动物营养学报    2021, Vol. 33 Issue (12): 6601-6611    PDF    
南极磷虾粉营养特性及其在水产饲料中的应用
王裕玉1 , 赵璐1 , 郭晓华2 , 张新明1     
1. 日照职业技术学院海洋工程学院, 日照 276826;
2. 山东美佳集团有限公司, 日照 276800
摘要: 南极磷虾是一种重要的海产品资源,因其具有生物量大、营养丰富、富含生物活性物质等优点,越来越多地受到研究者的关注。研究证实南极磷虾粉对水产动物的生长和免疫性能等具有调节作用。本文综述了南极磷虾粉的营养特性及其在水产饲料中的研究和应用,以期为南极磷虾粉在水产饲料中的应用提供参考,促进南极磷虾粉作为新型蛋白质资源在水产养殖中的应用,推动南极磷虾资源的综合开发。
关键词: 南极磷虾粉    营养特性    水产饲料    氟中毒    
Nutritional Characteristics of Antarctic Krill Meal and Its Application in Aquatic Feed
WANG Yuyu1 , ZHAO Lu1 , GUO Xiaohua2 , ZHANG Xinming1     
1. College of Marine Engineering, Rizhao Polytechnic, Rizhao 276826, China;
2. Shandong Meijia Group Co. Ltd., Rizhao 276800, China
Abstract: Antarctic krill is an important seafood resource due to its high biomass, excellent nutritional value and high content of bioactive substances, and it has been increasingly investigated by researchers widely. Most studies had confirmed that Antarctic krill meal could regulate the growth and immune performance of aquatic animals. This paper summarizes the nutritional characteristics and application of Antarctic krill meal in aquatic feed. The aim of this paper is to provide reference for the application of Antarctic krill meal in aquatic feed, thus promote the application of Antarctic krill meal as a new protein resource in aquaculture and comprehensive development of Antarctic krill resources.
Key words: Antarctic krill meal    nutritional characteristics    aquatic feed    fluorosis    

南极磷虾(Euphausia superba)是最丰富的海洋生物之一,在南极生态系统和食物链中扮演着极其重要的角色,据估算其资源量可达3.79亿t,被认为是地球上最大的动物蛋白质源库,开发应用前景广阔[1]。南极磷虾蛋白质生物学效价优于牛乳蛋白质,氨基酸含量丰富,种类齐全,必需氨基酸的构成比例符合联合国粮农组织/世界卫生组织(FAO/WHO)对优质蛋白质的评分标准[2-5];且富含多不饱和脂肪酸(PUFA)、维生素、矿物质、微量元素及虾青素和胡萝卜素等活性物质。在鱼虾类研究中发现,南极磷虾产品生物利用率高,对摄食、生长、免疫力和体色等有积极效果,可作为水产动物的优质蛋白质源和脂肪源[6-9]。然而,南极磷虾体内氟含量可达800~2 400 mg/kg[9],极易发生氟蓄积,导致鱼虾类急性中毒,表现为厌食、呼吸频率下降、血液氟化物含量增加、肌肉麻痹和受精卵孵化延迟,重者引起死亡[10];南极磷虾产品及其衍生物对人类健康具有积极效果,如降低心脑血管疾病风险、减少慢性炎症、抗菌、抗氧化等[11-13]。据估算,经脱氟处理,每年可获得400万~500万t优质的南极磷虾蛋白质[14-15]。探究利用物理、化学和微生物学等方法脱除南极磷虾中的氟是未来的研究方向之一。因此,南极磷虾产品的研发及其产业化发展具有广阔前景。我国南极磷虾的综合利用研究相对滞后,如何将南极磷虾产业由生产初级食品向高值化产品转变是个亟需解决的问题。

1 南极磷虾粉的营养特性

南极磷虾的年龄、捕捞时间和区域以及加工工艺等均会影响其营养价值。南极磷虾粉中粗蛋白质含量49%~80%,脂质含量4%~26%,粗灰分含量4%~17%[16-18]。南极磷虾蛋白质中含有9种必需氨基酸,其组成和比例符合FAO/WHO推荐的理想蛋白质模式,其中谷氨酸和天冬氨酸含量最高,分别占总氨基酸的14%和10%以上,因此具有浓郁的鲜味;赖氨酸和亮氨酸含量较高,色氨酸含量较低,但仍为酪蛋白的1.6倍以上,因此,南极磷虾粉是一种很有前景的蛋白质来源[4, 17]。南极磷虾粉的主要脂质包括极性脂质和甘油三酯(TG),分别占脂质总量的56%~81%和12%~38%[19];南极磷虾油富含n-3 PUFA,尤其是二十二碳六烯酸(DHA)和二十碳五烯酸(EPA)[11, 20],主要以磷脂的形式存在,与以TG形式存在的鱼油n-3脂肪酸相比,具有更高的生物利用效率[21],因此,南极磷虾油可作为一种潜在脂肪来源,尤其是在鱼油日益减少的情况下,作为鱼油的替代源以满足日益增长的n-3 PUFA需求。南极磷虾粉中的核苷酸等低分子质量水溶性物质具有明显的促摄食作用[22]。南极磷虾粉中还含有虾青素、维生素A和生育酚等活性物质,虾青素含量为110 ~140 mg/kg[11],虾青素除了具有促生长和免疫调节功能外,还可作为天然色素对水产动物起到着色的作用[23]。南极磷虾粉含有丰富的矿物质,其中钙、镁等含量最高,铁、锌、硒、铜和锰等微量元素含量较高,镉、铅等重金属含量很低[7]

2 南极磷虾粉在水产动物饲料方面的应用 2.1 对摄食与生长的影响

南极磷虾粉的营养价值丰富,可用作水产饲料的优质蛋白源。研究发现,饲料中添加南极磷虾粉对鱼类摄食行为和食欲具有明显的刺激作用,从而促进摄食和生长[2-3, 24-27],尤其是对含有高含量植物性蛋白质源的水产饲料效果更明显[28-29],这归结于南极磷虾粉中虾青素、核苷酸、脯氨酸、甘氨酸、谷氨酸和不饱和脂肪酸等诱食性成分引起的摄食量增加[22, 30-31];此外,南极磷虾粉中的可溶性蛋白组分被认为是其具有诱食特性的原因,且在加工过程中会流失或大大减少,可以通过冷冻干燥使其保留下来[3]

近年来,有关南极磷虾粉产品对鱼虾类生长影响的研究较多,而且差异很大(表 1)。南极磷虾粉产品对鱼虾生长和饲料利用的影响主要存在以下情况:1)Suontama等[32]研究发现,大西洋鲑(Salmo salar)和大西洋庸鲽(Hippoglossus hippoglossus)饲料中分别添加30.3%、45.4%南极磷虾粉均可显著提高其生长性能和饲料利用率;南极磷虾粉替代0~100%鱼粉(添加量为0~57.02%)对海水养殖的三倍体虹鳟(Oncorhynchus mykiss)的生长和摄食有积极作用[33];在对大鳞大马哈鱼(Oncorhynchus tshawytscha)[24]、尼罗罗非鱼(Oreochromis niloticus)[28]、黄线狭鳕(Gadus chalcogrammus)[30]、大西洋鲑[34]、大菱鲆(Psetta maxima)[35]和大口黑鲈(Micropterus salmoides)[36]的研究中得到了类似的结果,这可能与摄食率、营养物质消化率[3, 29-31]及消化酶活性[35]的升高促进生长有关,也可解释为饲料中不同蛋白质源按照一定比例搭配更符合鱼虾类氨基酸需求的理想模式,有助于促进其代谢和消化吸收,进而促进其生长。2)研究者对大西洋庸鲽和大西洋鳕(Gadus morhua)[3]、银鲳(Pampus argenteus)[31]以及克氏原螯虾(Procambarus clarkia)[37]的研究发现,饲料中适量添加南极磷虾粉产品对其生长及饲料转化率有促进效果,而进一步提高添加量无改善作用;但当添加量过高时,对大西洋鲑[14]、圆斑星鲽(Verasper variegatus)[25]、大黄鱼(Larimichthy croceus)[38]、石斑鱼[39]等鱼类的生长和成活率产生负面影响。与高质量鱼粉组相比,全磷虾粉100%替代鱼粉组大西洋鲑生长率、幽门和中肠胰蛋白酶活性及某些氨基酸消化率显著降低,而部分去壳磷虾粉100%替代鱼粉组大西洋鲑生长性能、养分消化率相似或更好[14];此外,南极磷虾粉抑制鱼类生长可能是因为椎骨中氟过量蓄积影响了骨骼的发育,最终抑制生长[9]。3)在大菱鲆[8]、虹鳟[9]、大黄鱼[26, 38]、大西洋鲑[40]和南美白对虾(Litopenaeus vannamei)[41]的研究中发现,饲料中添加南极磷虾粉产品对其生长无显著影响。综上所述,南极磷虾粉产品可以作为鱼虾配合饲料中的优质蛋白质源,但是,南极磷虾粉产品对鱼虾生长性能的影响差异明显,这可能与饲料组成、磷虾粉种类、加工方式、动物种类和生长阶段、养殖条件及养殖周期等有关[2, 14, 32]

表 1 水产养殖中南极磷虾粉产品应用研究文献综述 Table 1 Bibliographic review of application of Antarctic krill meal products in aquaculture
2.2 对免疫与健康的影响

营养物质在水生生物抵御疾病和免疫调控中发挥着重要作用,通过营养调控手段来增强其免疫力、抗病力和抗应激能力以保证水产动物健康及水产品质量安全已成为研究热点。水生生物线粒体氧化磷酸化过程中产生超氧阴离子(O2-)、羟自由基(·OH)和过氧化氢(H2O2)等过氧化物,当自由基产生速率和细胞清除自由基的能力之间的平衡被打破时,引起DNA损伤、蛋白质和脂质过氧化等一系列氧化应激损伤,最终导致机体病变[46]。南极磷虾粉中的虾青素作为一种天然的抗氧化剂,其抗氧化活性比玉米黄质、叶黄素、角黄素和β-胡萝卜素等类胡萝卜素高10倍,比α-生育酚高100倍,可以清除体内氧自由基,增强抗病力[47];此外,南极磷虾粉中的磷虾油和硒会影响细胞抗氧化系统[13],南极磷虾油通过降低肝细胞内活性氧(ROS)的产生进而降低肝细胞的氧化应激损伤[21]

饲料添加南极磷虾粉可显著提高圆斑星鲽血清和肝脏超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性,降低丙二醛(MDA)含量[25]。Khosravi等[29]研究发现,与低鱼粉组相比,饲喂含南极磷虾蛋白质水解物饲料的真鲷机体SOD、溶菌酶和抗蛋白酶活性以及总免疫球蛋白含量和抗病力显著提高。王亚恩等[48]报道,南极磷虾油能显著提高大鼠血清NO含量以及SOD和谷胱甘肽过氧化物酶(GSH-Px)活性,对高脂血症大鼠具有抗氧化作用,且效果优于深海鱼油。研究者在银鲳[31]、小龙虾[37]和石斑鱼[39]的研究中得到了类似的结果,以上研究表明饲料中适量添加南极磷虾粉可提高其抗氧化能力,修复氧化应激反应引起的机体损伤。

南极磷虾粉替代10%~20%鱼粉蛋白能够提高银鲳幼鱼组织中溶菌酶、酸性磷酸酶和碱性磷酸酶的活性,进而提高银鲳幼鱼的非特异性免疫力[31]。朱旺明等[36]研究发现,与对照组相比较,饲喂含3%~9%南极磷虾粉饲料的大口黑鲈血液白细胞和红细胞数目分别提高56.5%~66.1%、20.7%~25.2%;南极磷虾粉替代鱼粉可提高小龙虾血细胞总数,透明细胞、半颗粒细胞和颗粒细胞数目,以及嗜水气单胞菌攻毒后的成活率[37];南极磷虾油具有抗氧化和免疫调节活性以及抑制细菌和病毒感染的特性[13],饲料中添加南极磷虾粉产品增强免疫力和抗病力可能与其提高了鱼虾类等非特异和特异性免疫防御有关。

动物肝胰腺、肠道和肾脏等组织影响其新陈代谢,组织学发生改变意味着机体健康出现问题。研究者对大西洋鲑[2, 14]、虹鳟[9]、真鲷[29]、珍珠龙胆石斑鱼[39]和黄尾鰤(Seriola quinqueradiata)[42]的研究发现,饲料中添加南极磷虾粉未引起机体健康受损及组织损伤;摄食含南极磷虾水解物的低鱼粉饲料的真鲷前肠杯状细胞数目和肠上皮细胞高度显著增加[29]。Taylor等[34]研究发现,大西洋鲑早期发育阶段摄食含2.6%~4.2%磷脂饲料能促进生长,提高存活率,减少脊柱畸形及防止脂肪变性,且磷虾磷脂的效果优于大豆卵磷脂;南极磷虾粉产品可以缓解摄食高脂诱导的炎症[20]和降低肠细胞损伤的发生率[49],这可能与南极磷虾富含硒和锌有关,硒可提高抗氧化酶的活性,消除H2O2和·OH,降低氟的毒性;锌可促进金属硫蛋白的表达,保护细胞膜的完整性和增加抗氧化能力[50-51];与之相反的是,Hansen等[14]研究发现,喂食南极磷虾粉作为唯一蛋白质源饲料的大西洋鲑中肾的肾小管细胞变性,轻度至中度凋亡和坏死,并伴有肾小管腔脱落等症状;虹鳟饲料中南极磷虾粉添加量与前肠绒毛数量呈负相关关系,而与绒毛长度和绒毛宽度呈显著的正相关关系[33];动物器官和组织发生病变可能与磷虾中氟过量有关,摄入过量氟会破坏氧化和抗氧化系统之间的平衡,产生的自由基诱导组织损伤[51]

2.3 对性腺发育的影响

水产动物亲本培育的过程实际上就是体内积累并储存足量营养物质的过程,从而保证亲本的性腺发育、受精产卵与孵化等。南极磷虾粉产品对鱼类的性腺发育和繁殖性能具有一定的促进作用。饲料中10%~20%南极磷虾粉在一定程度上可成为南美白对虾亲体营养强化阶段的优质原料[43]。Verakunpiriya等[52]研究发现,以含10%南极磷虾粉的颗粒饲料饲喂黄尾鰤亲鱼,其卵子品质高,含有大量的玉米黄素和叶黄素,呈强烈的淡黄色,卵子品质与所含的类胡萝卜素有关;在半滑舌鳎亲鱼饲料中添加10%南极磷虾粉可以促进亲鱼性腺发育,提高卵子质量、产卵量、受精率、孵化率[53]。杨程等[44]研究发现,南极磷虾粉替代10%~20%鱼粉能够促进银鲳性腺尤其是卵巢的发育,这与南极磷虾粉极性脂中的磷脂和非极性脂中的虾青素有关[54],值得注意的是,南极磷虾粉含量过高会导致银鲳卵黄蛋白原含量显著降低,具体原因有待于进一步研究。

2.4 对脂肪代谢的影响

研究表明,南极磷虾粉产品能够调节动物血清总胆固醇(TC)、TG和低密度脂蛋白胆固醇(LDL-C)含量,有利于缓解摄食高脂饲料引起的高脂血症和脂肪沉积,且效果优于鱼油[21, 46, 55-56]。Hansen等[14]对大西洋鲑的研究发现,南极磷虾粉添加组血清TC含量显著降低,这可解释几丁质阻碍其摄取TG所致[57]。吉薇等[58]对高糖高脂诱导的糖尿病斑马鱼的研究发现,高剂量(5.40 g/L)南极磷虾酶解物可降低其葡萄糖、TG和TC含量,抑制斑马鱼二肽基肽酶-Ⅳ(DPP-Ⅳ)活性以及胰高血糖素和磷酸烯醇式丙酮酸羧激酶1(phosphoenolpyruvatecarboxykinase1,PCK1)基因的表达水平,提高Insa基因表达水平。然而一些研究发现,饲料中添加南极磷虾粉对鱼体、血清及内脏脂肪的降脂效果不显著[2, 8, 29],甚至出现升高的趋势[35-36, 25, 39]。不同研究者得出的结论不同可能与动物种类、甲壳素含量、采样时间和养殖时间等有关[14, 57]。孙昌华[21]研究表明,南极磷虾油能够促进大鼠HepG2细胞的脂肪代谢能力,通过激活过氧化物酶体增殖物激活受体(peroxisome proliferators-activated receptor,PPAR)-α、PPAR-γ、丝裂原活化蛋白激酶7(mitogen-activated protein kinase-7,MAPK-7)蛋白分子信号通路或抑制核转录因子-κB(nuclear factor-kappa B,NF-κB)蛋白分子信号通路,以促进脂质代谢。遗憾的是有关水产动物相关的分子机制的研究尚未开展。

2.5 对鱼类肉质的影响

养殖鱼类的肌肉品质和营养有着密切的联系,可通过营养调控的手段来提高养殖鱼类的肌肉品质。一些研究结果表明,南极磷虾粉可以改善养殖鱼类的肌肉色素沉积。Wei等[33]研究发现,饲料中南极磷虾粉含量与海水养殖三倍体虹鳟肌肉类胡萝卜素浓度、红色(a*)值、黄色(b*)值、色度(C*)值和弹性呈显著的正相关关系,而与亮度(L*)值、色调(H*)值和内聚性呈显著的负相关关系;饲料中添加12%普通虾壳粉可显著改善大黄鱼皮肤色泽和类胡萝卜素含量[38];大黄鱼饲料中南极磷虾粉含量与肌肉EPA、肌苷酸、类胡萝卜素含量以及a*、b*值呈显著的正相关关系,而肌肉游离氨基酸含量呈线性下降,南极磷虾粉对肌肉质地、氨基酸总量和pH没有负面影响[26];在饲料中用南极磷虾粉代替鱼粉有升高大西洋鳕肤色和肌肉a*值的趋势,显著升高肌肉b*值,南极磷虾粉对肌肉pH、质地和感官特性无影响[45]

3 影响南极磷虾粉在水产饲料中利用的因素

南极磷虾壳主要由甲壳素(几丁质)、矿物质(主要是碳酸钙)和蛋白质构成,约占虾壳干重的90%[59]。甲壳素是N-乙酰氨基葡萄糖经β-1,4糖苷键连接而成的直链多糖。南极磷虾脱壳过程中甲壳素含量为20~30 mg/g体重(干重)[60]。甲壳素在动物胃肠道中的甲壳素酶、溶菌酶等的作用下少部分分解,其吸收率极低[61]。Yoshitomi等[42]研究结果显示,南极磷虾粉100%替代鱼粉显著降低了黄尾鰤的摄食量、生长率和饲料效率,而低氟磷虾粉100%替代鱼粉对黄尾鰤的生长无副作用;与鱼粉和部分去壳磷虾粉饲料相比,饲喂全磷虾粉饲料组大西洋鲑的生长率明显降低[14],这可能与甲壳素增加和骨骼中氟的蓄积对生长的抑制作用有关[9],另外,磷虾壳中高含量的甲壳素会阻碍蛋白质等营养物质消化和吸收,最终引起生长受阻[2, 59, 62-63];通过对甲壳素进行脱乙酰基处理得到壳聚糖,再进一步降解为壳寡糖,其水溶性和吸收率高达90%以上,直接参与机体的生理和免疫调节[63];磷虾作为动物食物来源的另一个制约因素是水解酶的存在,磷虾死亡后,水解酶释放到周围组织中,导致组织迅速液化和腐败[16];此外,加工方式会影响南极磷虾粉产品的营养特性、得粉率和功能成分的活性,比如,热处理和变性剂前处理均会影响蛋白质二级结构中α-螺旋、β-折叠和β-转角的含量,α-螺旋/β-折叠与必需氨基酸含量和营养指数呈负相关,进而影响南极磷虾粉产品的营养价值[17]

研究水产动物摄食南极磷虾粉产品后氟在动物体内蓄积和分布情况,对于评估其作为饲料原料的可行性和安全性具有重要的意义。常见南极磷虾粉产品氟含量和氟在动物体内沉积情况见表 2。研究表明,水产动物体内的氟含量与饲料中南极磷虾粉产品的添加量呈正相关,氟主要蓄积在骨骼、鳃、鳞片等硬组织,少量蓄积在肝脏、肌肉和鱼皮等组织[9-10, 14, 33, 35, 39-40, 42, 64],这可能是水产动物防止氟中毒的一种自我保护机制,以免高含量的氟进入循环系统[10]。在对虹鳟[9, 33]、大菱鲆[8, 35]、石斑鱼[39]、大西洋鲑[14, 40]和黄尾鰤[42]等研究中发现,肌肉中氟含量在食品氟允许量标准(GB 4809—1984)规定范围内,不影响食用安全。以南极磷虾为食的2种野生南极冰鱼椎骨氟含量为15 000~33 000 mg/kg,但没有表现出对生长不利的结果,这表明骨骼中氟的沉积取决于鱼类种类而非栖息地的盐度[42]

表 2 南极磷虾粉产品氟含量和氟在水产动物体内沉积情况 Table 2 Fluorine content in Antarctic krill meal products and fluorine deposition in aquatic animals

研究者开展了降低氟吸收和利用率的相关研究。Hansen等[65]研究了虹鳟对磷虾壳和氟化钠(NaF)饲料中氟的生物利用率及饲料中添加钙是否影响氟化物的生物利用率,结果显示,淡水养殖虹鳟饲料中磷虾壳氟的生物利用率低于NaF,添加45 g/kg氯化钙的磷虾壳和NaF饲料中氟吸收量分别减少了50%和100%,表明添加氯化钙是降低氟吸收的有效途径;饲料中添加2%和4%钙可减少虹鳟氟化物中毒的临床症状,并减少椎骨中的氟化物积累[66]。机体对可溶性氟的吸收水平还取决于氟摄入量和胃肠道pH[67]

4 小结

南极磷虾粉作为优质蛋白质和不饱和脂肪酸的新来源,已经被证实可以有效利用在水产饲料中。为了使磷虾蛋白质资源得到更科学、更合理地开发利用和安全食用,未来的研究方向需要聚焦在以下几点:构建不同南极磷虾粉营养价值评价体系;构建不同鱼虾类、不同生长阶段适宜南极磷虾粉添加量数据库;优化南极磷虾粉的加工工艺,提高其营养价值,推动南极磷虾粉向精深加工发展;开展南极磷虾粉生物活性物质的分离提取、纯化、鉴定及生物功效研究等,实现高值化利用;开展南极磷虾粉对水产动物蛋白质代谢、脂肪代谢和肌肉生成调控机制研究。

致谢:

感谢日照职业技术学院海洋工程学院李洪叶教授和倪雪朋教授对文稿所提的宝贵意见。

参考文献
[1]
ATKINSON A, SIEGEL V, PAKHOMOV E A, et al. A re-appraisal of the total biomass and annual production of Antarctic krill[J]. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 2009, 56(5): 727-740. DOI:10.1016/j.dsr.2008.12.007
[2]
OLSEN R E, SUONTAMA J, LANGMYHR E, et al. The replacement of fish meal with Antarctic krill, Euphausia superba in diets for Atlantic salmon, Salmo salar[J]. Aquaculture Nutrition, 2006, 12(4): 280-290. DOI:10.1111/j.1365-2095.2006.00400.x
[3]
TIBBETTS S M, OLSEN R E, LALL S P. Effects of partial or total replacement of fish meal with freeze-dried krill (Euphausia superba) on growth and nutrient utilization of juvenile Atlantic cod (Gadus morhua) and Atlantic halibut (Hippoglossus hippoglossus) fed the same practical diets[J]. Aquaculture Nutrition, 2011, 17(3): 287-303. DOI:10.1111/j.1365-2095.2010.00753.x
[4]
FAO/WHO. Protein quality evaluation report of joint FAO/WHO expert consultation[R]. Rome: Food and Agriculture Organization of the United Nations, 1991.
[5]
麦康森, 魏玉婷, 王嘉, 等. 南极磷虾的主要营养组成及其在水产饲料中的应用[J]. 中国海洋大学学报(自然科学版), 2016, 46(11): 1-15.
MAI K S, WEI Y T, WANG J, et al. Main nutrient compositions of Antarctic krill and its application in aqua-feeds[J]. Journal of Ocean University of China (Natural Science Edition), 2016, 46(11): 1-15 (in Chinese).
[6]
FLORETO E A T, BROWN P B, BAYER R C. The effects of krill hydrolysate-supplemented soya-bean based diets on the growth, colouration, amino and fatty acid profiles of juvenile American lobster, Homarus americanus[J]. Aquaculture Nutrition, 2001, 7(1): 33-43. DOI:10.1046/j.1365-2095.2001.00154.x
[7]
刘志东, 陈雪忠, 黄洪亮, 等. 南极磷虾粉的营养成分分析及评价[J]. 中国海洋药物, 2012, 31(2): 43-48.
LIU Z D, CHEN X Z, HUANG H L, et al. Analysis and evaluation of the nutritional components of Antarctic krill powder[J]. Chinese Journal of Marine Drugs, 2012, 31(2): 43-48 (in Chinese).
[8]
孔凡华, 梁萌青, 吴立新, 等. 南极磷虾粉对大菱鲆生长、非特异性免疫及氟残留的影响[J]. 渔业科学进展, 2012, 33(1): 54-60.
KONG F H, LIANG M Q, WU L X, et al. Effect of different level of Antarctic krill meal on growth, non-specific immunity and fluoride retention in diets of turbot Scophthalmus maximus[J]. Progress in Fishery Sciences, 2012, 33(1): 54-60 (in Chinese). DOI:10.3969/j.issn.1000-7075.2012.01.008
[9]
YOSHITOMI B, AOKI M, OSHIMA S I. Effect of total replacement of dietary fish meal by low fluoride krill (Euphausia superba) meal on growth performance of rainbow trout (Oncorhynchus mykiss) in fresh water[J]. Aquaculture, 2007, 266(1/2/3/4): 219-225.
[10]
CAMARGO J A. Fluoride toxicity to aquatic organisms: a review[J]. Chemosphere, 2003, 50(3): 251-264. DOI:10.1016/S0045-6535(02)00498-8
[11]
TOU J C, JACZYNSKI J, CHEN Y C. Krill for human consumption: nutritional value and potential health benefits[J]. Nutrition Reviews, 2007, 65(2): 63-77.
[12]
BERGE K, MUSA-VELOSO K, HARWOOD M, et al. Krill oil supplementation lowers serum triglycerides without increasing low-density lipoprotein cholesterol in adults with borderline high or high triglyceride levels[J]. Nutrition Research, 2014, 34(2): 126-133. DOI:10.1016/j.nutres.2013.12.003
[13]
XIE D, GONG M Y, WEI W, et al. Antarctic krill (Euphausia superba) oil: a comprehensive review of chemical composition, extraction technologies, health benefits, and current applications[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(2): 514-534. DOI:10.1111/1541-4337.12427
[14]
HANSEN J Ø, PENN M, ØVERLAND M, et al. High inclusion of partially deshelled and whole krill meals in diets for Atlantic salmon (Salmo salar)[J]. Aquaculture, 2010, 310(1/2): 164-172.
[15]
PENG Y H, JI W, ZHANG D, et al. Composition and content analysis of fluoride in inorganic salts of the integument of Antarctic krill (Euphausia superba)[J]. Scientific Reports, 2019, 9(1): 7853. DOI:10.1038/s41598-019-44337-6
[16]
GIGLIOTTI J C, JACZYNSKI J, TOU J C. Determination of the nutritional value, protein quality and safety of krill protein concentrate isolated using an isoelectric solubilization/precipitation technique[J]. Food Chemistry, 2008, 111(1): 209-214. DOI:10.1016/j.foodchem.2008.03.030
[17]
徐蓓蓓, 姜晓明, 薛勇, 等. 不同南极磷虾产品中蛋白的营养价值评价[J]. 食品工业科技, 2019, 40(23): 17-23, 30.
XU B B, JIANG X M, XUE Y, et al. Evaluation of nutritive value of protein in different Antarctic krill (Euphausia superba) products[J]. Science and Technology of Food Industry, 2019, 40(23): 17-23, 30 (in Chinese).
[18]
王馨悦. 南极磷虾粉对中华绒螯蟹幼蟹生长性能、蛋白质代谢和抗氧化能力的影响[D]. 硕士学位论文. 上海: 华东师范大学, 2020.
WANG X Y. Effect of dietary krill meal on growth performance protein metabolism and antioxidative capacity of juvenile Chinese mitten crabs (Eriocheir sinensis)[D]. Master's Thesis. Shanghai: East China Normal University, 2020. (in Chinese)
[19]
PHLEGER C F, NELSON M M, MOONEY B D, et al. Interannual and between species comparison of the lipids, fatty acids and sterols of Antarctic krill from the US AMLR Elephant Island survey area[J]. Comparative Biochemistry and Physiology.Part B, Biochemistry & Molecular Biology, 2002, 131(4): 733-747.
[20]
BURRI L, JOHNSEN L. Krill products: an overview of animal studies[J]. Nutrients, 2015, 7(5): 3300-3321. DOI:10.3390/nu7053300
[21]
孙昌华. 南极磷虾油主要生物学特性及其降血脂机制研究[D]. 博士学位论文. 北京: 中国农业大学, 2019.
SUN C H. Main biological properties of Antarctic krill oil and its hypolipidemic mechanism[D]. Ph. D. Thesis. Beijing: China Agricultural University, 2019. (in Chinese)
[22]
SHIMIZU C, IBRAHIM A, TOKORO T, et al. Feeding stimulation in sea bream, Pagrus major, fed diets supplemented with Antarctic krill meals[J]. Aquaculture, 1990, 89(1): 43-53. DOI:10.1016/0044-8486(90)90232-C
[23]
HIGUERA-CIAPARA I, FÉLIX-VALENZUELA L, GOYCOOLEA F M. Astaxanthin: a review of its chemistry and applications[J]. Critical Reviews in Food Science and Nutrition, 2006, 46(2): 185-196. DOI:10.1080/10408690590957188
[24]
ANDERSON J S, RICHARDSON N L, HIGGS D A, et al. The evaluation of air-dried krill meal as a dietary protein supplement for juvenile chinook salmon (Oncorhynchus tshawytscha): Canadian technical report of fisheries and aquatic sciences 2148[R]. Vancouver: Department of Fisheries and Oceans Science Branch, Pacific Region, 1997.
[25]
YAN J L, CHANG Q, CHEN S Q, et al. Effect of dietary Antarctic krill meal on growth performance, muscle proximate composition, and antioxidative capacity of juvenile spotted halibut, Verasper variegatus[J]. Journal of the World Aquaculture Society, 2018, 49(4): 761-769. DOI:10.1111/jwas.12455
[26]
WEI Y T, SHEN H H, XU W Q, et al. Replacement of dietary fishmeal by Antarctic krill meal on growth performance, intestinal morphology, body composition and organoleptic quality of large yellow croaker Larimichthys crocea[J]. Aquaculture, 2019, 512: 734281. DOI:10.1016/j.aquaculture.2019.734281
[27]
OIKAWA C K, MARCH B E. Communications: a method for assessment of the efficacy of feed attractants for fish[J]. The Progressive Fish-Culturist, 1997, 59(3): 213-217. DOI:10.1577/1548-8640(1997)059<0213:CAMFAO>2.3.CO;2
[28]
GABER M M A. The effect of different levels of krill meal supplementation of soybean-based diets on feed intake, digestibility, and chemical composition of juvenile Nile tilapia Oreochromis niloticus L.[J]. Journal of the World Aquaculture Society, 2005, 36(3): 346-353.
[29]
KHOSRAVI S, RAHIMNEJAD S, HERAULT M, et al. Effects of protein hydrolysates supplementation in low fish meal diets on growth performance, innate immunity and disease resistance of red sea bream Pagrus major[J]. Fish & Shellfish Immunology, 2015, 45(2): 858-868.
[30]
CHOI J, LEE K W, HAN G S, et al. Dietary inclusion effect of krill meal and various fish meal sources on growth performance, feed utilization, and plasma chemistry of grower walleye pollock (Gadus chalcogrammus, Pallas 1811)[J]. Aquaculture Reports, 2020, 17: 100331. DOI:10.1016/j.aqrep.2020.100331
[31]
杨程, 高权新, 张晨捷, 等. 饲料中添加南极磷虾粉对银鲳幼鱼生长、非特异性免疫及抗氧化功能的影响[J]. 海洋渔业, 2019, 41(2): 224-233.
YANG C, GAO Q X, ZHANG C J, et al. Effects of Antarctic krill powder on growth, non-specific immunity and antioxidant functions of Pampus argenteus juveniles[J]. Marine Fisheries, 2019, 41(2): 224-233 (in Chinese).
[32]
SUONTAMA J, KARLSEN Ø, MOREN M, et al. Growth, feed conversion and chemical composition of Atlantic salmon (Salmo salar L.) and Atlantic halibut (Hippoglossus hippoglossus L.) fed diets supplemented with krill or amphipods[J]. Aquaculture Nutrition, 2007, 13(4): 241-255. DOI:10.1111/j.1365-2095.2007.00466.x
[33]
WEI Y T, CHEN H, JIA M X, et al. Effects of dietary Antarctic krill Euphausia superba meal on growth performance and muscle quality of triploid rainbow trout Oncorhynchus mykiss farmed in sea water[J]. Aquaculture, 2019, 509: 72-84. DOI:10.1016/j.aquaculture.2019.05.013
[34]
TAYLOR J F, MARTINEZ-RUBIO L, DEL POZO J, et al. Influence of dietary phospholipid on early development and performance of Atlantic salmon (Salmo salar)[J]. Aquaculture, 2015, 448: 262-272. DOI:10.1016/j.aquaculture.2015.06.012
[35]
张莉莉, 梁萌青, 徐后国, 等. 饲料中添加磷虾水解物对大菱鲆幼鱼生长性能、体组成及相关酶活性的影响[J]. 水生生物学报, 2017, 41(3): 497-505.
ZHANG L L, LIANG M Q, XU H G, et al. Effects of dietary krill hydrolysates on growth performance, body composition and related enzyme activities of juvenile turbot (Scophthalmus maximus L.)[J]. Acta Hydrobiologica Sinica, 2017, 41(3): 497-505 (in Chinese).
[36]
朱旺明, 谭永刚, 马卉佳, 等. 不同水平南极磷虾粉等量替代鱼粉对大口黑鲈生长性能及部分生理生化指标的影响[J]. 中国饲料, 2019(15): 85-92.
ZHU W M, TAN Y G, MA H J, et al. Effects of different levels of krill meal replacement with fish meal on growth performance and some physiological and biochemical indexes of largemouth bass[J]. China Feed, 2019(15): 85-92 (in Chinese).
[37]
GAO R J, CHEN L, ZHANG W, et al. Effect of dietary Antarctic krill Euphausia superba on the growth performance and nonspecific immunity of red swamp crayfish Procambarus clarkia[J]. Fish & Shellfish Immunology, 2020, 96: 122-125.
[38]
YI X W, LI J, XU W, et al. Shrimp shell meal in diets for large yellow croaker Larimichthys croceus: effects on growth, body composition, skin coloration and anti-oxidative capacity[J]. Aquaculture, 2015, 441: 45-50. DOI:10.1016/j.aquaculture.2015.01.030
[39]
魏佳丽, 王际英, 宋志东, 等. 酶解磷虾粉替代鱼粉对珍珠龙胆石斑鱼幼鱼生长性能、体组成及血清生化的影响[J]. 渔业科学进展, 2016, 37(1): 100-110.
WEI J L, WANG J Y, SONG Z D, et al. Effects of the partial substitute for fish meal by hydrolyzed krill meal on growth performance, the body composition and the serum biochemical prameters of juvenile pearl gentian grouper[J]. Progress in Fishery Sciences, 2016, 37(1): 100-110 (in Chinese).
[40]
JULSHAMN K, MALDE M K, BJORVATN K, et al. Fluoride retention of Atlantic salmon (Salmo salar) fed krill meal[J]. Aquaculture Nutrition, 2004, 10(1): 9-13. DOI:10.1046/j.1365-2095.2003.00273.x
[41]
NUNES A J P, SÁ M V C, SABRY-NETO H. Growth performance of the white shrimp, Litopenaeus vannamei, fed on practical diets with increasing levels of the Antarctic krill meal, Euphausia superba, reared in clear-versus green-water culture tanks[J]. Aquaculture Nutrition, 2011, 17(2): e511-e520. DOI:10.1111/j.1365-2095.2010.00791.x
[42]
YOSHITOMI B, NAGANO I. Effect of dietary fluoride derived from Antarctic krill (Euphausia superba) meal on growth of yellowtail (Seriola quinqueradiata)[J]. Chemosphere, 2012, 86(9): 891-897. DOI:10.1016/j.chemosphere.2011.10.042
[43]
张玉玲, 罗坤, 孔杰, 等. 饲料中添加南极磷虾粉对凡纳滨对虾亲虾生长、性腺发育及脂肪酸积累的影响[J]. 中国水产科学, 2017, 24(2): 306-316.
ZHANG Y L, LUO K, KONG J, et al. A comparative study on growth and gonadal development of Litopenaeus vannamei broodstock fed different formulated feeds[J]. Journal of Fishery Sciences of China, 2017, 24(2): 306-316 (in Chinese).
[44]
杨程, 高权新, 覃干景, 等. 南极磷虾粉替代鱼粉对大规格银鲳生长性能、性腺指数及肌肉氨基酸与脂肪酸组成的影响[J]. 动物营养学报, 2019, 31(10): 4877-4884.
YANG C, GAO Q X, QIN G J, et al. Effects of Antarctic krill meal replacing fish meal on growth performance, gonadal index, amino acid and fatty acid composition in muscle of large size Pampus argenteus[J]. Chinese Journal of Animal Nutrition, 2019, 31(10): 4877-4884 (in Chinese).
[45]
KARLSEN Ø, SUONTAMA J, OLSEN R E. Effect on Antarctic krill meal on quality of farmed Atlantic cod (Gadus morhua L.)[J]. Aquaculture Research, 2006, 37(16): 1676-1684. DOI:10.1111/j.1365-2109.2006.01615.x
[46]
WOJTCZYK-MIASKOWSKA A, SCHLICHTHOLZ B. DNA damage and oxidative stress in long-lived aquatic organisms[J]. DNA Repair, 2018, 69: 14-23. DOI:10.1016/j.dnarep.2018.07.003
[47]
MIKI W. Biological functions and activities of animal carotenoids[J]. Pure and Applied Chemistry, 1991, 63(1): 141-146. DOI:10.1351/pac199163010141
[48]
王亚恩, 姜国良, 徐恺, 等. 南极磷虾油对高脂血症大鼠血脂和抗氧化力的影响[J]. 中国海洋药物, 2011, 30(3): 56-59.
WANG Y N, JIANG G L, XU K, et al. Effects of the Antarctic krill oil on the serum lipids and antioxidation ability in hyperlipidemia rats[J]. Chinese Journal of Marine Drugs, 2011, 30(3): 56-59 (in Chinese).
[49]
BETANCOR M B, NORDRUM S, ATALAH E, et al. Potential of three new krill products for seabream larval production[J]. Aquaculture Research, 2012, 43(3): 395-406. DOI:10.1111/j.1365-2109.2011.02842.x
[50]
肖银霞, 李金龙, 徐世文, 等. 镉、硒、氟、铜、锌、磷对细胞膜影响的研究进展[J]. 中国地方病学杂志, 2006, 25(2): 225-226.
XIAO Y X, LI J L, XU S W, et al. A study of cadmium, selenium, fluorine, copper, zinc, phosphorus effect on cell membrane[J]. Chinese Journal of Endemiology, 2006, 25(2): 225-226 (in Chinese). DOI:10.3760/cma.j.issn.1000-4955.2006.02.047
[51]
ZHANG L, LU X Q, WANG Z M, et al. Evaluation of the toxicity of fluorine in Antarctic krill on soft tissues of Wistar rats[J]. Advances in Polar Science, 2013, 24(2): 128-132.
[52]
VERAKUNPIRIYA V, WATANABE T, MUSHIAKE K, et al. Effect of broodstock diets on the chemical components of milt and eggs produced by yellowtail[J]. Fisheries Science, 1996, 62(4): 610-619. DOI:10.2331/fishsci.62.610
[53]
赵敏. 饲料中不同水平牛磺酸和磷虾粉对半滑舌鳎繁殖性能及后代质量的影响[D]. 硕士学位论文. 上海: 上海海洋大学, 2015.
ZHAO M. Effects of different levels of dietary taurine and krill meal on reproductive performance and offspring quality of tongue sole (Cynoglossus semilaevis)[D]. Master's Thesis. Shanghai: Shanghai Ocean University, 2015. (in Chinese)
[54]
WATANABE T, FUJIMURA T, LEE M J, et al. Effect of polar and nonpolar lipids from krill on quality of eggs of red seabream Pagrus major[J]. Nippon Suisan Gakkaish, 1991, 57(4): 695-698. DOI:10.2331/suisan.57.695
[55]
施佳慧, 吕桂善, 徐同成, 等. 磷虾油的脂肪酸成分及其降血脂功能研究[J]. 营养学报, 2008, 30(1): 115-116.
SHI J H, LV G S, XU T C, et al. Study on fatty acids components and the hypolipidemic activity of superba oil[J]. Acta Nutrimenta Sinica, 2008, 30(1): 115-116 (in Chinese).
[56]
王军仁, 赵传凯, 吴志强, 等. 南极磷虾(Euphausia superba)油对小鼠酒精性脂肪肝模型作用的研究[J]. 食品工业科技, 2012, 33(24): 399-402.
WANG J R, ZHAO C K, WU Z Q, et al. Study on the effect of Antarctic krill (Euphausia superba) oil on model of ethanol-induced fatty liver in mice[J]. Science and Technology of Food Industry, 2012, 33(24): 399-402 (in Chinese).
[57]
ZACOUR A C, SILVA M E, CECON P R, et al. Effect of dietary chitin on cholesterol absorption and metabolism in rats[J]. Journal of Nutritional Science and Vitaminology, 1992, 38(6): 609-613. DOI:10.3177/jnsv.38.609
[58]
吉薇, 章超桦, KALUEFF A V, 等. 糖尿病斑马鱼模型的建立与南极磷虾酶解物降血糖活性评价[J]. 食品与机械, 2019, 35(6): 24-29.
JI W, ZHANG C H, KALUEFF A V, et al. Establishment of diabetic zebrafish model and evaluation of hypoglycemic activity of Antarctic krill enzymatic hydrolysates[J]. Food & Machinery, 2019, 35(6): 24-29 (in Chinese).
[59]
FERRER J, PAEZ G, MARMOL Z, et al. Acid hydrolysis of shrimp-shell wastes and the production of single cell protein from the hydrolysate[J]. Bioresource Technology, 1996, 57(1): 55-60. DOI:10.1016/0960-8524(96)00057-0
[60]
NICOL S, HOSIE G W. Chitin production by krill[J]. Biochemical Systematics and Ecology, 1993, 21(2): 181-184. DOI:10.1016/0305-1978(93)90035-P
[61]
BOONE R J, MANTHEY M. The anatomical distribution of fluoride within various body segments and organs of Antarctic krill (Euphausia superba Dana)[J]. Archiv Fuer Fischereiwissenschaft, 1983, 34(1): 81-85.
[62]
IKEGAMI S, TSUCHIHASHI F, HARADA H, et al. Effect of viscous indigestible polysaccharides on pancreatic-biliary secretion and digestive organs in rats[J]. Journal of Nutrition, 1990, 120(4): 353-360. DOI:10.1093/jn/120.4.353
[63]
RØDDE R H, EINBU A, VÅRUM K M. A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis)[J]. Carbohydrate Polymers, 2008, 71(3): 388-393. DOI:10.1016/j.carbpol.2007.06.006
[64]
SHI X T, WANG R F, ZHUANG P, et al. Fluoride retention after dietary fluoride exposure in Siberian sturgeon Acipenser baerii[J]. Aquaculture Research, 2013, 44(2): 176-181. DOI:10.1111/j.1365-2109.2011.03021.x
[65]
HANSEN J Ø, SHEARER K D, ØVERLAND M, et al. Dietary calcium supplementation reduces the bioavailability of fluoride from krill shell and NaF in rainbow trout (Oncorhynchus mykiss) reared in fresh water[J]. Aquaculture, 2011, 318(1/2): 85-89.
[66]
LANDY R B. The effect of selected cation supplementation on fluoride toxicity in rainbow trout, Salmo gairdneri[D]. Ph. D. Thesis. Ithaca: Cornell University, 1988.
[67]
WHITFORD G M, PASHLEY D H. Fluoride absorption: the influence of gastric acidity[J]. Calcified Tissue International, 1984, 36(3): 302-307.