动物营养学报    2021, Vol. 33 Issue (11): 6534-6547    PDF    
饲料花生四烯酸含量对子二代中华鲟成活与生长、抗氧化能力、组织花生四烯酸代谢酶活性及肠道菌群组成的影响
吴金平1,2 , 杨代勤1 , 杜浩2 , 罗江2 , 熊伟2 , 刘源2 , 危起伟2 , 朱建强1     
1. 长江大学农学院, 荆州 434025;
2. 中国水产科学研究院长江水产研究所, 农业农村部淡水生物多样性保护重点实验室, 武汉 430223
摘要: 本试验旨在探究饲料花生四烯酸(ARA)含量对子二代中华鲟成活与生长、抗氧化能力、组织ARA代谢酶活性及肠道菌群组成的影响。通过在基础饲料中添加0、0.5%、1.0%和2.0%的ARA纯化油(ARA占总脂肪酸的44.88%),制成4种等氮等能的试验饲料,饲料ARA含量分别为0.18%、0.53%、0.96%和1.89%。用4种试验饲料投喂初始体质量为(4.17±0.22)kg的子二代中华鲟22周,每种饲料投喂3个重复,每个重复18尾鱼。结果表明:试验鱼的增重率与成活率不受饲料ARA含量的显著影响(P>0.05)。肝脏超氧化物歧化酶(SOD)、过氧化氢酶(CAT)与谷胱甘肽硫转移酶(GST)活性随饲料ARA含量的升高而升高,丙二醛(MDA)含量随饲料ARA含量的升高而下降。血清SOD、CAT、GST活性与MDA含量不受饲料ARA含量的显著影响(P>0.05)。性腺中,1.89% ARA组环氧合酶-2(COX-2)与细胞色素氧化酶P450(CYP450)活性显著高于0.18%与0.53% ARA组(P < 0.05),与0.96% ARA组无显著差异(P>0.05);0.96% ARA组环氧合酶-1(COX-1)活性显著高于0.18%与0.53% ARA组(P < 0.05);1.96% ARA组脂氧合酶(LOX)活性显著高于0.18% ARA组(P < 0.05)。肝脏中,COX-1、COX-2与LOX活性均以1.89% ARA组最高,与0.96% ARA组无显著差异(P>0.05);0.18% ARA组CYP450活性显著低于0.96%与1.89% ARA组(P < 0.05)。0.18% ARA组Chao1指数、ACE指数、Shannon指数与Observed-species数量显著高于0.53% ARA组(P < 0.05),与0.96%及1.89% ARA组无显著差异(P>0.05)。Simpson指数与PD-whole tree指数不受饲料ARA含量的显著影响(P>0.05)。上述结果表明,饲料中添加1.0%的ARA纯化油使饲料ARA含量为0.96%时对子二代中华鲟的生长与存活无显著影响,但能增强鱼体的抗氧化能力、组织中ARA代谢酶活性及调控肠道菌群多样性。
关键词: 花生四烯酸    中华鲟    生长    存活    抗氧化能力    花生四烯酸代谢酶    菌群多样性    
Effects of Dietary Arachidonic Acid Content on Survival and Growth, Antioxidant Capacity, Arachidonic Acid Metabolic Enzyme Activities and Intestinal Microbial Composition of F2 Generation Chinese Sturgeon
WU Jinping1,2 , YANG Daiqin1 , DU Hao2 , LUO Jiang2 , XIONG Wei2 , LIU Yuan2 , WEI Qiwei2 , ZHU Jianqiang1     
1. College of Agriculture, Yangtze University, Jinzhou 434025, China;
2. Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
Abstract: The effects of arachidonic acid (ARA) on survival and growth, antioxidant capacity, tissue ARA metabolic enzyme activities and intestinal microbial composition of the F2 generation Chinese sturgeon were evaluated in this experiment. Four isonitrogenous and isoenergetic experimental diets were formulated by adding 0, 0.5%, 1.0% and 2.0% purified ARA oil (43% ARA in total fatty acids) in the basal diet, and dietary arachidonic acid content was 0.18%, 0.53%, 0.96% and 1.89%, respectively. The F2 generation Chinese sturgeon with an initial body weight of (4.17±0.22) kg were fed for 22 weeks with 3 replicates per diet treatment, and 18 fish per replicate. The results showed that the weight gain rate and survival rate were not significantly affected by dietary ARA content (P>0.05). The activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) in the liver were increased with dietary ARA content increasing, while the content of malonic aldehyde (MDA) in the liver was decreased with dietary ARA content increasing. The activities of SOD, CAT, GST and the content of MDA in the serum were not significantly affected by dietary ARA content (P>0.05). In the gonad, the activities of cyclooxygenase-2 (COX-2) and cytochrome P450 (CYP450) of the 1.89% ARA group were significantly higher than those of the 0.18% and 0.53% ARA groups (P < 0.05), but there were no significant differences between the 1.89% and 0.96% ARA groups (P>0.05); the cyclooxygenase-1 (COX-1) activity of the 0.96% ARA group was significantly higher than that of the 0.18% and 0.53% ARA groups (P < 0.05); the lipoxygenase (LOX) activity of the 1.89% ARA group was significantly higher than that of the 0.18% ARA group (P < 0.05). In the liver, the activities of COX-1, COX-2 and LOX were the highest in the 1.89% ARA group, and there were no significant differences between the 0.96% and 1.89% ARA groups (P>0.05); the CYP450 activity of the 0.18% ARA group was significantly lower than that of the 0.96% and 1.89% groups (P < 0.05). The Chao1 index, ACE index, Shannon index and Observed-species number of the 0.18% ARA group were significantly higher than those of the 0.53% ARA group (P < 0.05), and there were no significant differences among the 0.18%, 0.96% and 1.89% ARA groups (P>0.05). The Simpson index and PD-whole tree index were not significantly affected by dietary ARA content (P>0.05). These results indicates that dietary with 1.0% ARA has no significant effects on the growth and survival of F2 Chinese sturgeon, but can enhance the antioxidant capacity, tissue ARA metabolic enzyme activities and regulate the diversity of intestinal microbes.
Key words: arachidonic acid    Chinese sturgeon    growth    survival    antioxidant capacity    ARA metabolic enzymes    microbial diversity    

二十碳五烯酸(eicosapentaenoic acid,EPA)、二十二碳六烯酸(docosahexaenoic acid,DHA)与花生四烯酸(arachidonic acid,ARA)是海洋生物重要的长链高不饱和作脂肪酸,对鱼类有着重要的生理作用。海水鱼类中,一般DHA与EPA有利于鱼类生长,并且鱼体缺乏将亚麻酸(18 ∶ 3n-3)转化成DHA与EPA的能力,因此将DHA与EPA当作海水鱼类的必需脂肪酸,从而忽略了ARA相关的研究[1-4]。随着饲料添加ARA后的重要作用越来越突出,目前关于ARA的研究亦越来越多。ARA已经表现出具有影响海水鱼类的存活与生长[5-10]、抗应激[11-12]、脂质代谢[13-14]、激素合成[15-17]、色素调控[18-20]、免疫调控[21-22]及亲鱼的繁殖性能[23-24]等一系列的生理调控作用。相比于海水鱼类,淡水鱼类ARA的相关研究更少,这与淡水鱼类必需脂肪酸的满足可以通过亚油酸与亚麻酸的获取来实现以及淡水鱼类对ARA的需求量很小等因素有关[4]。值得关注的是最近有许多淡水鱼类也表现出饲料添加ARA后会促进其生长、调控脂质代谢与提高亲鱼的繁殖性能等重要的生理功能[25-27];同时,有学者提出鲟鱼不具备将亚油酸转化为ARA的能力[28],这意味着ARA在鲟鱼上的生理功能需要重新定位。

中华鲟作为一种江海洄游型鱼类,具有体型大、寿命长与性成熟周期长等特点,由于涉水工程建设、捕捞、航运及污染等人类活动的影响,其赖以生存的栖息环境已经退化或功能丧失,导致其自然种群严重衰退,目前已被列入我国国家一级重点保护动物[29-31]。Zhou等[32]、Liu等[33]提出ARA是中华鲟性腺发育及其生长中的关键营养物质。Leng等[34]基于转录组学与代谢组学的研究表明饲料中18%的脂肪水平促进了ARA的代谢且有利于中华鲟性腺发育。这些研究结果表明ARA是人工淡水养殖环境下的重要营养因子。当前,关于中华鲟ARA相关的营养研究尚未见报道。基于此,本试验拟配制4种不同ARA含量的试验饲料,养殖性腺发育处于Ⅱ期的4龄子二代中华鲟22周,考察ARA对其成活与生长、抗氧化能力、组织ARA代谢酶活性及肠道菌群组成的影响,从而为人工养殖环境下中华鲟养殖提供ARA营养学参数。

1 材料与方法 1.1 试验饲料配制

采用秘鲁鱼粉、脱脂豆粕、酪蛋白与明胶作为蛋白质源,面粉作为糖源,鱼油与ARA纯化油作为主要的脂肪源,通过在基础饲料中添加0、0.5%、1.0%和2.0%的ARA纯化油(ARA占总脂肪酸的44.88%),制成4种等氮等能的试验饲料,经气相色谱检测,试验饲料中ARA含量分别为0.18%、0.53%、0.96%和1.89%。试验饲料组成及营养水平见表 1,试验饲料主要脂肪酸组成见表 2。饲料制作前,将所有的原料粉碎后过60目分级筛,按照配方分别称取相应重量的饲料原料,混合,少量的成分采用逐级预混法混合,与鱼油、ARA纯化油混合后,最后加入约20%的水,再次混匀,用颗粒饲料机(KL-210)制成直径约5.80 mm、长约12.00 mm的条形状颗粒饲料,于室内阴凉干燥处电风扇吹干后,置于-20 ℃冰箱中保存备用。

表 1 试验饲料组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of experimental diets (DM basis) 
表 2 试验饲料主要脂肪酸组成 Table 2 Main fatty acid composition of experimental diets  
1.2 试验鱼与养殖管理

试验鱼来源于中国水产科学研究院长江水产研究所农业农村部中华鲟保护与增殖放流中心2016年繁殖的子二代中华鲟,该批子二代中华鲟养殖于直径长14 m,宽7 m,水深1 m的椭圆形水泥池中。试验开始前,采用学科组雌雄性别特异性分子标记方法对该批试验鱼进行雌雄性别鉴定。鉴定完成后,将72尾初始体重为(4.17±0.22) kg的试验鱼(性别比为1 ∶ 1)随机分配到12个圆形流水养殖水泥池(直径3 m,水深0.5 m)中,每个养殖池放养18条鱼,每种饲料投喂3个养殖池,养殖22周。养殖期间采用表观饱食法投喂,每天投喂2次(08:00和20:00),投食量约为鱼体重的1%,每餐实际投喂量因鱼的摄食情况而变化,每天定时排污1次,排水量约为池水的1/3。养殖期间水温18.0~21.4 ℃,溶氧浓度>5.56 mg/L,pH 7.91~8.19,氨氮浓度 < 0.5 mg/L,铁离子浓度为0.037~0.077 mg/L,水体浊度为0.50~1.79 NTU。

1.3 样品采集与测定

养殖试验结束后,试验鱼饥饿24 h,每组随机挑选6尾雌鱼麻醉,测量体重与体长。将鱼体表面的水擦干后,采集血液,血液于4 ℃冰箱过夜澄清后于3 000×g、4 ℃离心15 min,收集上清液用于抗氧化指标的检测;解剖鱼体后,剥离肝脏与性腺组织,用于测定组织抗氧化指标及ARA代谢酶活性。接着,剥离后肠的肠道内容物于无菌冻存管中,所有样品于液氮速冻后,立即置于-80 ℃冰箱保存备用。

根据下列公式,计算增重率(weight gain rate,WGR)与成活率(survival rate,SR)。

增重率(%)=[(W1-W0)/W0]×100;

成活率(%)=(N1/N0)×100。

式中: W1为每个养殖池终末体质量(kg);W0为每个养殖池初始体质量(kg);N1为终末尾数;N0为初始尾数;

饲料粗蛋白质、粗脂肪含量分别采用凯氏定氮法、索氏抽提法测定。饲料水分含量采用103 ℃恒温干燥失重法测定。饲料脂肪酸含量采用液相色谱仪(GC-2030,Shimadzu,日本)测定,色谱柱型号为DB-WAX-30M I.D. 0.32 mm。

肝脏与血清中谷胱甘肽硫转移酶(glutathione S-transferase,GST)、过氧化氢酶(peroxidase,CAT)、超氧化物歧化酶(superoxide dismutase,SOD))活性与丙二醛(malondialdehyde,MDA)含量以及肝脏与性腺组织中环氧合酶-1(cyclooxygenase-1,COX-1)、环氧合酶-2(cyclooxygenase-2,COX-2)、脂氧合酶(lipoxgenase,LOX)与细胞色素氧化酶P450(cytochrome P450,CYP450)活性均采用江苏酶免实业有限公司生产的试剂盒测定。

1.4 肠道菌群多样性分析 1.4.1 DNA提取与PCR扩增

采用十六烷基三甲基溴化铵(CTAB)法对样品DNA进行提取,利用琼脂糖凝胶电泳检测DNA纯度和浓度,取适量的样品DNA于离心管中,使用无菌水稀释至1 ng/μL。以稀释后的基因组DNA为模板,根据本次试验采用的16S V3~V4变异区引物(515F-806R),使用带Barcode的特异引物以及New England Biolabs公司的Phusion ®High-Fidelity PCR Master Mix with GC Buffer和高效高保真酶进行PCR扩增。

1.4.2 PCR产物的混样和纯化

PCR产物使用2%浓度的琼脂糖凝胶进行电泳检测;对检测合格的PCR产物进行磁珠纯化,采用酶标定量,根据PCR产物浓度进行等量混样,充分混匀后使用2%的琼脂糖凝胶电泳检测PCR产物,对目的条带使用QIAGEN公司提供的胶回收试剂盒回收产物。

1.4.3 文库构建和上机测序

使用TruSeq ® DNA PCR-Free Sample Preparation Kit建库试剂盒进行文库构建,构建好的文库经过Qubit和Q-PCR定量,文库合格后,使用NovaSeq6000进行上机测序。测序的下机数据截去Barcode和引物序列后使用FLASH[35]对每个样本的reads进行拼接,即为原始Tags数据(raw Tags),原始Tags经过过滤处理[36]即得到高质量的Tags数据。高质量的Tags数据经过Qiime[37]的Tags截取与Tags长度过滤,及Tags序列通过[38]与物种注释数据库进行比对检测嵌合体序列,并去除嵌合体序列,即得到最终的有效Tags数据(effective Tags)。用Mothur方法与SILVA138(http://www.arb-silva.de/)[39]的SSUrRNA数据库[40]进行物种注释分析(设定阈值为0.8~1.0),获得分类学信息并分别在各个分类水平统计各样本的菌群组成。使用Qiime软件(Version 1.9.1)计算Observed-species数量以及Chao1指数、Shannon指数、Simpson指数、ACE指数、Good’s coverage指数、PD-whole tree指数,并使用R软件进行α多样性指数组间差异分析。

1.5 数据处理与分析

除肠道菌群组成外的所有数据经SPSS 22.0统计软件进行单因素方差分析(one-way ANOVA),并采用Tukey HSD进行组间多重比较,显著性水平设置为P < 0.05。试验结果以平均值±标准误(mean±SE)表示。

2 结果与分析 2.1 饲料ARA含量对子二代中华鲟成活与生长的影响

饲料ARA含量对子二代中华鲟成活与生长的影响见表 3。经过22周的养殖,饲料中不同含量的ARA对试验鱼的终末体重、增重率及成活率均未产生显著影响(P>0.05)。

表 3 饲料ARA含量对子二代中华鲟成活与生长的影响 Table 3 Effects of dietary ARA content on survival and growth of F2 generation Chinese sturgeon
2.2 饲料ARA含量对子二代中华鲟肝脏与血清抗氧化指标的影响

饲料ARA含量对子二代中华鲟肝脏与血清抗氧化能力的影响见表 4。试验鱼经过22周的养殖后,1.89% ARA组肝脏SOD活性显著高于0.18%与0.53%ARA组(P < 0.05),与0.96%ARA组无显著差异(P>0.05)。1.89%ARA组肝脏CAT活性显著高于0.18%与0.53%ARA组(P < 0.05),与0.96%ARA组无显著差异(P>0.05)。1.89%ARA组肝脏MDA含量最低,与0.18%、0.53%及0.96%ARA组差异显著(P < 0.05)。0.18%ARA组肝脏GST活性显著低于1.89%ARA组(P < 0.05),与0.53%与096%ARA组无显著差异(P>0.05)。血清中SOD、CAT、GST活性与MDA含量不受饲料ARA含量的显著影响(P>0.05)。

表 4 饲料ARA含量对子二代中华鲟肝脏与血清抗氧化指标的影响 Table 4 Effects of dietary ARA content on liver and serum antioxidant indexes of F2 generation Chinese sturgeon
2.3 饲料ARA含量对子二代中华鲟肝脏与性腺ARA代谢酶活性的影响

饲料ARA含量对子二代中华鲟肝脏与性腺ARA代谢酶活性的影响见表 5。试验鱼经过22周的养殖后,性腺中COX-2与CYP450活性均以1.89%ARA组最高,且显著高于0.18%与0.53%ARA组(P < 0.05),与0.96%ARA组无显著差异(P>0.05)。0.96%ARA组性腺中COX-1活性显著高于0.18%与0.53%ARA组(P < 0.05),与1.89%ARA组无显著差异(P>0.05)。1.89%ARA组性腺中LOX活性显著高于0.18%ARA组(P < 0.05),与0.53%及0.96%ARA组无显著差异(P>0.05)。肝脏中,COX-1、COX-2与LOX活性均以1.89%ARA组最高且显著高于0.18%与0.53%ARA组(P < 0.05),与0.96%ARA组无显著差异(P>0.05)。0.18%ARA组肝脏中CYP450活性显著低于0.96%与1.89%ARA组(P < 0.05),与0.53%ARA组无显著差异(P>0.05)。

表 5 饲料ARA含量对子二代中华鲟肝脏与性腺ARA代谢酶活性的影响 Table 5 Effects of dietary ARA content on liver and gonad ARA metabolism enzyme activities of F2 generation Chinese sturgeon  
2.4 饲料ARA含量对子二代中华鲟肠道菌群α多样性的影响

饲料ARA含量对子二代中华鲟肠道菌群α多样性的影响见表 6。试验鱼经过22周的养殖后,其肠道菌群α多样性受到了饲料ARA含量的影响。0.18%ARA组Chao1指数与ACE指数显著高于0.53%ARA组(P < 0.05),与0.96%及1.89%ARA组无显著差异(P>0.05)。Simpson指数不受饲料ARA含量的影响,各组之间无显著差异(P>0.05)。0.18%ARA组Shannon指数与Observed-species数量显著高于0.53%ARA组(P < 0.05),与0.96%及1.89%ARA组无显著差异(P>0.05)。系统发育多样性指数PD-whole tree指数不受饲料ARA含量的影响,各组之间无显著差异(P>0.05)。

表 6 饲料ARA含量对子二代中华鲟肠道菌群α多样性的影响 Table 6 Effects of dietary ARA content on intestinal microbial α diversity of F2 generation Chinese sturgeon
2.5 饲料ARA含量对子二代中华鲟肠道菌群组成的影响

将所有样本中相对丰度不在前10的门与属归为其他,表 7表 8分别展示了各组样本在门与属分类水平排名前10的菌群组成。在门分类水平下,厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)为0.18%、1.89%ARA组的优势菌门,厚壁菌门分别占到了49.44%、56.44%,变形菌门分别占到了19.77%、25.44%。梭杆菌门(Fusobacteriota)为0.53%、0.96%ARA组优势菌门,分别占到了64.59%、75.71%。上述结果表明,梭杆菌门、厚壁菌门与变形菌门是不同ARA含量饲料处理下的优势菌门。在属分类水平下,0.18%ARA组活泼瘤胃球菌类群([Ruminococcus]_gnavus_group)是其优势属,占比为20.73%。鲸杆菌属(Cetobacterium)是0.53%、0.96%ARA组的优势菌属,分别占到了65.54%、75.66%。链球菌属(Streptococcus)是1.89%ARA组的优势菌属,占比为21.58%。上述结果表明,鲸杆菌属、活泼瘤胃球菌类群与链球菌属可能是不同ARA含量饲料处理下的优势菌属。

表 7 饲料ARA含量对子二代中华鲟肠道菌群基于门水平的相对丰度的影响 Table 7 Effects of dietary ARA content on relative abundances of intestinal microbial communities at phylum level of F2 generation Chinese sturgeon  
表 8 饲料ARA含量对子二代中华鲟肠道菌群基于属水平的相对丰度的影响 Table 8 Effects of dietary ARA content on relative abundances of intestinal microbial communities at genus level of F2 generation Chinese sturgeon  
3 讨论 3.1 饲料ARA含量对子二代中华鲟成活与生长的影响

经过22周的养殖后,子二代中华鲟的增重率并没有受到饲料ARA含量调控的影响,这与牙鲆(Paralichthys olivaceus)仔稚鱼[5]、海鳗(Anguilla japonica)[6]、花鲈(Lateolabrax japonicus)幼鱼[7]、矛尾复虾虎鱼(Synechogobius hasta)[9]、大规格鲈鱼[10]、黄颡鱼(Pelteobagrus fulvidraco)[27]、珍珠龙胆石斑鱼(Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂)幼鱼[41]及中间球海胆(Strongylocentrotus intermedius♂)[42]等的研究结果不一致,与蓝色丝足鱼(Trichopodus trichopterus)[23]、草鱼(Ctenopharyngodon idellus)[25]及巴拉马笛鲷(Lutjanus malabaricus)[43]等的研究结果一致。但也有研究结果表明,饲料中添加一定量的ARA后对黑海胆(Diadema setosum)[24]、大西洋鲑(Gadus morhua)稚鱼[44]的生长有负面影响,上述研究结果表明饲料ARA含量对不同的水生动物的作用是不一致的,也更加证明了每种动物定量ARA需求是有意义的。不同的水生动物对ARA的需求不一致可能与鱼的种类、生长阶段、饲料组成及养殖环境等密切相关。本试验中,饲料ARA含量对性腺处于Ⅱ期的4龄子二代中华鲟的生长没有显著影响,可能与试验鱼已经过了仔稚鱼等处于快速体增长的时期,因而对不同ARA含量的饲料不敏感有关。据危起伟[45]报道,2.5~3.0龄的中华鲟,部分卵原细胞已生长成为初级卵母细胞,卵巢因此进入Ⅱ期;3龄以上的养殖中华鲟,性腺分化陆续达到肉眼可分辨卵巢与精巢的程度,因此推测4龄的中华鲟对营养物质的利用与沉积可能更多的用于性腺发育而不是体生长。Asil等[23]也发现蓝色丝足鱼早期发育阶段的生长率更易受饲料ARA含量的影响;与成熟阶段相比,稚幼鱼阶段的生长率更快,成熟阶段用于生长的能量将更多被繁殖所需而利用,这更加表明鱼类生长阶段不一致其ARA的需求功能是不相同的。

3.2 饲料ARA含量对子二代中华鲟抗氧化能力的影响

SOD、CAT是2种常见的抗氧化酶,是构成抗氧化酶防御的第1道防线。SOD可以将细胞内超氧阴离子(O2-)转化成H2O2,CAT可以催化H2O2成为H2O和O2[9]。GST也是抗氧化剂防御系统组成的关键部分,可保护机体免受活性氧的损伤[46]。MDA是反映脂质过氧化的指标[47]。本试验结果表明肝脏SOD、CAT与GST活性随饲料ARA含量的升高而增加,肝脏MDA含量随饲料ARA含量的升高而表现出下降的趋势,表明饲料ARA含量对中华鲟子二代的抗氧化能力产生了影响。对矛尾复虾虎鱼的研究结果也表明,肝脏SOD、CAT与谷胱甘肽过氧化物酶(GPx)活性随饲料ARA含量的升高而增加,肝脏MDA含量随饲料ARA含量升高而上升[9];黄颡鱼肝脏MDA含量也表现出随饲料ARA含量升高而上升,但肝脏GPx、总超氧化物歧化酶(T-SOD)与CAT活性不受饲料ARA含量的影响[27]。对刺参(Apostichopus japonicus)的研究结果也表明,肠道SOD、CAT活性与总抗氧化能力(T-AOC)随饲料ARA含量(0.36%~0.51%)升高而显著增加,肠道MDA含量表现出随饲料ARA含量升高而显著上升[48];对珍珠龙胆石斑鱼幼鱼的研究结果也表明肝脏SOD、CAT活性与T-AOC随饲料ARA含量(0.35%~0.66%)升高出现显著上升,肝脏MDA含量则随饲料ARA含量升高表现出先降低后升高[41]。上述研究结果表明饲料ARA调控鱼体组织的抗氧化能力因品种、组织部位而表现出异同性。本试验中试验鱼肝脏MDA含量随饲料ARA含量的升高有降低的趋势,与黄颡鱼[27]、矛尾复虾虎鱼[9]及刺参[48]的研究结果不一致,并且此次试验中血清MDA含量没有受到饲料ARA含量的影响,其原因有待进一步探究。

3.3 饲料ARA含量对子二代中华鲟肝脏与性腺ARA代谢酶活性的影响

游离的ARA在机体内存在着三大类酶促反应参与类二十烷酸的合成,包括经环氧合酶(COX)催化形成的前列腺素与凝血噁烷,经LOX催化形成的白三烯及不同类别的羟基二十碳四烯酸,以及经CYP450催化形成的环氧二十碳四烯酸与羟基二十碳四烯酸(HETEs)[49-51]。当前,关于饲料添加ARA后对试验对象组织中ARA代谢酶活性的报道还很鲜见。本试验中,性腺与肝脏中COX-1、COX-2、LOX及CYP450的活性均随饲料ARA含量的升高而升高,表明饲料中添加ARA后对子二代中华鲟组织中ARA代谢酶具有一定的正向调控作用,同时发现同种酶活性在性腺中是高于肝脏中的,这可能表明ARA优先沉积于性腺组织中导致其与底物结合的活性高,是否意味着ARA在中华鲟子二代性腺发育过程有着更重要的作用还需进一步研究。

3.4 饲料ARA含量对子二代中华鲟肠道菌群α多样性的影响

本试验中,各组样本的Good’s coverage指数均在0.99以上,表明每组样本达到了足够的测序覆盖度且本次检测的操作分类单元(OTU)数量也足够代表该批次抽样群体。α多样性指数是反映样本内的微生物群落多样性[52],通过单样本的α多样性分析可以反映样本内的微生物群落的丰富度和多样性,主要包括Chao1指数、ACE指数、Shannon指数、Simpson指数、Good’s coverage指数与PD-whole tree指数等。本试验中,菌群丰度指数中的Chao1指数与ACE指数均以0.53%ARA组最低,在0.18%、0.96%和1.89%ARA组之间无显著差异;同样的,菌群多样性指数中的Shannon指数与Simpson指数以及Observed-species数量也表现出一致的趋势;而系统发育多样性指数PD-whole tree指数则在各组之间无显著差异,这可能表明饲料中含有0.18%、0.96%与1.89%的ARA有利于肠道菌群的丰富度(Chao1指数与ACE指数)和多样性(Shannon指数与Simpson指数)。当前关于饲料中添加ARA对肠道菌群多样性的研究仅见中间球海胆[42]相关的研究报道,现有研究中发现饲料ARA含量对中间球海胆的菌群丰富度(Chao1指数)及多样性(Shannon指数与Simpson指数)均无显著性影响,这可能和海胆与鱼类属于2个不同的物种密切相关。关于饲料营养组分影响鱼类肠道菌群多样性的研究有很多,但是不同的研究结果也不尽相同。例如,李秀玲[53]报道,不同脂肪源对ACE指数、Chao1指数、Shannon指数和Simpson指数具有显著影响,磷虾油组和1 ∶ 1鱼油-豆油组具有较高的肠道菌群丰富度和多样性;Xu等[54]报道,不同的鲟类摄食同种饲料,其肠道菌群的丰富度与多样性也是不一致的,这些研究结果表明饲料组分对肠道菌群多样性的影响不一致,也进一步表明关于饲料添加ARA后对鱼类肠道菌群多样性产生影响的问题是一个值得进一步探索的课题。

3.5 饲料ARA含量对子二代中华鲟肠道菌群组成的影响

本试验中,在门分类水平下,梭杆菌门、厚壁菌门与变形菌门是子二代中华鲟肠道中较为丰富的门类。中间球海胆经过不同ARA含量饲料投喂后,也发现变形菌门与厚壁菌门在各组的相对丰度较高[42]。对人工养殖达氏鳇(Huso dauricus)幼鱼肠道菌群组成的分析发现厚壁菌门是其最主要的菌群(占比98.25%)[55];对欧洲鳇(Huso huso)的研究也表明变形菌门与厚壁菌门是其优势菌门[54]。对长江鲟(Acipenser dabryanus)的研究也表明梭杆菌门、厚壁菌门与变形菌门是其优势菌门[56]。这些研究结果表明梭杆菌门、厚壁菌门与变形菌门是鲟类肠道中较为丰富的门类,本试验中这3个菌门的相对丰度在不同ARA含量饲料处理下存在差异可能更多的与饲料ARA含量不同有关。在属分类水平下,鲸杆菌属在0.53%与0.89%ARA组分别占到了64.54%与75.66%,表明该属是其优势菌属,与Liu等[57]报道的鲸杆菌属是肉食性鱼类主要的菌属之一的结果相符;在达氏鳇[55]与长江鲟[56]的研究中也检测到了鲸杆菌属。值得注意的是,0.18%ARA组中检测到了相对丰度较高的活泼瘤胃球菌类群;1.89%ARA组中检测到了相对丰度较高的乳球菌属、链球菌属、气单胞菌属与厌氧芽孢杆菌属,而中间球海胆经过不同ARA含量饲料投喂后也检测到了芽孢杆菌属与乳球菌属[42];在长江鲟[56]的研究中也检测到了气单胞菌属。上述这些菌属在1.89%ARA组中的相对丰度较高,这是否有利于中华鲟子二代肠道健康及其具体原因还需进一步研究。

4 结论

饲料中添加1.0%的ARA纯化油使饲料ARA含量为0.96%时对子二代中华鲟的生长与存活无显著影响,但能增强鱼体的抗氧化能力、组织中ARA代谢酶活性及调控肠道菌群多样性。

参考文献
[1]
HALVER J E. Fish nutrition[M]. 2nd ed. San Diego: Academic Press, 1989: 153-218.
[2]
SARGENT J R, BELL J G, BELL M V, et al. Requirement criteria for essential fatty acids[J]. Journal of Applied Ichthyology, 1995, 11(3/4): 183-198.
[3]
HALVER J E, HARDY R W. Fish nutrition[M]. 3rd ed. Pittsburgh: Academic Press, 2002: 181-257.
[4]
BELL J G, SARGENT J R. Arachidonic acid in aquaculture feeds: current status and future opportunities[J]. Aquaculture, 2003, 218(1/2/3/4): 491-499.
[5]
刘镜恪, 陈晓林, 李岿然, 等. 实验微粒饲料中花生四烯酸含量对牙鲆(Paralichthys olivaceus)仔稚鱼生长、存活的影响[J]. 海洋与湖沼, 2005, 36(5): 418-422.
LIU J K, CHEN X L, LI K R, et al. Effects of different contents of arachidonic acid in experimental microdiets on growth and survival of larval Japanese flounder Paralichthys olivaceus[J]. Oceanologia et Limnologia Sinica, 2005, 36(5): 418-422 (in Chinese). DOI:10.3321/j.issn:0029-814X.2005.05.005
[6]
BAE J Y, KIM D J, YOO K Y, et al. Effects of dietary arachidonic acid (20:4n-6) levels on growth performance and fatty acid composition of juvenile eel, Anguilla japonica[J]. Asian-Australasian Journal of Animal Sciences, 2010, 23(4): 508-514. DOI:10.5713/ajas.2010.90491
[7]
XU H G, AI Q H, MAI K S, et al. Effects of dietary arachidonic acid on growth performance, survival, immune response and tissue fatty acid composition of juvenile Japanese seabass, Lateolabrax japonicus[J]. Aquacultue, 2010, 307(1/2): 75-82.
[8]
谢奉军. 大黄鱼仔稚鱼氨基酸及脂肪酸营养生理的研究[D]. 博士学位论文. 青岛: 中国海洋大学, 2011.
XIE F J. Studies on nutritional physiology of amino acid and fattr acid for large yellow croaker (Pseudosciaena crocea) larve[D]. Ph. D. Thesis. Qingdao: Ocean University of China, 2011. (in Chinese)
[9]
LUO Z, TAN X Y, LI X D, et al. Effect of dietary arachidonic acid levels on growth performance, hepatic fatty acid profile, intermediary metabolism and antioxidant responses for juvenile Synechogobius hasta[J]. Aquacultue Nuntrition, 2012, 18(3): 340-348. DOI:10.1111/j.1365-2095.2011.00906.x
[10]
王成强, 梁萌青, 徐后国, 等. 大规格鲈鱼(Lateolabrax japonicas)对饲料中花生四烯酸的需求量[J]. 渔业科学进展, 2016, 37(5): 46-55.
WANG C Q, LIANG M Q, XU H G, et al. Requirement of arachidonic acid in adult Japanese seabass (Lateolabrax japonicas)[J]. Progress in Fishery Science, 2016, 37(5): 46-55 (in Chinese).
[11]
KOVEN W, VAN ANHOLT R, LUTZKY S, et al. The effect of dietary arachidonic acid on growth, survival, and cortisol levels in different-age gilthead seabream larvae (Sparus auratus) exposed to handling or daily salinity change[J]. Aquaculture, 2003, 228(1/2/3/4): 307-320.
[12]
BRANSDEN M P, COBCROFT J M, BATTAGLENE S C, et al. Dietary arachidonic acid alters tissue fatty acid profile, whole body eicosanoid production and resistance to hypersaline challenge in larvae of the temperate marine fish, striped trumpeter (Latris lineata)[J]. Fish Physiology and Biochemistry, 2004, 30: 241-256. DOI:10.1007/s10695-005-8245-4
[13]
TORRECILLAS S, BETANCOR M B, CABALLERO M J, et al. Supplementation of arachidonic acid rich oil in European sea bass juveniles (Dicentrarchus labrax) diets: effects on growth performance, tissue fatty acid profile and lipid metabolism[J]. Fish Physiology and Biochemistry, 2018, 44(1): 283-300. DOI:10.1007/s10695-017-0433-5
[14]
ARAÚJO B C, FLORES-GALVEZ K, HONJI R M, et al. Arachidonic acid effects on the overall performance, fatty acid profile, hepatopancreas morphology and lipid-relevant genes in Litopenaeus vannamei juveniles[J]. Aquaculture, 2020, 523: 735207. DOI:10.1016/j.aquaculture.2020.735207
[15]
NORAMBUENA F, ESTÉVEZ A, MAÑANÓS E, et al. Effects of graded levels of arachidonic acid on the reproductive physiology of Senegalese sole (Solea senegalensis): fatty acid composition, prostaglandins and steroid levels in the blood of broodstock bred in captivity[J]. General and Comparative Endocrinology, 2013, 191: 92-101. DOI:10.1016/j.ygcen.2013.06.006
[16]
XU H G, CAO L, ZHANG Y Q, et al. Dietary arachidonic acid differentially regulates the gonadal steroidogenesis in the marine teleost, tongue sole (Cynoglossus semilaevis), depending on fish gender and maturation stage[J]. Aquaculture, 2017, 468(Part 1): 378-385.
[17]
张圆琴, 徐后国, 曹林, 等. 饲料中花生四烯酸对发育前期大菱鲆亲鱼性类固醇激素合成的影响[J]. 水产学报, 2017, 41(4): 588-601.
ZHANG Y Q, XU H G, CAO L, et al. Effects of dietary arachidonic acid on the sex steroid hormone synthesis in turbot broodstock before maturation[J]. Journal of Fisheries of China, 2017, 41(4): 588-601 (in Chinese).
[18]
COPEMAN L A, PARRISH C C, BROWN J A, et al. Effects of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): a live food enrichment experiment[J]. Aquacultue, 2002, 210(1/2/3/4): 285-304.
[19]
VILLALTA M, ESTÉVEZ A, BRANSDEN M P, et al. Arachidonic acid, arachidonic/eicosapentaenoic acid ratio, stearidonic acid and eicosanoids are involved in dietary-induced albinism in Senegal sole (Solea senegalensis)[J]. Aquacultue Nuntrition, 2008, 14(2): 120-128. DOI:10.1111/j.1365-2095.2007.00511.x
[20]
LUND I, STEENFELDT S J, HANSEN B W. Influence of dietary arachidonic acid combined with light intensity and tank colour on pigmentation of common sole (Solea solea L. ) larvae[J]. Aquacultue, 2010, 308(3/4): 154-159.
[21]
LI Q F, AI Q H, MAI K S, et al. In vitro effects of arachidonic acid on immune functions of head kidney macrophages isolated from large yellow croaker (Larmichthys crocea)[J]. Aquacultue, 2012, 330/333: 47-53. DOI:10.1016/j.aquaculture.2011.11.045
[22]
ESTÉVEZ A, MCEVORY L A, BELL J G, et al. Growth, survival, lipid composition and pigmentation of turbot (Scophthalmus maximus) larvae fed live-prey enriched in arachidonic and eicosapentaenoic acids[J]. Aquacultue, 1999, 180(3/4): 321-343.
[23]
ASIL S M, KENARI A A, MIYANJI G R, et al. The influence of dietary arachidonic acid on growth, reproductive performance, and fatty acid composition of ovary, egg and larvae in an anabantid model fish, blue gourami (Trichopodus trichopterus; Pallas, 1770)[J]. Aquacultue, 2017, 476: 8-18. DOI:10.1016/j.aquaculture.2017.03.048
[24]
NHAN H T, NHU T Q, DUC P M, et al. Effects of dietary arachidonic acid on final maturation, spawning and composition of gonad of black sea urchin Diadema setosum (Leske, 1778)[J]. Aquaculture Nutrition, 2020, 26(5): 1771-1779. DOI:10.1111/anu.13127
[25]
TIAN J J, LEI C X, JI H, et al. Role of cyclooxygenase-mediated metabolites in lipid metabolism and expression of some immune-related genes in juvenile grass carp (Ctenopharyngodon idellus) fed arachidonic acid[J]. Fish Physiology and Biochemistry, 2017, 43(3): 703-717. DOI:10.1007/s10695-016-0326-z
[26]
FEI S Z, CHEN Z, XIA Y. Effects of dietary arachidonic acid on reproduction performance, tissue fatty acid profile and gonadal steroidogenesis in female yellow catfish Pelteobagrus fulvidraco[J]. Aquaculture Nutrition, 2020, 27(3): 700-711.
[27]
马红娜. 饲料脂肪和花生四烯酸水平对黄颡鱼生长性能、脂肪酸组成和脂肪代谢的影响[D]. 硕士学位论文. 宁波: 宁波大学, 2018.
MA H N. Effects of dietary lipid and arachidonic acid levels on growth performance, fatty acid profiles and lipid metabolism of juvenile yellow catfish (Pelteobagrus fulvidraco)[D]. Master's Thesis. Ningbo: Ningbo University, 2018. (in Chinese)
[28]
WIRTH M, KIRSCHBAUM F, GESSNER J, et al. Fatty acid composition in sturgeon caviar from different species: comparing wild and farmed origins[J]. International Review Hydrobiology, 2002, 87(5/6): 629-636.
[29]
WANG J H, WEI Q W, ZOU Y C. Conservation strategies for the Chinese sturgeon, Acipenser sinensis: an overview on 30 years of practices and future needs[J]. Journal of Applied Ichthyology, 2011, 27(2): 176-180. DOI:10.1111/j.1439-0426.2011.01716.x
[30]
QIAO Y, TANG X, BROSSE S, et al. Chinese sturgeon (Acipenser sinensis) in the Yangtze river: a hydroacoustic assessment of fish location and abundance on the last spawning ground[J]. Journal of Applied Ichthyology, 2006, 22(Suppl. 1): 140-144.
[31]
危起伟, 李罗新, 杜浩, 等. 中华鲟全人工繁殖技术研究[J]. 中国水产科学, 2013, 20(1): 1-11.
WEI Q W, LI L X, DU H, et al. Research on technology for controlled propagation of cultured Chinese sturgeon (Acipenser sinensis)[J]. Journal of Fishery Sciences of China, 2013, 20(1): 1-11 (in Chinese).
[32]
ZHOU H, LENG X Q, TAN Q S, et al. Identification of key nutrients for gonadal development by comparative analysis of proximate composition and fatty/amino acid profile in tissues and eggs of Chinese sturgeon (Acipenser sinensis Gray, 1835)[J]. Journal of Applied Ichthyology, 2017, 33(5): 885-891. DOI:10.1111/jai.13401
[33]
LIU J J, LI Q F, GUO B F, et al. Selective utilization of fatty acids by Chinese sturgeon (Acipenser sinensis Gray, 1835) during gonadal development and first year juvenile growth[J]. Journal of Applied Ichthyology, 2017, 30(6): 1181-1185.
[34]
LENG X Q, ZHOU H, TAN Q S, et al. Integrated metabolomic and transcriptomic analyses suggest that high dietary lipid levels facilitate ovary development through the enhanced arachidonic acid metabolism, cholesterol biosynthesis and steroid hormone synthesis in Chinese sturgeon (Acipenser sinensis)[J]. The British Journal of Nutrition, 2019, 122(11): 1230-1241. DOI:10.1017/S0007114519002010
[35]
MAGOČ T, SALZBERG S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(27): 2957-2963.
[36]
BOKULICH N A, SUBRAMANIAN S, FAITH J J, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods, 2013, 10(1): 57-59. DOI:10.1038/nmeth.2276
[37]
CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 335-336.
[38]
ROGNES T, FLOURI T, NICHOLS B, et al. VSEARCH: a versatile open source tool for metagenomics[J]. PeerJ, 2016, 4: e2584.
[39]
EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998. DOI:10.1038/nmeth.2604
[40]
WANG Q, GARRITY G M, TIEDJE J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267. DOI:10.1128/AEM.00062-07
[41]
王成强, 王际英, 黄炳山, 等. 饲料花生四烯酸水平对珍珠龙胆石斑鱼幼鱼生长性能、抗氧化能力、血清生化指标以及肝脏和肌肉脂肪酸组成的影响[J]. 动物营养学报, 2018, 30(9): 3567-3580.
WANG C Q, WANG J Y, HUANG B S, et al. Effects of dietary arachidonic acid level on growth performance, antioxidant ability, serum biochemical parameters and fatty acid composition in liver and muscle of juvenile hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂)[J]. Chinese Journal of Animal Nutrition, 2018, 30(9): 3567-3580 (in Chinese).
[42]
李广, 李世顺, 李敏, 等. 饲料中花生四烯酸对中间球海胆存活、生长和肠道菌群组成的影响[J]. 中国渔业质量与标准, 2018, 8(3): 42-51.
LI G, LI S X, LI M, et al. Effects of dietary arachidonic acid on survival and growth performance and the intestinal bacterial profile of adult sea urchin (Strongylocentrotus intermedius)[J]. Chinese Fishery Quality and Standards, 2018, 8(3): 42-51 (in Chinese).
[43]
CHEE W L, TURCHINI G M, TEOH C Y, et al. Dietary arachidonic acid and the impact on growth performance, health and tissues fatty acids in Malabar red snapper (Lutjanus malabaricus) fingerlings[J]. Aquaculture, 2020, 519: 734757. DOI:10.1016/j.aquaculture.2019.734757
[44]
BRANSDEN M P, BUTTERFIELD G M, WALDEN J, et al. Tank colour and dietary arachidonic acid affects pigmentation, eicosanoid production and tissue fatty acid profile of larval Atlantic cod (Gadus morhua)[J]. Aquaculture, 2005, 250(1/2): 328-340.
[45]
危起伟. 中华鲟保护生物学[M]. 北京: 科学出版社, 2019: 53-54.
WEI Q W. Conservation biology of Chinese sturgeon (Acipenser sinensis)[M]. Beijing: cience Press, 2019: 53-54 (in Chinese).
[46]
SHI X C, JIN A, SUN J, et al. α-lipoic acid ameliorates n-3 highly-unsaturated fatty acids induced lipid peroxidation via regulating antioxidant defenses in grass carp (Ctenopharyngodon idellus)[J]. Fish & Shellfish Immunology, 2017, 67: 359-367.
[47]
CHANDRAN R, SIVAKUMAR A A, MOHANDASS S, et al. Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2005, 140(3/4): 422-426.
[48]
王成强, 王际英, 李宝山, 等. 饲料中花生四烯酸含量对刺参生长性能、抗氧化能力及脂肪酸代谢的影响[J]. 中国水产科学, 2018, 25(3): 555-566.
WANG C Q, WANG J Y, LI B S, et al. Effects of dietary arachidonic acid on the growth performance, anti-oxidant capacity, and fatty acid metabolism of sea cucumber (Apostichopus japonicus)[J]. Journal of Fishery Sciences of China, 2018, 25(3): 555-566 (in Chinese).
[49]
FUNK C D. Prostaglandins and leukotrienes: advances in eicosanoid biology[J]. Science, 2001, 294(5548): 1871-1875. DOI:10.1126/science.294.5548.1871
[50]
YIN H Y, ZHOU Y H, ZHU M J, et al. Role of mitochondria in programmed cell death mediated by arachidonic acid-derived eicosanoids[J]. Mitochondrion, 2013, 13(3): 209-224. DOI:10.1016/j.mito.2012.10.003
[51]
田晶晶. 花生四烯酸(ARA)对草鱼脂质代谢的影响及其机制分析[D]. 博士学位论文. 杨凌: 西北农林科技大学, 2017.
TIAN J J. Effects and mechanism analysis of arachidonic acid on lipid metabolism of grass carp (Ctenopharygodon idellus)[D]. Ph. D. Thesis. Yangling: Northwest A &F University, 2017. (in Chinese)
[52]
LI B, ZHANG X X, GUO F, et al. Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis[J]. Water Research, 2013, 47(13): 4207-4216. DOI:10.1016/j.watres.2013.04.021
[53]
李秀玲, 刘宝锁, 刘波, 等. 不同脂肪源对卵形鲳鲹肠道微生物菌群的影响[J]. 水产科学, 2020, 39(1): 88-95.
LI X L, LIU B S, LIU B, et al. Effects of different lipid sources on intestinal microbial flora in golden pompano Trachinotus ovatus[J]. Fisheries Science, 2020, 39(1): 88-95 (in Chinese).
[54]
XU G L, XING W, LI T L, et al. Comparative study on the effects of different feeding habits and diets on intestinal microbiota in Acipenser baeri Brandt and Huso huso[J]. BMC Microbiology, 2019, 19(1): 297.
[55]
阮瑞, 吴金平, 李营, 等. 人工养殖下达氏鳇幼鱼肠道菌群组成分析[J]. 淡水渔业, 2018, 48(5): 93-98.
RUAN R, WU J P, LI Y, et al. Composition of intestinal microbiota in juvenile Huso dauricus under artificial rearing[J]. Freshwater Fisheries, 2018, 48(5): 93-98 (in Chinese).
[56]
邸军. 鲟细菌性败血症病原学及其防治研究[D]. 博士学位论文. 重庆: 西南大学, 2020.
DI J. Study on etiology and prevention technique of bacterial septicemia in sturgeons[D]. Ph. D. Thesis. Chongqing: Southwest University, 2020. (in Chinese)
[57]
LIU H, GUO X W, GOONERATNE R, et al. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels[J]. Scientific Reports, 2016, 6: 24340.