动物营养学报    2021, Vol. 33 Issue (11): 6173-6183    PDF    
卵内注射亮氨酸对慢性热应激雌性肉鸡生长性能、肠道组织形态和抗氧化能力的影响
崔洋洋 , 韩国锋 , 李延森 , 李春梅     
南京农业大学动物科技学院, 家畜环境控制与智慧生产研究中心, 南京 210095
摘要: 本试验旨在探讨卵内注射亮氨酸对慢性热应激雌性肉鸡生长性能、肠道组织形态和抗氧化能力的影响。试验选取罗斯308种蛋200枚,随机分为2组(每组平均蛋重64.9 g),在胚胎期第7天进行卵内注射,对照组和亮氨酸组分别注射超纯水(0.5 mL/枚)和亮氨酸水溶液(0.5 mL/枚,含9.06 mg L-亮氨酸)。在雏鸡2日龄时通过快慢羽鉴别法筛选出雌性雏鸡分笼饲养,饲养至15日龄时2组各选择体重相近的24只雌性雏鸡,分成8个重复,每个重复3只。2组雌性雏鸡在21~39日龄连续19 d(每天10:00—16:00)进行热处理[(30±2)℃],结束后在正常温度环境下饲养1周至46日龄。结果显示:与对照组相比,1)卵内注射亮氨酸对雌性肉鸡的生长性能没有显著影响(P>0.05);2)卵内注射亮氨酸极显著提高了39日龄雌性肉鸡脾脏指数(P < 0.01);3)卵内注射亮氨酸极显著提高了39日龄雌性肉鸡十二指肠绒毛高度和回肠隐窝深度(P < 0.01),极显著降低了空肠隐窝深度(P < 0.01),且卵内注射亮氨酸显著或极显著提高了46日龄雌性肉鸡回肠和空肠绒毛高度(P < 0.05或P < 0.01),同时极显著降低了空肠隐窝深度(P < 0.01);4)卵内注射亮氨酸极显著降低了46日龄雌性肉鸡血清丙二醛(MDA)的含量(P < 0.01),且极显著提高了血清超氧化物歧化酶(SOD)的活性(P < 0.01);5)卵内注射亮氨酸使39日龄雌性肉鸡空肠组织MDA含量降低了46.7%(P=0.134),且使空肠组织过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-Px)活性分别提高了4.9%(P=0.886)和53.2%(P=0.102)。综上所述,卵内注射亮氨酸可改善慢性热应激雌性肉鸡肠道组织形态和脾脏指数,提高血清抗氧化能力。
关键词: 卵内注射    亮氨酸    生长性能    肠道组织形态    抗氧化能力    热应激    雌性肉鸡    
Effects of in Ovo Leucine Injection on Growth Performance, Intestinal Tissue Morphology and Antioxidant Capacity of Female Broilers under Chronic Heat Stress
CUI Yangyang , HAN Guofeng , LI Yansen , LI Chunmei     
Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, China
Abstract: In this study, the effects of in ovo leucine injection on the growth performance, intestinal tissue morphology and antioxidant capacity of female broilers under chronic heat stress were investigated. A total of 200 fertilized Ross 308 eggs were randomly divided into 2 groups, and the average egg weight of each group was 64.9 g. The eggs were in ovo injected with leucine aqueous solution (0.5 mL/egg, containing 9.06 mg L-leucine) or ultrapure water (0.5 mL/egg) on embryonic day (ED) 7. Female chicks were selected by feather identification and were reared at 2 days of age. At 15 days of age, twenty-four female broilers of each group were chosen and assigned 8 replicates with 3 birds per replicate. Female broilers of 2 groups were exposed to a chronic heat cyclic and continued heat stress[(30±2)℃] for 19 days (10:00-16:00 of every day). After heat stress, female broilers were reared from 1 week to 46 days of age for normal temperature. The results showed as follows: compared with the control group, 1) in ovo leucine injection had no significant effect on the growth performance of female broilers (P>0.05). 2) Spleen index of 39-day-old female broilers was extremely significantly increased by in ovo leucine injection (P < 0.01). 3) The height of duodenum villus and the depth of ileum crypt of 39-day-old female broilers were extremely significantly increased (P < 0.01) and the depth of jejunum crypt was extremely significantly decreased by in ovo leucine injection (P < 0.01), respectively; meanwhile; in ovo leucine injection significantly or extremely significantly increased the heights of ileum and jejunum villus of 39-day-old female broilers (P < 0.05 or P < 0.01), and extremely significantly reduced the depth of jejunum crypt (P < 0.01). 4) Serum malondialdehyde (MDA) content of 46-day-old female broilers was extremely significantly reduced (P < 0.01) and serum superoxide dismutase (SOD) activity was extremely significantly increased by in ovo leucine injection (P < 0.01). 5) The content of MDA in jejunum tissue of 39-day-old female broilers was reduced by 46.7% (P=0.134), and the activities of catalase (CAT) and glutathione peroxidase (GSH-Px) in jejunum tissue were increased by 4.9% (P=0.997) and 53.2% (P=0.102) by in ovo leucine injection, respectively. In conclusion, in ovo leucine injection can improve the intestinal tissue morphology, spleen index and serum antioxidant capacity of female broilers under chronic heat stress.
Key words: in ovo injection    leucine    growth performance    intestinal tissue morphology    antioxidant capacity    heat stress    female broilers    

近年来,全球变暖已造成许多地区高温季节时间延长,对人类健康和农业生产造成负面影响。现代肉鸡养殖企业多采用自动化和高密度的饲养模式,同时肉鸡具有代谢率高、无汗腺、对热敏感等特点,这就使得肉鸡很容易受到高温影响而产生热应激[1-2]。热应激根据应激时间分为“急性热应激”和“慢性热应激”。急性热应激是指环境温度的短暂而快速的升高,慢性热应激是指长时间(≥3 d)内环境温度升高。此外,慢性热应激根据是否存在间歇性又分为周期慢性热应激和连续热应激。周期性慢性热应激指动物在一段时间内暴露于热环境中,其他时间则处于舒适温度,而连续性热应激是指动物持续面临高温环境[3]。目前动物养殖生产中最常发生的是周期性慢性热应激[4]。据报道,每年因高温引起的热应激造成的家禽产业经济损失达12 800万美元[5]。近年来,世界肉类消费结构逐渐从牛、羊肉向禽肉转移,鸡肉生产增长远高于牛肉、猪肉,2020年商品代白羽肉鸡出栏总量51.55亿只,涨幅高达13.25%[6]。同时,由于非洲猪瘟导致猪肉产量下降,猪肉价格升高,鸡肉消费需求进一步升高[7]。因此,寻找有效缓解家禽生产中热应激问题的策略日益引起研究人员关注。目前主要是利用饲料添加剂和控制环境温度来缓解热应激对家禽造成的损伤[8],但这些方法都是被动的来缓解热应激造成的损伤,具有效率低和成本高等缺点[9]

前人研究表明,胚胎期热操纵(thermal manipulation, TM)技术可使孵化后的雏鸡具有耐热性[10-11]。我们先前研究结果发现TM可改变肉鸡胚胎期肝脏和大脑中的亮氨酸浓度[12]。根据Ohta等[13]试验研究和本试验先前研究结果,我们选择在胚胎期第7天于卵黄囊内注射亮氨酸,结果发现卵内注射亮氨酸能提高热应激条件下雄性肉鸡的耐热性[14]和生长性能[15];此外,Erwan等[16]报道,饲粮中添加亮氨酸对肉鸡的采食量、体增重和饲料转化率并无显著影响。这就说明在提高肉鸡耐热性方面,卵内注射亮氨酸显著优于饲粮添加。

卵内注射技术具有安全性高、接种速度快、剂量准确、便于机械化操作和节省人力等优点,并且该技术在家禽早期免疫调控的应用方面取得了较大成功[17]。目前已经报道的卵内注射的物质主要有氨基酸及其代谢物类、维生素、电解质、益生菌、碳水化合物以及一些小肽类物质等[18],这些外源性物质具有改善胚胎期营养状况,促进胚胎发育,提高雏鸡出壳后免疫功能、生长性能、抗热应激能力、肉品质等功能[12, 19]。卵内注射技术作为一项新技术,目前仍面临许多挑战,如禽蛋品种,注射液的种类、浓度、剂量等都会影响卵内注射的效果,以及卵内注射对后代影响持续时间等都需要进一步研究。我们相信在未来会有更多的新型营养物质或其他补充剂应用于卵内注射技术的研究中,从而挖掘出更多高效的卵内注射补充剂进一步促进禽类产业健康发展。

热应激引起肉鸡体温升高、采食量降低,最终降低肉鸡的生产性能[20]。热应激还会破坏肠道组织形态,造成肠道上皮细胞坏死、脱落,降低肉鸡的生长性能和抗氧化能力[21]。此外,热应激也会影响法氏囊、脾脏等免疫器官的发育,降低肉鸡的免疫功能[22]。亮氨酸是一种必需氨基酸,参与蛋白质的从头合成,还参与维持和调控动物多种生理功能[23-24]。本课题组前期研究已经证实,肉鸡胚胎期亮氨酸营养干预可以通过激活脂代谢和氨基酸代谢提高肉鸡对热应激的耐受[14, 25]。胚胎期注射亮氨酸水溶液(0.5 mL/枚,含4.03 mg L-亮氨酸)可以降低急性热应激肉鸡间脑中热休克蛋白基因表达水平[26]。此外,饲粮中长期补充亮氨酸可以提高金鲳鱼的生长性能和抗氧化能力[27]。最新研究发现,胚胎期亮氨酸营养干预能显著提高慢性热应激雄性肉鸡的生长性能[28],但是目前关于卵内注射亮氨酸对慢性热应激雌性肉鸡生长性能和抗氧化能力的研究未见报道。因此,本研究旨在探讨胚胎期亮氨酸营养干预对慢性热应激雌性肉鸡生长性能和抗氧化能力的影响,明确卵内注射亮氨酸是否能恢复慢性热应激对雌性肉鸡生长性能、肠道形态结构和抗氧化能力造成的损伤,为卵内注射亮氨酸在家禽抗热应激领域的进一步应用提供依据。

1 材料与方法 1.1 试验设计

试验选取日龄相同、蛋重相近的罗斯308种蛋200枚,随机分为2组(每组平均蛋重64.9 g),在胚胎期第7天进行卵内注射,将亮氨酸水溶液和超纯水注射入卵黄囊内,根据Ohta等[13]和本课题组先前试验结果[15],本试验选择对照组注射超纯水(0.5 mL/枚),亮氨酸组注射亮氨酸水溶液(0.5 mL/枚,含9.06 mg L-亮氨酸)。卵内注射过程参照Ohta等[13]的报道。

雏鸡饲养至15日龄,2组各随机选择体重相近的24只雌性雏鸡,分成8个重复,每个重复3只。2组雌性肉鸡从21日龄开始至39日龄结束,连续19 d进行热处理[(30±2) ℃],处理时间为每天10:00—16:00,热应激期结束后,进入恢复期,即热应激结束后在正常温度环境下饲养1周至46日龄。

1.2 雌性肉鸡饲养

1日龄雏鸡出壳后立即转移到南京农业大学动物试验中心动物房饲养,2日龄时通过雌雄鉴别(羽速快慢鉴别法)筛选出雌性雏鸡进行分笼饲养,每笼20只。饲养管理遵循《罗斯308饲养管理手册》,自由采食(饲粮营养水平满足:代谢能>12.6 MJ/kg,粗蛋白质含量>23%)和饮水。当饲养试验进行到39和46日龄时,分别以重复为单位进行屠宰试验。每个重复选1只雌性肉鸡解剖,麻醉后颈动脉采血于离心管中,然后分离出十二指肠、空肠和回肠,在每段肠道中段取3 cm左右样品,用生理盐水把肠道内容物冲洗干净。一部分于4%多聚甲醛常温保存,以制备石蜡切片,另一部分保存于-80 ℃冰箱。最后分离出心脏、肝脏、脾脏、法氏囊等器官,用滤纸吸取表层血液,剪去表面脂肪和系膜,放置在电子天平上称重。

1.3 测定指标与方法 1.3.1 生长性能测定

记录各组(以重复为单位)热应激期间的采食量和死淘数,每3 d记录各组体重(以重复为单位),计算21~39日龄、40~46日龄的平均日增重、平均日采食量、饲料转化率,并计算39和46日龄的心脏、肝脏、法氏囊、脾脏指数。免疫器官指数计算公式如下:

免疫器官指数(%)=[免疫器官重(g)/体重(g)]×100。

1.3.2 肠道组织形态测定

肠道切片制作过程大致分为固定、梯度酒精脱水、石蜡包埋、切片、苏木精-伊红(HE)染色和中型树脂封片。采用虚拟显微镜(Nikon公司)并结合Image J 1.6.0图像分析软件观察肠道形态结构,测定绒毛高度和隐窝深度。

1.3.3 血清抗氧化指标检测

采用酶标仪测定血清中丙二醛(MDA)含量以及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)活性和总抗氧化能力(T-AOC),所用试剂盒均购于南京建成生物工程研究所。

1.3.4 肠道组织抗氧化指标检测

将存于-80 ℃冰箱的肠道组织用预冷的生理盐水按1 ∶ 9(质量∶体积=g ∶ mL)稀释,然后匀浆,将匀浆液于离心机中离心(4 ℃,3 500 r/min,15 min)后,小心吸取上清液,使用南京建成生物工程研究所的试剂盒测定上清液中CAT、SOD、GSH-Px活性和MDA含量。

1.4 数据统计与分析

血清抗氧化指标的数据使用GraphPad Software公司开发的GraphPad Prism 8.2.1统计软件进行双因素方差分析(two-way ANOVA),若存在显著交互作用,继续采用Turkey-Kramer test进行组间多重比较;生长性能、器官指数、肠道组织形态和肠道组织抗氧化指标等的数据使用GraphPad Prism 8.2.1独立样本t检验(t test)分析。试验数据以“平均值±标准误”表示,P > 0.05为差异不显著,P < 0.05为差异显著,P < 0.01表示差异极显著。

2 结果与分析 2.1 卵内注射亮氨酸对慢性热应激雌性肉鸡生长性能的影响

表 1可知,与对照组相比,卵内注射亮氨酸对热应激期和恢复期雌性肉鸡的平均日增重、平均日采食量和料重比没有产生显著影响(P > 0.05),而且也未显著影响39和46日龄心脏、肝脏和法氏囊指数(P > 0.05),但极显著提高了39日龄雌性肉鸡脾脏器官指数(P < 0.01)。

表 1 卵内注射亮氨酸对慢性热应激雌性肉鸡生长性能的影响 Table 1 Effects of in ovo leucine injection on growth performance of female broilers under chronic heat stress
2.2 卵内注射亮氨酸对热应激雌性肉鸡血清抗氧化指标的影响

表 2可知,与对照组相比,39日龄时亮氨酸组血清T-AOC活性极显著下降(P < 0.01),其他血清抗氧化指标无显著差异(P > 0.05);然而,46日龄时亮氨酸组血清MDA含量极显著下降(P < 0.01),SOD活性则极显著提高(P < 0.01)。

表 2 卵内注射亮氨酸对慢性热应激雌性肉鸡血清抗氧化指标的影响 Table 2 Effects of in ovo leucine injection on serum antioxidant indexes of female broilers under chronic heat stress
2.3 卵内注射亮氨酸对慢性热应激雌性肉鸡肠道组织形态的影响

图 1图 2可知,与对照组相比,卵内注射亮氨酸极显著提高了39日龄雌性肉鸡十二指肠绒毛高度和回肠隐窝深度(P < 0.01),显著降低空肠绒毛高度(P < 0.05),极显著降低了空肠隐窝深度(P < 0.01);卵内注射亮氨酸显著提高了46日龄雌性肉鸡回肠绒毛高度(P < 0.05),极显著提高了空肠绒毛高度(P < 0.01),极显著降低了十二指肠绒毛高度和空肠隐窝深度(P < 0.01)。

图A、B、C分别为对照组39日龄雌性肉鸡十二指肠、空肠和回肠组织切片(40×),图D、E、F分别为亮氨酸组39日龄雌性肉鸡十二指肠、空肠和回肠组织切片(40×)。图G和H分别为绒毛高度和隐窝深度数据柱状图。数据表示为平均值±标准误(n=4),*表示与对照组相比差异显著(P < 0.05),* *表示与对照组相比差异极显著(P < 0.01)。 Figures A, B and C were the tissue sections of duodenum, jejunum and ileum of 39-day-old female broilers in the control group (40×), and figures D, E and F were the tissue sections of duodenum, jejunum and ileum of 39-day-old female broilers in the leucine group (40×), respectively. Figures G and H were the histograms of villus height and crypt depth, respectively. The values showed as the mean±SE (n=4), * mean significant difference compared with the control group (P < 0.05), and * * mean extremely significant difference compared with the control group (P < 0.01). 图 1 39日龄雌性肉鸡肠道组织形态 Fig. 1 Intestinal tissue morphology of 39-day-old female broilers
图I、J、K分别为对照组46日龄雌性肉鸡十二指肠、空肠和回肠组织切片(40×),图L、M、N分别为亮氨酸组46日龄雌性肉鸡十二指肠、空肠和回肠组织切片(40×)。图O和P分别为绒毛高度和隐窝深度数据柱状图。数据表示为平均值±标准误(n=4),*表示与对照组相比差异显著(P < 0.05),* *表示与对照组相比差异极显著(P < 0.01)。 Figures I, J and K were the tissue sections of duodenum, jejunum and ileum of 46-day-old female broilers in the control group (40×), and figures L, M and N were the tissue sections of duodenum, jejunum and ileum of 46-day-old female broilers in the leucine group, respectively (40×). Figures O and P were the histograms of villus height and crypt depth, respectively. The values showed as the mean±SE (n=4), * mean significant difference compared with the control group (P < 0.05), and * * mean extremely significant difference compared with the control group (P < 0.01). 图 2 46日龄雌性肉鸡肠道组织形态 Fig. 2 Intestinal tissue morphology of 46-day-old female broilers
2.4 卵内注射亮氨酸对慢性热应激雌性肉鸡肠道组织抗氧化指标的影响

表 3可知,与对照组相比,亮氨酸组的39日龄雌性肉鸡空肠组织MDA含量降低了46.7%(P=0.134),且空肠组织CAT和GSH-Px的活性分别提高了4.9%(P=0.886)和53.2%(P=0.102)。

表 3 卵内注射亮氨酸对慢性热应激39日龄雌性肉鸡肠道组织抗氧化指标的影响 Table 3 Effects of in ovo leucine injection on intestinal tissue antioxidant indexes of 39-day-old female broilers under chronic heat stress
3 讨论 3.1 卵内注射亮氨酸对慢性热应激雌性肉鸡生长性能的影响

大量研究已经证实,足够的采食量是动物生长和发挥生产潜力的必要保证,而慢性热应激会降低雌性肉鸡的采食量,导致机体代谢发生紊乱,体重下降,严重时甚至会导致死亡[29]。本课题组先前研究发现卵内注射亮氨酸后,在慢性热应激条件下雄性肉鸡体重与对照组相比显著提高,这说明卵内注射亮氨酸能够提高雄性肉鸡的生长性能[14]。然而,有研究显示雌性肉鸡对高温的敏感性要低于同日龄的雄性肉鸡[30]。Han等[25]研究也发现卵内注射亮氨酸可使急性热应激条件下雄性雏鸡获得耐热性,而雌性雏鸡并未获得耐热性,进一步说明肉鸡在获得耐热性能方面存在性别差异。本试验结果表明,卵内注射亮氨酸并未对慢性热应激雌性肉鸡的生长性能产生显著影响。这可能与雌性和雄性肉鸡自身的耐热性差异有关,也可能与卵内注射亮氨酸诱导耐热性的性别差异有关,未来研究将会关注这一问题。

慢性热应激可阻碍雌性肉鸡免疫器官发育,免疫器官指数尤其是脾脏指数显著降低[31]。免疫器官指数是评价机体免疫系统发育状况的关键性指标,其大小直接影响机体免疫调节能力[32]。脾脏是机体最大的外周淋巴器官,参与机体损伤和老化细胞清除等。诸多报道证实,慢性热应激会使肉鸡脾脏水肿、出血、萎缩和相对重量降低等,影响其正常发育[31, 33]。亮氨酸不仅可为动物免疫细胞供能,同时还可促进动物免疫细胞增殖。Siwicki等[34]在普通鲤鱼和虹鳟的试验中发现,体外培养的头肾淋巴细胞加入亮氨酸代谢物β-羟基-β丁酸甲酯(HMB)后,其头肾免疫淋巴细胞密度显著高于对照组。本研究结果发现,卵内注射亮氨酸可以提高慢性热应激雌性肉鸡的脾脏指数,这说明卵内注射亮氨酸可能通过促进雌性肉鸡早期脾脏淋巴细胞增殖,提高脾脏指数,从而提高雌性肉鸡的免疫功能。

3.2 卵内注射亮氨酸对慢性热应激雌性肉鸡肠道组织形态的影响

大量研究已经证实,慢性热应激影响肠道组织结构完整性,导致肉鸡肠道通透性增加和局部炎症[33]。肠道形态结构在维持肠道物理屏障功能发挥着重要的作用,并且与营养物质的消化和吸收密切相关[35]。亮氨酸作为必需氨基酸,不仅可促进蛋白质合成,还可维持和保护肠道形态完整性。Jiang等[36]研究发现,饲粮补充亮氨酸可以改善草鱼肠道形态结构和功能,促进免疫相关基因表达,增强机体免疫功能。黄强[37]研究发现,饲粮添加0.35%亮氨酸可以改善早期宫内发育迟缓仔猪的肠道组织形态,保护肠道形态完整性。本试验结果表明,卵内注射亮氨酸可极显著提高雌性肉鸡39日龄十二指肠和46日龄空肠绒毛高度,同时极显著降低了39和46日龄空肠隐窝深度。这就说明卵内注射亮氨酸在一定程度上可以改善由热应激引起的肠道组织形态的破坏,维持肠道形态完整性,这与前人研究结果一致。对于卵内注射亮氨酸是否对雌性肉鸡早期肠道发育及其免疫功能产生了影响及机制尚不清楚,我们将在未来试验中进一步探索。

3.3 卵内注射亮氨酸对慢性热应激雌性肉鸡血清抗氧化能力的影响

热应激条件下,机体产生大量自由基,并通过各类反应破坏机体氧化还原平衡,使机体代谢发生紊乱。同时,机体存也在多种抗氧化酶,包括CAT、SOD和GSH-Px等,它们协调统一构成了清除体内自由基的第1道酶防御机制。钟光等[38]研究表明,慢性热应激能够降低肉鸡血清中CAT和SOD活性,破坏机体氧化还原平衡。王松波等[39]试验发现,慢性热应激显著升高肉鸡血清中MDA含量,降低血清GSH-Px活性。亮氨酸除作为蛋白质合成的单体,还可以缓解由过氧化氢导致的动物细胞膜过氧化损伤。Zhou等[27]研究发现,在饲粮中长期补充亮氨酸可以降低金鲳鱼血清中MDA含量,进一步提高金鲳鱼的抗氧化能力。本试验结果表明,卵内注射亮氨酸极显著提高了慢性热应激雌性肉鸡46日龄时血清SOD活性,极显著降低了血清MDA含量。这说明卵内注射亮氨酸可以通过降低血清脂质过氧化物的产生,同时提高血清SOD活性使得肉鸡在热应激后更快恢复机体内氧化还原平衡。

3.4 卵内注射亮氨酸对慢性热应激雌性肉鸡肠道组织抗氧化能力的影响

热应激损伤肉鸡肠道组织结构完整性,破坏肠道抗氧化功能,最终引起机体代谢紊乱。热应激作用时间、方式以及温度高低不同对肉鸡抗氧化功能的影响也不一样[40-41]。Quinteiro-Filho等[42]研究显示,急性热应激可以通过下丘脑-垂体-肾上腺轴的激活造成机体抗氧化功能紊乱,提高肉鸡急性肠炎的发生率。Quinteiro-Filho等[33]研究发现,随着热应激作用时间的延长,肉鸡肠道氧化程度减轻,肠炎发生率降低。体外研究表明,与对照组相比,亮氨酸处理可显著抑制人结肠上皮细胞氧化应激模型中白细胞介素-8(IL-8)的分泌并提高谷胱甘肽硫转移酶(GST)和CAT的活性[43]。本研究结果表明,卵内注射亮氨酸未能提高雌性肉鸡肠道组织抗氧化能力。其原因一方面可能是慢性热应激使得雌性肉鸡逐步适应热环境并建立了新的氧化还原平衡,机体的抗氧化功能逐渐恢复;另一方面可能是不同组织对热应激的敏感性不同。由于肉鸡代谢率高,生长速度快,其肌肉的增重速度相比其他组织更快。肌肉富含大量线粒体,不仅是产热的主要器官,也是为机体提供能量的主要组织。然而在高代谢率和高温条件下,肌肉组织相比肠道组织更易产生氧化应激[44]。关于卵内注射亮氨酸是否能缓解热应激雌性肉鸡肌肉氧化应激的损伤尚不清楚,仍需进一步探索。

4 结论

卵内注射亮氨酸可以提高慢性热应激雌性肉鸡的脾脏指数,有效改善肠道组织形态,保持肠道完整性;同时,卵内注射亮氨酸在一定程度上还可以提高慢性热应激雌性肉鸡的血清抗氧化能力。

参考文献
[1]
CHOWDHURY V S, TOMONAGAS, NISHIMURA S, et al. Physiological and behavioral responses of young chicks to high ambient temperature[J]. The Journal of Poultry Science, 2012, 49(3): 212-218. DOI:10.2141/jpsa.011071
[2]
SAEED M, ABBAS G, ALAGAWANY M, et al. Heat stress management in poultry farms: a comprehensive overview[J]. Journal of Thermal Biology, 2019, 84: 414-425. DOI:10.1016/j.jtherbio.2019.07.025
[3]
朱海波. 慢性热应激对肉鸡肠道黏膜屏障功能的影响[D]. 硕士学位论文. 邯郸: 河北工程大学, 2020: 1-2.
ZHU H B. Effect of chronic heat stress on intestinalmucosal barrier function in broilers[D]. Master's Thesis. Handan: Hebei University of Engineering, 2020: 1-2. (in Chinese)
[4]
MASHALY M M, HENDRICKS G L 3rd, KALA M A, et al. Effect of heat stress on production parameters and immune responses of commercial laying hens[J]. Poultry Science, 2004, 83(6): 889-894. DOI:10.1093/ps/83.6.889
[5]
ST-PIERRE N R, COBANOV B, SCHNITKEY G. Economic losses from heat stress by US livestock industries[J]. Journal of Dairy Science, 2003, 86: E52-E77. DOI:10.3168/jds.S0022-0302(03)74040-5
[6]
卓创. 2021年肉鸡养殖充满挑战[J]. 农村新技术, 2021(3): 44.
ZHUO C. Broiler farming will be challenging in 2021[J]. New Rural Technology, 2021(3): 44 (in Chinese). DOI:10.3969/j.issn.1002-3542.2021.03.028
[7]
辛翔飞. 非瘟形势下我国肉鸡产业发展趋势分析[J]. 北方牧业, 2019(16): 10.
XIN X F. Analysis on the development trend of broiler industry in China under the situation of ASF[J]. North Animal Husbandry, 2019(16): 10 (in Chinese).
[8]
LIN H, JIAO H C, BUYSE J, et al. Strategies for preventing heat stress in poultry[J]. World's Poultry Science Journal, 2006, 62(1): 71-86. DOI:10.1079/WPS200585
[9]
WASTI S, SAH N, MISHRA B. Impact of heat stress on poultry health and performances, and potential mitigation strategies[J]. Animals, 2020, 10(8): 1266. DOI:10.3390/ani10081266
[10]
PIESTUN Y, SHINDER D, RUZAL M, et al. Thermal manipulations during broiler embryogenesis: effect on the acquisition of thermotolerance[J]. Poultry Science, 2008, 87(8): 1516-1525. DOI:10.3382/ps.2008-00030
[11]
LOYAU T, MÉTAYER-COUSTARD S, BERRI C, et al. Thermal manipulation during embryogenesis has long-term effects on muscle and liver metabolism in fast-growing chickens[J]. PLoS One, 2014, 9(9): e105339. DOI:10.1371/journal.pone.0105339
[12]
HAN G F, YANG H, BAHRY M A, et al. L-leucine acts as a potential agent in reducing body temperature at hatching and affords thermotolerance in broiler chicks[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2017, 204: 48-56.
[13]
OHTA Y, TSUSHIMA N, KOIDE K, et al. Effect of amino acid injection in broiler breeder eggs on embryonic growth and hatchability of chicks[J]. Poultry Science, 1999, 78(11): 1493-1498. DOI:10.1093/ps/78.11.1493
[14]
HAN G F, OUCHI Y, HIROTA T, et al. Effects of L-leucine in ovo feeding on thermotolerance, growth and amino acid metabolism under heat stress in broilers[J]. Animal, 2020, 14(8): 1701-1709. DOI:10.1017/S1751731120000464
[15]
HAN G F, YANG H, WANG Y H, et al. L-leucine increases the daily body temperature and affords thermotolerance in broiler chicks[J]. Asian-Australasian Journal of Animal Sciences, 2019, 32(6): 842-848. DOI:10.5713/ajas.18.0677
[16]
ERWAN E, ALIMON A R, SAZILI A Q, et al. Effect of varying levels of leucine and energy on performance and carcass characteristics of broiler chickens[J]. International Journal of Poultry Science, 2008, 7(7): 696-699. DOI:10.3923/ijps.2008.696.699
[17]
邓留坤. 家禽胚蛋注射早期给养的研究进展[J]. 养殖技术顾问, 2013(10): 208-210.
DENG L K. Research progress on early feeding of poultry embryo eggs by injection[J]. Technical Advisor for Animal Husbandry, 2013(10): 208-210 (in Chinese). DOI:10.3969/j.issn.1673-1921.2013.10.201
[18]
刘梅英, 陈伟, 彭鹏, 等. 胚蛋注射在家禽营养中的研究进展[J]. 中国家禽, 2007(21): 40-42.
LIU M Y, CHEN W, PENG P, et al. Research progress of embryo egg injection in poultry nutrition[J]. China Poultry, 2007(21): 40-42 (in Chinese). DOI:10.3969/j.issn.1004-6364.2007.21.013
[19]
KADAM M M, BAREKATAIN M R, BHANJA S K, et al. Prospects of in ovo feeding and nutrient supplementation for poultry: the science and commercial applications-a review[J]. Journal of the Science of Food and Agriculture, 2013, 93(15): 3654-3661. DOI:10.1002/jsfa.6301
[20]
CHOWDHURY V S, TOMONAGA S, IKEGAMI T, et al. Oxidative damage and brain concentrations of free amino acid in chicks exposed to high ambient temperature[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2014, 169: 70-76.
[21]
周加义, 高春起, 严会超, 等. 热应激对畜禽肠道黏膜屏障功能影响及其损伤修复研究进展[J]. 饲料工业, 2017, 38(17): 24-29.
ZHOU J Y, GAO C Q, YAN H C, et al. Research progress of effect of heat stress on livestock intestinal mucosal barrier function and it's damage repair[J]. Feed Industry, 2017, 38(17): 24-29 (in Chinese).
[22]
CHEN Z, ZHOU Y W, LIANG C, et al. Effects of γ-aminobutyric acid on the tissue structure, antioxidant activity, cell apoptosis, and cytokine contents of bursa of Fabricius in chicks under heat stress[J]. Archives Animal Breeding, 2016, 59(1): 97-105. DOI:10.5194/aab-59-97-2016
[23]
DUAN Y H, LI F N, LIU H N, et al. Nutritional and regulatory roles of leucine in muscle growth and fat reduction[J]. Frontiers in Bioscience-Landmark, 2015, 20(4): 796-813. DOI:10.2741/4338
[24]
LI F, YIN Y, TAN B, et al. Leucine nutrition in animals and humans: mTOR signaling and beyond[J]. Amino Acids, 2011, 41: 1185-1193. DOI:10.1007/s00726-011-0983-2
[25]
HAN G F, YANG H, BUNGO T, et al. In ovo L-leucine administration stimulates lipid metabolisms in heat-exposed male, but not female, chicks to afford thermotolerance[J]. Journal of Thermal Biology, 2018, 71: 74-82. DOI:10.1016/j.jtherbio.2017.10.020
[26]
HAN G, YANG H, WANG Y, et al. Effects of in ovo feeding of L-leucine on amino acids metabolism and heat-shock protein-70, and -90 mRNA expression in heat-exposed chicks[J]. Poultry Science, 2019, 98(3): 1243-1253. DOI:10.3382/ps/pey444
[27]
ZHOU C, LIN H, HUANG Z, et al. Effects of dietary leucine levels on intestinal antioxidant status and immune response for juvenile golden pompano (Trachinotus ovatus) involved in Nrf2 and NF-κB signaling pathway[J]. Fish & Shellfish Immunology, 2020, 107((Pt A)): 336-345.
[28]
HAN G F, YANG H, TASHIRO K, et al. In ovo administration of L-leucine: a novel approach to affording thermotolerance in broiler chicks[J]. Reviews on Animal Nutrition and Metabolism, 2019, 63(1): 1-14.
[29]
杨梅梅. 中药复方与益生素对热应激下肉鸡肠道菌群及生长的影响[D]. 硕士学位论文. 广州: 华南农业大学, 2016: 39-41.
YANG M M. Effect of traditional Chinese medicine and probiotics on gut microbiomes and growth in broilers under heat stress[D]. Master's Thesis. Guangzhou: South China Agricultural University, 2016: 39-41. (in Chinese)
[30]
PIESTUN Y, SHINDER D, RUZAL M, et al. The effect of thermal manipulations during the development of the thyroid and adrenal axes on in-hatch and post-hatch thermoregulation[J]. Journal of Thermal Biology, 2008, 33(7): 413-418. DOI:10.1016/j.jtherbio.2008.06.007
[31]
呙于明, 刘彩霓, 周毓平. 高温应激对肉仔鸡的影响及补铬的效果研究[J]. 畜牧兽医学报, 1998(4): 52-57.
GUO Y M, LIU C N, ZHOU Y P. Impact of heat stress on broilers and the effects of supplemental yeast chromium[J]. Chinese Journal of Animal and Veterinary Sciences, 1998(4): 52-57 (in Chinese).
[32]
杨汉春. 动物免疫学[M]. 2版. 北京: 中国农业大学出版社, 2003.
YANG H C. Animal immunology[M]. 2nd ed. Beijing: China Agricultural University Press, 2003 (in Chinese).
[33]
QUINTEIRO-FILHO W M, RIBEIRO A, FERRAZ-DE-PAULA V, et al. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens[J]. Poultry Science, 2010, 89(9): 1905-1914. DOI:10.3382/ps.2010-00812
[34]
SIWICKI A K, FULLER J C, NISSEN S, et al. In vitro effects of β-hydroxy-β-methylbutyrate (HMB) on cell-mediated immunity in fish[J]. Veterinary Immunology and Immunopathology, 2000, 76: 191-197. DOI:10.1016/S0165-2427(00)00211-7
[35]
MAO X B, ZENG X F, QIAO S Y, et al. Specific roles of threonine in intestinal mucosal integrity and barrier function[J]. Frontiers in Bioscience, 2011, 3: 1192-1200.
[36]
JIANG W D, DENG Y P, LIU Y, et al. Dietary leucine regulates the intestinal immune status immune-related signalling molecules and tight junction transcript abundance in grass carp (Ctenopharyngodon idella)[J]. Aquaculture, 2015, 444: 134-142. DOI:10.1016/j.aquaculture.2015.04.005
[37]
黄强. 日粮添加亮氨酸对早期断奶宫内发育迟缓仔猪肠道功能及能量代谢的影响[D]. 硕士学位论文. 南京: 南京农业大学, 2017: 13-23.
HUANG Q. Effects of leucine on intestinal function and energy metabolism in intrauterine growth retarded piglets during early weaning period[D]. Master's Thesis. Nanjing: Nanjing Agricultural University, 2017: 13-23. (in Chinese)
[38]
钟光, 邵丹, 胡艳, 等. 持续热应激对黄羽肉鸡生长性能、器官指数、血清生化指标和抗氧化功能的影响[J]. 动物营养学报, 2018, 30(11): 4425-4432.
ZHONG G, SHAO D, HU Y, et al. Effects of persistent heat stress on growth performance, organ indices, serum biochemical indices and antioxidant function of yellow-feathered broilers[J]. Chinese Journal of Animal Nutrition, 2018, 30(11): 4425-4432 (in Chinese).
[39]
王松波, 邓琳, 赵婕, 等. 热应激对肉鸡抗氧化能力及腓肠肌纤维类型的影响[J]. 华南农业大学学报, 2015, 36(6): 23-28.
WANG S B, DENG L, ZHAO J, et al. Effects of heat stress on antioxidant capacity and gastrocnemius musclefiber types of broilers[J]. Journal of South China Agricultural University, 2015, 36(6): 23-28 (in Chinese).
[40]
AZAD M A K, KIKUSATO M, MAEKAWA T, et al. Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress[J]. Comparative Biochemistry and Physiology Party A: Molecular & Integrative Physiology, 2010, 155(3): 401-406.
[41]
DHABHAR F S, MCEWEN B S. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking[J]. Brain Behavior and Immunity, 1997, 11(4): 286-306. DOI:10.1006/brbi.1997.0508
[42]
QUINTEIRO-FILHO W M, RODRIGUES M V, RIBEIRO A, et al. Acute heat stress impairs performance parameters and induces mild intestinal enteritis in broiler chickens: role of acute hypothalamic-pituitary-adrenal axis activation[J]. Journal of Animal Science, 2012, 90(6): 1986-1994. DOI:10.2527/jas.2011-3949
[43]
KATAYAMA S, MINE Y. Antioxidative activity of amino acids on tissue oxidative stress in human intestinal epithelial cell model[J]. Journal of Agricultural and Food Chemistry, 2007, 55(21): 8458-8464. DOI:10.1021/jf070866p
[44]
LAURIDSEN C. From oxidative stress to inflammation: redox balance and immune system[J]. Poultry Science, 2019, 98(10): 4240-4246. DOI:10.3382/ps/pey407