酶活性的影响 Table 5 Effects of plant carbon black on disaccharidase activity in small intestine of weaned piglets fed DON contaminated diets 
3 讨论 3.1 植物炭黑对饲喂DON污染饲粮断奶仔猪生长性能的影响

猪采食DON污染饲粮出现的典型症状是呕吐、拒食和采食量下降,目前普遍认为这是由于DON能通过破坏肠道菌群并调节肠道神经传导物质如5-羟色胺、儿茶酚胺等受体来抑制小肠蠕动,从而引发拒食[15-16]。本研究发现,饲粮添加1.5 mg/kg DON会显著降低断奶仔猪末重和ADG,并有提高F/G的趋势。Liao等[17]在断奶仔猪饲粮中添加4 mg/kg DON 14 d,仔猪ADG下降了15.01%,ADFI下降了11.32%,与本研究结果一致。Pestka等[6]在育肥猪上的研究也发现,采食量的降低和DON含量呈正相关,饲粮中每增加1 mg/kg DON,育肥猪的采食量下降约6%,当DON超过10 mg/kg时,育肥猪完全拒食。DON对仔猪生长性能最低可观测损害水平还有所争议,Jia等[18]报道仔猪饲喂1 mg/kg DON污染饲粮3周并不会引起ADG和ADFI的变化,然而也有研究表明,当DON含量低至0.6 mg/kg时仍会对仔猪生长性能造成损害[19],以上结果的差异可能与猪群体重、性别、健康情况、毒素来源及是否存在毒素混合污染等有关。

目前缓解DON对仔猪生长性能的影响最常见的方法是在毒素污染饲粮中添加吸附剂。Liu等[5]发现在3.0 mg/kg DON污染饲粮中添加疏水性吸附剂水合铝硅酸钠钙能有效缓解DON对仔猪体重、ADG和ADFI的影响。万晶[20]研究表明,在DON污染饲粮中添加提纯及碳化蒙脱石能提高仔猪第1~14天ADG,改善第1~14天和第1~28天F/G。本试验中使用的植物炭黑为活性碳类产品,其微孔结构多,相较于普通蒙脱石类吸附剂具有较大的比表面积[10],在体外缓冲液中对包括DON在内的多种毒素具有较高的吸附率[7],在DON体内代谢试验中能有效降低仔猪血清中DON及其代谢产物含量[13]。本试验结果也发现,饲喂添加0.1%植物炭黑的DON污染饲粮,断奶仔猪末重、ADG和ADFI等生长性能指标较DON组有所改善,结果与使用水合铝硅酸钠钙和碳化蒙脱石的结果[5, 20]一致。目前对活性炭类产品,市场认为其吸附性较强,但没有选择性,可能会吸附营养素从而降低仔猪生长性能,然而本试验发现,单独添加0.1%植物炭黑并没有显著降低仔猪生长性能。Wang等[10]在正常饲粮中也发现,添加500 mg/kg植物炭黑能显著提高仔猪第14天和第28天体重,降低腹泻率,当添加量达到2 000 mg/kg时也不会降低仔猪生长性能。

3.2 植物炭黑对饲喂DON污染饲粮断奶仔猪血常规指标的影响

血常规指标是临床上最为常见的基础指标之一,能够反映动物机体或器官的健康情况[21]。DON具有较强的细胞毒性,它能抑制蛋白质合成,影响细胞增殖[22-23]。李华[24]研究发现,饲粮添加2 mg/kg DON显著降低了小鼠第10天和第30天血液中WBC、RBC和HCT。赵青等[25]也研究发现无论是灌胃或者注射DON均能显著降低WBC、RBC、PLT和HCT。WBC、RBC和HCT的降低表明机体免疫力及造血功能受到影响且体内有炎症反应。本试验结果表明,DON会影响断奶仔猪全血中WBC、RBC和HGB含量,而添加植物炭黑能缓解DON对WBC和RBC的降低,且与CON组相比均未见显著差异,这与蒋竹英[14]使用竹炭的效果相一致,这提示饲粮添加植物炭黑能缓解DON对细胞的毒性和对造血功能的影响,降低DON对机体的危害。

3.3 植物炭黑对饲喂DON污染饲粮断奶仔猪血清抗氧化指标的影响

DON进入机体后会产生大量的自由基,破坏原有氧化-抗氧化稳态系统,引起氧化应激[26]。T-AOC含量通常由体内酶类及非酶类的抗氧化系统维持,其可反映机体整体的抗氧化状态[27]。MDA是自由基作用于脂质过氧化后的产物,可反映机体内脂质过氧化程度。SOD、CAT和GSH-Px是抗氧化系统中重要的酶,其可共同协作加速过氧化氢、超氧化物等氧化物的代谢,降低对机体产生的毒性[28]。本试验中,DON显著降低了断奶仔猪第10天血清T-AOC、CAT活性以及第21天血清SOD、GSH-Px活性和T-AOC,显著提高第10天和第21天血清MDA含量,这表明DON污染饲粮破坏了仔猪体内的抗氧化系统,脂质过氧化物大量积累,机体结构及功能受到氧化损伤。Kouadio等[29]在Caco-2细胞系中也发现,DON能通过阻断鞘磷脂代谢,加速脂质过氧化,提高细胞中MDA含量。Wu等[30]在生长猪饲粮中添加3~12 mg/kg DON发现,生长猪血清SOD和GSH-Px活性显著降低,并且其活性与DON的添加量呈负相关。Jia等[31]在仔猪中也发现,饲粮中添加3.6 mg/kg DON显著提高了血清MDA含量。本试验中,在DON污染的饲粮中添加植物炭黑显著提高了断奶仔猪第21天血清SOD活性,并能缓解DON引起的第10天和第21天血清MDA含量的提高,结果与之前研究使用活性炭、竹炭等效果类似[14, 32],这提示植物炭黑能缓解DON对机体造成的氧化应激。植物炭黑对缓解DON引起的氧化应激的原因一方面是因为其能吸附DON,减少其在体内的吸收,从而降低氧化损伤;另一方面,也可能是因为其对肠道内毒素具有吸附作用。仔猪断奶会增加肠道内毒素的释放,引发仔猪炎症及氧化应激[33],而活性炭对内毒素有较好的吸附效果[34],从而能缓解内毒素对机体的危害。

3.4 植物炭黑对饲喂DON污染饲粮断奶仔猪小肠二糖酶活性的影响

麦芽糖、蔗糖和乳糖等二糖在动物机体内并不能直接被利用,需要被黏膜上皮的二糖酶水解为单糖后才能吸收,当肠道受损时,二糖酶活性会有所降低,因此常将二糖酶活性作为反映肠道黏膜健康及机体对碳水化合物吸收能力的重要指标[35]。Martínez等[36]在断奶仔猪饲粮中添加50 μg/kg BW的DON后发现,十二指肠及近端空肠麦芽糖酶和乳糖酶活性、远端空肠蔗糖酶和乳糖酶活性以及回肠麦芽糖酶活性均显著降低。陈祥兴[37]使用镰刀菌毒素(玉米赤霉烯酮899.4 μg/kg、DON 1 429.4 μg/kg和烟曲霉毒素5 846 μg/kg)攻毒断奶仔猪发现,镰刀菌毒素显著降低了十二指肠和空肠乳糖酶活性以及空肠和回肠蔗糖酶活性。和预期有所不同,本试验中,DON显著提高断奶仔猪十二指肠蔗糖酶活性以及空肠麦芽糖酶和蔗糖酶活性,并有提高十二指肠和回肠麦芽糖酶活性的趋势。二糖酶活性的异常提高也在黄曲霉毒素B1攻毒的蛋鸡中被发现,并且二糖酶活性与黄曲霉毒素B1添加量呈二次提高关系[38]。笔者推测,二糖酶活性的异常表现可能与毒素剂量和作用时间有关,也可能与毒素引发的全身性代谢及激素分泌异常有关[39],具体还有待于进一步研究。本试验中,在DON污染饲粮中添加植物炭黑后断奶仔猪空肠蔗糖酶活性较CON组无显著变化,这提示植物炭黑能一定程度缓解DON对消化酶的影响。

4 结论

① 饲喂DON污染(1.5 mg/kg)的饲粮会降低断奶仔猪生长性能,改变血常规指标,降低血清抗氧化能力并引起小肠二糖酶活性的异常提高;添加0.1%植物炭黑能缓解DON对机体的这种负面影响。

② 正常饲粮中添加0.1%植物炭黑不会对断奶仔猪生长性能、血常规指标、血清抗氧化指标以及小肠二糖酶活性造成负面影响。

参考文献
[1]
MA R, ZHANG L, LIU M, et al. Individual and combined occurrence of mycotoxins in feed ingredients and complete feeds in China[J]. Toxins, 2018, 10(3): 113. DOI:10.3390/toxins10030113
[2]
NEME K, MOHAMMED A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies.A review[J]. Food Control, 2017, 78: 412-425. DOI:10.1016/j.foodcont.2017.03.012
[3]
LIAO Y X, PENG Z, CHEN L K, et al. Deoxynivalenol, gut microbiota and immunotoxicity: a potential approach?[J]. Food and Chemical Toxicology, 2018, 112: 342-354. DOI:10.1016/j.fct.2018.01.013
[4]
ZHANG L, MA R, ZHU M X, et al. Effect of deoxynivalenol on the porcine acquired immune response and potential remediation by a novel modified HSCAS adsorbent[J]. Food and Chemical Toxicology, 2020, 138: 111187. DOI:10.1016/j.fct.2020.111187
[5]
LIU M, ZHANG L, CHU X H, et al. Effects of deoxynivalenol on the porcine growth performance and intestinal microbiota and potential remediation by a modified HSCAS binder[J]. Food and Chemical Toxicology, 2020, 141: 111373. DOI:10.1016/j.fct.2020.111373
[6]
PESTKA J J. Mechanisms of deoxynivalenol-induced gene expression and apoptosis[J]. Food Additives & Contaminants.Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment, 2008, 25(9): 1128-1140.
[7]
AVANTAGGIATO G, HAVENAAR R, VISCONTI A. Evaluation of the intestinal absorption of deoxynivalenol and nivalenol by an in vitro gastrointestinal model, and the binding efficacy of activated carbon and other adsorbent materials[J]. Food and Chemical Toxicology, 2004, 42(5): 817-824. DOI:10.1016/j.fct.2004.01.004
[8]
GEREZ J, BUCK L, MARUTANI V H, et al. Low levels of chito-oligosaccharides are not effective in reducing deoxynivalenol toxicity in swine jejunal explants[J]. Toxins, 2018, 10: 276. DOI:10.3390/toxins10070276
[9]
SAMANYA M, YAMAUCHI K E. Morphological demonstration of the stimulative effects of charcoal powder including wood vinegar compound solution on growth performance and intestinal villus histology in chickens[J]. The Journal of Poultry Science, 2004, 39(1): 42-55.
[10]
WANG L Q, GONG L M, ZHU L, et al. Effects of activated charcoal-herb extractum complex on the growth performance, immunological indices, intestinal morphology and microflora in weaning piglets[J]. Rsc Advances, 2019, 9(11): 5948-5957. DOI:10.1039/C8RA10283J
[11]
CHU G M, JUNG C K, KIM H Y, et al. Effects of bamboo charcoal and bamboo vinegar as antibiotic alternatives on growth performance, immune responses and fecal microflora population in fattening pigs[J]. Animal Science Journal, 2013, 84(2): 113-120. DOI:10.1111/j.1740-0929.2012.01045.x
[12]
KALAGATUR N K, KARTHICK K, ALLEN J A, et al. Application of activated carbon derived from seed shells of Jatropha curcas for decontamination of zearalenone mycotoxin[J]. Frontiers in Pharmacology, 2017, 8: 760. DOI:10.3389/fphar.2017.00760
[13]
DEVREESE M, ANTONISSEN G, DE BACKER P, et al. Efficacy of active carbon towards the absorption of deoxynivalenol in pigs[J]. Toxins, 2014, 6(10): 2998-3004. DOI:10.3390/toxins6102998
[14]
蒋竹英. 脱氧雪腐镰刀菌烯醇污染饲粮添加竹炭和竹醋液对断奶仔猪的影响研究[D]. 硕士学位论文. 长沙: 湖南农业大学, 2013.
JIANG Z Y. Effects of adding bamboo-carbon and bamboo vinegar to the diets contaminated by deoxynivalenol on weaner piglets[D]. Master's Thesis. Changsha: Hunan Agriculture University, 2013. (in Chinese)
[15]
WANG S, YANG J C, ZHANG B Y, et al. Potential link between gut microbiota and deoxynivalenol-induced feed refusal in weaned piglets[J]. Journal of Agricultural and Food Chemistry, 2019, 67(17): 4976-4986. DOI:10.1021/acs.jafc.9b01037
[16]
PENG Z, CHEN L K, XIAO J, et al. Review of mechanisms of deoxynivalenol-induced anorexia: the role of gut microbiota[J]. Journal of Applied Toxicology, 2017, 37(9): 1021-1029. DOI:10.1002/jat.3475
[17]
LIAO P, LI Y H, LI M J, et al. Baicalin alleviates deoxynivalenol-induced intestinal inflammation and oxidative stress damage by inhibiting NF-κB and increasing mTOR signaling pathways in piglets[J]. Food and Chemical Toxicology, 2020, 140: 111326. DOI:10.1016/j.fct.2020.111326
[18]
JIA R, LIU W B, ZHAO L H, et al. Low doses of individual and combined deoxynivalenol and zearalenone in naturally moldy diets impair intestinal functions via inducing inflammation and disrupting epithelial barrier in the intestine of piglets[J]. Toxicology Letters, 2020, 333: 159-169. DOI:10.1016/j.toxlet.2020.07.032
[19]
BRACARENSE A P F L, LUCIOLI J, GRENIER B, et al. Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets[J]. The British Journal of Nutrition, 2012, 107(12): 1776-1786. DOI:10.1017/S0007114511004946
[20]
万晶. 霉菌毒素吸附剂对饲料中脱氧雪腐镰刀菌烯醇吸附效果研究[D]. 硕士学位论文. 金华: 浙江师范大学, 2014.
WAN J. Study on adsorption effect of mycotoxin adsorbents on deoxynivalenol in feed[D]. Master's Thesis. Jinhua: Zhejiang Normal University, 2014. (in Chinese)
[21]
张宇. 血常规检测的临床意义[J]. 中国医药指南, 2012, 10(17): 390-391.
ZHANG Y. Clinical significance of blood routine testing[J]. Guide of China Medicine, 2012, 10(17): 390-391 (in Chinese). DOI:10.3969/j.issn.1671-8194.2012.17.303
[22]
TIEMANN U, VIERGUTZ T, JONAS L, et al. Influence of the mycotoxins alpha- and beta-zearalenol and deoxynivalenol on the cell cycle of cultured porcine endometrial cells[J]. Reproductive Toxicology, 2003, 17(2): 209-218. DOI:10.1016/S0890-6238(02)00141-7
[23]
NOSSOL C, LANDGRAF P, KAHLERT S, et al. Deoxynivalenol affects cell metabolism and increases protein biosynthesis in intestinal porcine epithelial cells (IPEC-J2): don increases protein biosynthesis[J]. Toxins, 2018, 10(11): 464. DOI:10.3390/toxins10110464
[24]
李华. 酯化葡甘露聚糖对呕吐毒素吸附能力的研究[D]. 硕士学位论文. 青岛: 青岛农业大学, 2009.
LI H. Absorptive ability of esterified glucomannan to deoxynivalenol[D]. Master's Thesis. Qingdao: Qingdao Agricultural University, 2009. (in Chinese)
[25]
赵青, 何敏, 剡海阔, 等. 呕吐毒素不同给药方式对猪血常规指标的影响[J]. 中国畜牧兽医, 2010, 37(4): 47-50.
ZHAO Q, HE M, YAN H K, et al. Influence of deoxynivalenol on hematologic indexes by different administration methods in pigs[J]. China Animal Husbandry & Veterinary Medicine, 2010, 37(4): 47-50 (in Chinese).
[26]
MISHRA S, DWIVEDI P D, PANDEY H P, et al. Role of oxidative stress in deoxynivalenol induced toxicity[J]. Food and Chemical Toxicology, 2014, 72: 20-29. DOI:10.1016/j.fct.2014.06.027
[27]
KANBUR M, ERASLAN G, SILICI S, et al. Effects of sodium fluoride exposure on some biochemical parameters in mice: evaluation of the ameliorative effect of royal jelly applications on these parameters[J]. Food and Chemical Toxicology, 2009, 47(6): 1184-1189. DOI:10.1016/j.fct.2009.02.008
[28]
BUETTNER G R, NG C F, WANG M, et al. A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state[J]. Free Radical Biology & Medicine, 2006, 41(8): 1338-1350.
[29]
KOUADIO J H, MOBIO T A, BAUDRIMONT I, et al. Comparative study of cytotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2[J]. Toxicology, 2005, 213(1/2): 56-65.
[30]
WU L, LIAO P, HE L Q, et al. Growth performance, serum biochemical profile, jejunal morphology, and the expression of nutrients transporter genes in deoxynivalenol (DON)-challenged growing pigs[J]. BMC Veterinary Research, 2015, 11: 144. DOI:10.1186/s12917-015-0449-y
[31]
JIA R, SADIQ F A, LIU W B, et al. Protective effects of Bacillus subtilis ASAG 216 on growth performance, antioxidant capacity, gut microbiota and tissues residues of weaned piglets fed deoxynivalenol contaminated diets[J]. Food and Chemical Toxicology, 2021, 148: 111962. DOI:10.1016/j.fct.2020.111962
[32]
ABDEL-WAHHAB M A, EL-KADY A A, HASSAN A M, et al. Effectiveness of activated carbon and Egyptian montmorillonite in the protection against deoxynivalenol-induced cytotoxicity and genotoxicity in rats[J]. Food and Chemical Toxicology, 2015, 83: 174-182. DOI:10.1016/j.fct.2015.06.015
[33]
汪德明. 酵母培养物对断奶仔猪生长、血液生理及内毒素水平的影响[D]. 硕士学位论文. 兰州: 甘肃农业大学, 2007.
WANG D M. The study on effects of yeast cultures on growth, blood physiological and endotoxin level in weaning piglets[D]. Master's Thesis. Lanzhou: Gansu Agricultural University, 2007. (in Chinese)
[34]
肖贵南, 程朝辉, 盛英美. 活性炭吸附细菌内毒素的作用研究[J]. 中国药房, 2010, 21(5): 443-445.
XIAO G N, CHENG Z H, SHENG Y M. Absorptive effect of activated carbon on endotoxin[J]. China Pharmacy, 2010, 21(5): 443-445 (in Chinese).
[35]
PI D A, LIU Y L, SHI H F, et al. Dietary supplementation of aspartate enhances intestinal integrity and energy status in weanling piglets after lipopolysaccharide challenge[J]. The Journal of Nutritional Biochemistry, 2014, 25(4): 456-462. DOI:10.1016/j.jnutbio.2013.12.006
[36]
MARTÍNEZ G, DIÉGUEZ S N, FERNÁNDEZ PAGGI M B, et al. Effect of fosfomycin, Cynara scolymus extract, deoxynivalenol and their combinations on intestinal health of weaned piglets[J]. Animal Nutrition, 2019, 5(4): 386-395. DOI:10.1016/j.aninu.2019.08.001
[37]
陈祥兴. 镰刀菌毒素对断奶仔猪生长性能、肠道损伤及促炎性因子的影响[D]. 硕士学位论文. 泰安: 山东农业大学, 2015.
CHEN X X. Effects of fusarium toxins on growth performance, intestinal damages and pro-inflammatory cytokines in post-weaning gilts[J]. Master's Thesis. Tai'an: Shandong Agricultural University, 2015. (in Chinese)
[38]
APPLEGATE T J, SCHATZMAYR G, PRICKEL K, et al. Effect of aflatoxin culture on intestinal function and nutrient loss in laying hens[J]. Poultry Science, 2009, 88(6): 1235-1241. DOI:10.3382/ps.2008-00494
[39]
CREPPY E E. Update of survey, regulation and toxic effects of mycotoxins in Europe[J]. Toxicology Letters, 2002, 127(1/2/3): 19-28.