动物营养学报    2021, Vol. 33 Issue (12): 6730-6739    PDF    
复合植物精油对断奶仔猪生长性能、血清生化指标以及粪便中微生物数量和挥发性脂肪酸含量的影响
王仁杰1,2 , 赵金标1 , 赖金花1 , 付慧洋1 , 雷燕2 , 吕继蓉2 , 李菊3 , 武振龙1     
1. 中国农业大学动物科学技术学院, 北京 100193;
2. 成都大帝汉克生物科技有限公司, 成都 611130;
3. 河南银发牧业有限公司, 郑州 451100
摘要: 本研究旨在探讨复合植物精油对断奶仔猪生长性能、血清生化指标以及粪便中微生物数量和挥发性脂肪酸含量的影响。试验选用160头初始体重为(8.06±0.09)kg的长×大二元杂交断奶仔猪,随机分为4个组,每组5个重复,每个重复8头猪。对照组饲喂基础饲粮,试验组分别在基础饲粮中添加300、450和600 mg/kg复合植物精油。试验期14 d。结果表明:1)饲粮中添加不同水平的复合植物精油对断奶仔猪的平均日采食量、平均日增重以及料重比没有显著影响(P>0.05)。与对照组相比,饲粮中添加450和600 mg/kg复合植物精油显著降低了断奶仔猪的腹泻率和粪便指数(P < 0.05)。2)与对照组相比,饲粮中添加450 mg/kg复合植物精油显著降低了断奶仔猪的血清二胺氧化酶活性(P < 0.05),饲粮中添加450和600 mg/kg复合植物精油显著提高了断奶仔猪血清总抗氧化能力(P < 0.05),饲粮中添加300、450和600 mg/kg复合植物精油显著提高了断奶仔猪血清过氧化氢酶活性(P < 0.05),饲粮中添加450和600 mg/kg复合植物精油显著降低了断奶仔猪血清白细胞介素-1β、白细胞介素-6和肿瘤坏死因子-α含量(P < 0.05)。3)饲粮中添加不同水平的复合植物精油对断奶仔猪的粪便中大肠杆菌和乳酸菌数量没有显著影响(P>0.05)。4)与对照组相比,饲粮中添加300、450和600 mg/kg复合植物精油显著提高了断奶仔猪的粪便中乙酸含量(P < 0.05),饲粮中添加600 mg/kg复合植物精油显著提高了断奶仔猪的粪便中戊酸和总挥发性性脂肪酸含量(P < 0.05)。由此可见,饲粮中添加复合植物精油对断奶仔猪的生长性能无显著影响,但可以降低仔猪腹泻率,改善炎症水平和肠道通透性,提高机体抗氧化能力和粪便中挥发性脂肪酸含量。本试验条件下,断奶仔猪饲粮中复合植物精油的适宜添加水平为450 mg/kg。
关键词: 断奶仔猪    精油    腹泻率    抗氧化    抗炎    
Effects of Plant Essential Oil Compounds on Growth Performance, Serum Biochemical Parameters, Fecal Microbial Numbers and Volatile Fatty Acid Contents of Weaned Piglets
WANG Renjie1,2 , ZHAO Jinbiao1 , LAI Jinhua1 , FU Huiyang1 , LEI Yan2 , LYU Jirong2 , LI Ju3 , WU Zhenlong1     
1. College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
2. DadHank Biotechnology Corporation, Chengdu 611130, China;
3. Henan Yinfa Animal Husbandry Co., Ltd., Zhengzhou 451100, China
Abstract: The aim of this study was to evaluate the effects of plant essential oil compounds on growth performance, serum biochemical parameters, fecal microbial numbers and volatile fatty acid contents of weaned piglets. A total of 160 Landrace×Yorkshire crossbred weaned piglets with initial body weight of (8.06±0.09) kg were randomly divided into 4 groups with 5 replicates per group and 8 pigs per replicate. Pigs in the control group were fed a basal diet, and others in experimental groups were fed the basal diet supplemented 300, 450 and 600 mg/kg plant essential oil compounds, respectively. The experiment lasted for 14 days. The results showed as follows: 1) dietary different supplemental levels of plant essential oil compounds had no significant effects on the average daily feed intake, average daily gain and feed to weight ratio of weaned piglets (P>0.05). Compared with the control group, dietary 450 and 600 mg/kg plant essential oil compounds significantly decreased the diarrhea rate and fecal index of weaned piglets (P < 0.05). 2) Compared with the control group, dietary 450 mg/kg plant essential oil compounds significantly decreased the serum diamine oxidase activity of weaned piglets (P < 0.05), dietary 450 and 600 mg/kg plant essential oil compounds significantly increased the serum total antioxidant capacity of weaned piglets (P < 0.05), dietary 300, 450 and 600 mg/kg plant essential oil compounds significantly increased the serum catalase activity of weaned piglets (P < 0.05), and dietary 450 mg/kg plant essential oil compounds significantly decreased the contents interleukin-1β, interleukin-6 and tumor necrosis factor-α in serum of weaned piglets (P < 0.05). 3) Dietary different supplemental levels of plant essential oil compounds had no significant effects on the numbers of Escherichia coli and Lactobacillus in feces of weaned piglets (P>0.05). 4) Compared with the control group, dietary 300, 450 and 600 mg/kg plant essential oil compounds significantly increased the fecal acetate content of weaned piglets (P < 0.05), and dietary 600 mg/kg plant essential oil compounds significantly increased the fecal valerate and total volatile fatty acid contents of weaned piglets (P < 0.05). In conclusion, dietary plant essential oil compounds have no significant effects on the growth performance of weaned piglets, but can reduce the diarrhea rate, improve the inflammatory level and intestinal permeability, and increase the body antioxidant capacity and fecal volatile fatty acid contents. Under the experimental conditions, the dietary optimal supplemental level of plant essential oil compounds for weaned piglets is 450 mg/kg.
Key words: weaned piglets    essential oil    diarrhea rate    antioxidant    anti-inflammatory    

仔猪实施早期断奶措施(通常在3~5周龄)是集约化养猪生产过程中的关键技术之一。然而,仔猪早期断奶后受环境、心理和营养等方面的应激,会不同程度地损伤肠道屏障功能和肠内微生态环境,进而导致仔猪食欲下降、消化不良和腹泻,甚至死亡[1]。为了解决仔猪断奶应激所引起的一系列问题,实际生产中往往添加大量的抗生素预防或者治疗断奶应激导致的肠道屏障损伤[2]。近年来,抗生素滥用导致畜产品安全和细菌耐药性等问题日益突出,欧盟和美国分别在2006和2017年禁止在饲料中添加抗生素[3],我国也在2020年7月1日起全面禁止在饲料中添加抗生素。因此,寻找高效的抗生素替代物以缓解仔猪断奶应激导致的生长性能下降、腹泻、以及肠道屏障损伤等问题迫在眉睫,这对我国养猪业的健康可持续发展具有十分重要的意义。

目前饲料中抗生素替代物主要包括有机酸[4]、酶制剂[5-6]、益生菌和益生素[7-8]、抗菌肽[9]、中链脂肪酸[10-11]和精油[12-14]。精油作为主要的抗生素替代物之一,已经被许多研究证实其具有促进断奶仔猪生长和调节肠道微生物的作用。李方方等[15]在断奶仔猪饲粮中添加300 mg/kg植物精油(有效成分香芹酚和百里香酚含量为22.5 mg/kg),发现植物精油可以提高仔猪平均日增重、饲料转化率及营养物质消化率。但也有结果不一致的报道,Li等[14]发现在断奶仔猪饲粮中添加18 mg/kg百里香酚和肉桂醛的精油复合物可以提高营养物质消化率,降低血液中白细胞介素-6(IL-6)含量和粪便中大肠杆菌数量,提高血液中总抗氧化能力,但对仔猪生长性能无显著影响。Van Noten等[16]在断奶仔猪饲粮中添加500 mg/kg百里香酚,发现降低了肠道的通透性从而降低腹泻率,但对仔猪生长性能也没有显著影响。由此可见,目前断奶仔猪饲粮中精油的添加水平差异较大,且添加效果不一,有待继续研究。因此,本试验旨在探究复合植物精油对断奶仔猪生长性能、血清生化指标以及粪便中微生物数量和挥发性脂肪酸(VFA)含量的影响,为复合植物精油在断奶仔猪饲粮中的应用提供参考。

1 材料与方法 1.1 试验设计与饲粮

试验选用160头28日龄健康的长×大二元去势公猪,初始体重为(8.06±0.09) kg,根据体重按照随机区组设计原则分为4个组,每组5个重复,每个重复8头猪。对照组饲喂基础饲粮,试验组分别在基础饲粮中添加300、450和600 mg/kg复合植物精油。复合植物精油由成都某生物科技有限公司提供,有效成分含量为:肉桂醛18.0%、百里香酚3.0%和香芹酚7.0%,其余成分为载体。试验饲粮参照NRC(2012)配制,基础饲粮组成及营养水平见表 1。试验饲粮为粉料,全程不添加抗生素类促生长剂和其他药物。

表 1 基础饲粮组成及营养水平(饲喂基础) Table 1 Composition and nutrient levels of the basal diet (as-fed basis) 
1.2 饲养管理

试验在河南银发牧业有限公司完成,所有试验流程和操作均严格遵守农业农村部饲料效价与安全监督检验测试中心(北京)的猪饲料营养价值评价技术的规程。试验期控制室温在24~26 ℃。试验仔猪分栏饲养于1.5 m×2.0 m的栏舍,水泥漏缝地板,鸭嘴式饮水器,可调式料槽。试验期仔猪全程自由采食和饮水。严格遵循猪场饲养和管理制度,每天观察仔猪的采食、粪便和精神状况。试验期14 d。

1.3 指标测定与方法 1.3.1 生长性能的测定

在试验第1天和第14天早晨对每头仔猪进行空腹称重,计算平均日增重(ADG);记录试验第1~14天的耗料量,计算平均日采食量(ADFI);料重比(F/G)为ADFI与ADG的比值。

腹泻率和粪便指数根据Wei等[17]的方法进行计算分析。粪便评分标准为:0分,粪便坚实,正常;1分,粪便为糊状,轻度腹泻;2分,粪便为半流质,不成形,中度腹泻;3分,粪便为水样和泡沫样,重度腹泻。

1.3.2 血清生化指标的测定

试验第14天早晨,每重复随机选择2头仔猪,空腹12 h,用无抗凝剂的真空采血管前腔静脉采血,室温静置1 h,3 500 r/min离心10 min以收集血清,-20 ℃保存待测。

血清中谷草转氨酶(AST)、谷丙转氨酶(ALT)、二胺氧化酶(DAO)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和髓过氧化物酶(MPO)活性,总抗氧化能力(T-AOC)和丙二醛(MDA)含量均参照南京建成生物工程研究所对应的试剂盒说明书测定。血清中白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)含量分别使用相应的酶联免疫吸附测定法试剂盒(BioLegend,美国)测定,测定方法参照试剂盒说明书。

1.3.3 粪便中微生物数量和挥发性脂肪酸含量的测定

仔猪直肠粪样中的大肠杆菌和乳酸菌数量采用选择培养基平板计数法检测[18-19]。于试验第14天早上从每个重复中随机选取1头仔猪,取新鲜直肠粪样10 g,一部分低温保存带回实验室进行微生物数量的测定,另一部分-80 ℃保存用于挥发性脂肪酸含量的测定。MRS和麦康凯琼脂平板提前配备,琼脂平板的制作以及菌液的涂布均在无菌操作台内完成。用天平称取0.5 g粪便样品溶于4.5 mL灭菌生理盐水中,配制成1∶10样品菌液稀释液(即配制成10-1稀释液)。用涡旋振荡器振荡3 min,混合均匀后用移液枪吸取该稀释液0.5 mL加入10 mL离心管,再加入4.5 mL灭菌生理盐水,振荡3 min,配制成10-2稀释液,然后逐级稀释至10-8。取10-3~10-5菌液稀释液100 μL均匀涂布于麦康凯固体培养基中,用于计数大肠杆菌数量;取10-6~10-8菌液稀释液100 μL均匀涂布于MRS固体培养基中,用以计数乳酸菌数量。大肠杆菌和乳酸菌在37 ℃有氧培养24 h。每个样品的每个稀释梯度做2次重复,结果取2次计数结果的平均值。粪便中微生物数量用每克粪样中菌落总数的对数表示,即lg(CFU/g)。

粪便中挥发性脂肪酸含量的测定参照Porter等[20]的方法。用天平称取0.5 g样品至于10 mL离心管中,然后加入2 mL 0.1%盐酸,混匀后放于冰上静置25 min,15 000 r/min离心15 min,用注射器吸取上清液,使用0.45 μm滤膜过滤(Millipore,美国),注入气相色谱(Agilent,美国)检测粪便中挥发性脂肪酸含量。

气象色谱分析条件:色谱柱为HP 19091N-213(30.0 m×320 nm×0.5 μm),载气为氮气(N2),流速为2.0 mL/min,分流比为20∶1,进样量为1 μL,进样口185 ℃,检测器为火焰离子化检测器(FID),210 ℃。

1.4 数据统计

采用SPSS 25.0软件进行数据的统计分析,先检测数据是否服从正态分布和方差齐性,后根据数据特征选用适用的one-way ANOVA程序进行方差分析或非参数检验,然后用Tukey氏法进行多重比较。数值用平均值和均值标准误(SEM)表示,P < 0.05为差异显著。

2 结果 2.1 复合植物精油对断奶仔猪生长性能的影响

表 2可知,饲粮中添加不同水平的复合植物精油对断奶仔猪的ADFI、ADG和F/G没有显著影响(P>0.05);但与对照组相比,饲粮中添加450 mg/kg复合植物精油使断奶仔猪ADG提高了10.80%。与对照组相比,饲粮中添加450和600 mg/kg复合植物精油显著降低了断奶仔猪的腹泻率和粪便指数(P < 0.05)。

表 2 复合植物精油对断奶仔猪生长性能的影响 Table 2 Effects of plant essential oil compounds on growth performance of weaned piglets
2.2 复合植物精油对断奶仔猪血清生化指标的影响

表 3可知,饲粮中添加不同水平的复合植物精油对断奶仔猪的血清AST和ALT活性没有显著影响(P>0.05)。与对照组相比,饲粮中添加450 mg/kg复合植物精油显著降低了断奶仔猪的血清DAO活性(P < 0.05),饲粮中添加450和600 mg/kg复合植物精油显著提高了断奶仔猪血清T-AOC(P < 0.05),饲粮中添加300、450和600 mg/kg复合植物精油显著提高了断奶仔猪血清CAT活性(P < 0.05),饲粮中添加450和600 mg/kg复合植物精油显著降低了断奶仔猪血清促炎细胞因子IL-1β、IL-6和TNF-α含量(P < 0.05)。

表 3 复合植物精油对断奶仔猪血清生化指标的影响 Table 3 Effects of plant essential oil compounds on serum biochemical parameters of weaned piglets
2.3 复合植物精油对断奶仔猪粪便中微生物数量和挥发性脂肪酸含量的影响

表 4可知,饲粮中添加不同水平的复合植物精油对断奶仔猪的粪便中大肠杆菌和乳酸菌数量没有显著影响(P>0.05)。

表 4 复合植物精油对断奶仔猪粪便中微生物数量的影响 Table 4 Effects of plant essential oil compounds on fecal microbial numbers of weaned piglets 

表 5可知,饲粮中添加不同水平的复合植物精油对断奶仔猪的粪便中丙酸、异丁酸、丁酸和异戊酸含量没有显著影响(P>0.05)。与对照组相比,饲粮中添加300、450和600 mg/kg复合植物精油显著提高了断奶仔猪的粪便中乙酸含量(P < 0.05),饲粮中添加600 mg/kg复合植物精油显著提高了断奶仔猪的粪便中戊酸和总挥发性性脂肪酸含量(P < 0.05)。

表 5 复合植物精油对断奶仔猪粪便中挥发性脂肪酸含量的影响 Table 5 Effects of plant essential oil compounds on fecal VFA contents of weaned piglets 
3 讨论

植物精油一般具有芳香气味,可以刺激仔猪嗅觉感受器和促进消化液分泌,从而提高仔猪采食量和饲料利用效率。吴胜等[21]在断奶仔猪饲粮中添加36 mg/kg的精油(肉桂醛),显著提高了仔猪ADFI和ADG。李方方等[15]和Li等[1]分别在断奶仔猪饲粮中添加22.5和70.0 mg/kg精油(百里香酚和香芹酚),结果均显著增加了断奶仔猪ADG和饲料转化率,但对ADFI没有显著影响。然而,也有不同的研究报道,Van Noten等[16]和Su等[22]分别在断奶仔猪饲粮中添加500 mg/kg的百里香酚和36 mg/kg复合植物精油(百里香酚和肉桂醛),虽然ADFI和ADG在数值上有所提升,但差异不显著。本试验中,与对照组相比,虽然饲粮中添加450 mg/kg复合植物精油(有效成分肉桂醛、香芹酚和百里香酚含量合计126 mg/kg)后仔猪ADFI和ADG分别提高了4.44%和10.80%,F/G下降了5.44%,但差异不显著。精油对仔猪生长性能影响的差异性可能与精油的组成、添加水平以及试验动物的生理状态等多方面因素有关,其具体原因还有待进一步研究。

仔猪腹泻主要发生在断奶前及断奶后2周,有研究显示一些规模化养猪场的腹泻率高达50%,死亡率为15%~20%[23]。仔猪腹泻的本质是肠道上皮转运和肠道屏障功能紊乱,导致肠腔内溶质吸收减少和分泌增加[24]。精油具有杀菌、抗炎、抗氧化和调节免疫功能等作用[25],许多研究证明了饲粮中添加适量的精油可以降低断奶仔猪的腹泻率,下降幅度达10.09%~55.36%[1, 16-17, 26-27]。与前人的报道相吻合,本试验饲粮中添加450和600 mg/kg复合植物精油显著降低了断奶仔猪腹泻率。DAO位于哺乳动物的肠绒毛末端细胞中,是一种胺氧化酶,血液中DAO可作为小肠黏膜完整性和肠道通透性受损标志物,当肠道黏膜完整性受破坏,血液中DAO活性增加[28]。本研究中,与对照组相比,饲粮中添加450 mg/kg复合植物精油显著降低了断奶仔猪血清DAO活性,表明复合植物精油改善了仔猪肠道通透性,这与本试验中复合植物精油可以降低猪腹泻率相吻合。精油改善肠道通透性的原因可能是通过提高肠道紧密连接蛋白的表达来实现的。在动物模型上,Zou等[29]在生长猪饲粮中添加25 mg/kg复合植物精油,发现其可以提高空肠组织中紧密连接蛋白的表达,改善肠道屏障功能。在细胞模型上,Sun等[30]研究发现补充肉桂醛可以提高小肠上皮细胞(IPEC-1细胞)中紧密连接蛋白的表达,改善肠道上皮细胞通透性。

精油主要成分中的酚、醛及其衍生物具有抗氧化功能[31]。精油发挥抗氧化功能可以通过2个途径:1)精油可以直接与氧自由基反应,从而减少机体内氧自由基的数量[32];2)精油可以调节机体内抗氧化酶活性,间接参与抗氧化功能[33]。前人的研究表明,在猪饲粮中添加牛至精油[34]、肉桂醛[35]以及肉桂醛和百里香酚混合物[36],均有提高血清中抗氧化酶活性和降低MDA含量的效果。本试验中,与对照组相比,饲粮中添加450和600 mg/kg复合植物精油显著提高了断奶仔猪血清中CAT活性与T-AOC,与前人研究结果一致,说明复合植物精油提高了断奶仔猪的抗氧化能力。

胃肠道不仅是膳食营养物质消化、吸收和代谢的重要器官,它也是机体最大的免疫器官[37]。仔猪在断奶后会遇到许多致病和非致病的挑战,这将导致胃肠道免疫系统的激活。虽然健康的胃肠道被认为是处于平衡的可控炎症状态[38]。但病原体感染、饮食的过敏原和断奶应激均会引发肠道的炎症反应[39]。胃肠道免疫系统在激活过程中会产生大量促炎细胞因子,这些细胞因子的过多产生会导致肠道损伤和功能障碍[40],仔猪肠道屏障功能受损又会加剧仔猪腹泻[24]。植物精油在一定程度上可以提高断奶仔猪肠道免疫功能,从而提高肠道健康状态[41]。Li等[14]报道在仔猪饲粮中添加百里香酚和肉桂醛混合精油降低了仔猪血液中IL-1β和IL-6的含量,降低了机体的炎症水平。Omonijo等[42]用脂多糖(LPS)诱导猪小肠上皮细胞(IPEC-J2细胞)发生炎症反应,增加了促炎细胞因子白细胞介素-8(IL-8)和TNF-α的表达和肠上皮细胞的通透性,然而补充百里香酚可以显著降低猪小肠上皮细胞中促炎细胞因子含量和肠上皮细胞的通透性。本试验中,与对照组相比,饲粮中添加450 mg/kg复合植物精油显著降低了断奶仔猪血清中促炎因子IL-1β、IL-6和TNF-α含量及DAO活性,与前人报道一致。这表明复合植物精油可以缓解机体炎症反应,降低肠道通透性,有助于降低仔猪腹泻。

精油还具有促进肠道益生菌生长和抑制病原菌增殖的功能,从而改善肠道菌群结构[43]。精油抑制病原菌的机制可能在于其活性成分具有较强的表面活性和脂溶性,能迅速穿透病原微生物的细胞膜,使其内容物流失,有效阻止线粒体内的呼吸氧化过程,使微生物丧失能量来源而死亡[44]。Wei等[17]的研究结果表明,补充百里香酚和香芹酚混合物可以降低断奶仔猪空肠食糜中肠球菌属和大肠杆菌属的相对丰度,提高乳酸杆菌属的相对丰度。Manzanilla等[45]在饲粮中添加15和30 mg/kg香芹酚、肉桂醛和辣椒精油的复合物可以显著提高仔猪空肠食糜中乳酸菌和肠杆菌的比值。本试验中,饲粮中添加不同水平的复合植物精油对断奶仔猪粪便中大肠杆菌和乳酸菌数量无显著影响,但粪便中大肠杆菌数量在数值上有所减少,乳酸菌数量在数值有所增加,与前人研究结果类似。肠道中挥发性脂肪酸是肠道微生物的代谢产物。本试验中,与对照组相比,饲粮中添加300、450和600 mg/kg复合植物精油显著提高了断奶仔猪的粪便中乙酸含量,饲粮中添加600 mg/kg复合植物精油显著提高了断奶仔猪的粪便中总挥发性性脂肪酸含量,说明复合植物精油提高了断奶仔猪肠道微生物的代谢功能。

4 结论

① 饲粮中添加复合植物精油对断奶仔猪的生长性能无显著影响,但可以降低仔猪腹泻率,改善炎症水平和肠道通透性,提高机体抗氧化能力和粪便中挥发性脂肪酸含量。

② 本试验条件下,断奶仔猪饲粮中复合植物精油的适宜添加水平为450 mg/kg。

参考文献
[1]
LI Y, FU X F, MA X, et al. Intestinal microbiome-metabolome responses to essential oils in piglets[J]. Frontiers in Microbiology, 2018, 9: 1988. DOI:10.3389/fmicb.2018.01988
[2]
BRENES A, ROURA E. Essential oils in poultry nutrition: main effects and modes of action[J]. Animal Feed Science and Technology, 2010, 158(1/2): 1-14.
[3]
OMONIJO F A, NI L J, GONG J, et al. Essential oils as alternatives to antibiotics in swine production[J]. Animal Nutrition, 2018, 4(2): 126-136. DOI:10.1016/j.aninu.2017.09.001
[4]
何荣香, 吴媛媛, 韩延明, 等. 复合有机酸对断奶仔猪生长性能、血清生化指标、营养物质表观消化率的影响[J]. 动物营养学报, 2020, 32(7): 3118-3126.
HE R X, WU Y Y, HAN Y M, et al. Effects of compound organic acids on growth performance, serum biochemical indicators and nutrient apparent digestibility of weaning piglets[J]. Chinese Journal of Animal Nutrition, 2020, 32(7): 3118-3126 (in Chinese).
[5]
VANGROENWEGHE F, POULSEN K, THAS O. Supplementation of a β-mannanase enzyme reduces post-weaning diarrhea and antibiotic use in piglets on an alternative diet with additional soybean meal[J]. Porcine Health Management, 2021, 7(1): 8. DOI:10.1186/s40813-021-00191-5
[6]
ZHANG J, LIU Y J, YANG Z B, et al. Illicium verum extracts and probiotics with added glucose oxidase promote antioxidant capacity through upregulating hepatic and jejunal Nrf2/Keap1 of weaned piglets[J]. Journal of Animal Science, 2020, 98(3): skaa077. DOI:10.1093/jas/skaa077
[7]
PAN L, ZHAO P F, MA X K, et al. Probiotic supplementation protects weaned pigs against enterotoxigenic Escherichia coli K88 challenge and improves performance similar to antibiotics[J]. Journal of Animal Science, 2017, 95(6): 2627-2639.
[8]
CSERNUS B, CZEGLÉDI L. Physiological, antimicrobial, intestine morphological, and immunological effects of fructooligosaccharides in pigs[J]. Archives Animal Breeding, 2020, 63: 325-335. DOI:10.5194/aab-63-325-2020
[9]
WANG S, ZENG X F, YANG Q, et al. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry[J]. International Journal of Molecular Sciences, 2016, 17(5): 603. DOI:10.3390/ijms17050603
[10]
REN C X, WANG Y J, LIN X F, et al. A combination of formic acid and monolaurin attenuates enterotoxigenic Escherichia coli induced intestinal inflammation in piglets by inhibiting the NF-κB/MAPK pathways with modulation of gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2020, 68(14): 4155-4165. DOI:10.1021/acs.jafc.0c01414
[11]
王钰飞, 齐岩, 铃田靖幸, 等. 中链脂肪酸在新生仔猪上的研究与应用[J]. 动物营养学报, 2015, 27(7): 1997-2004.
WANG Y F, QI Y, YASUYUKI S, et al. Research and application of medium-chain fatty acids in neonatal piglets[J]. Chinese Journal of Animal Nutrition, 2015, 27(7): 1997-2004 (in Chinese).
[12]
YI D, FANG Q H, HOU Y Q, et al. Dietary supplementation with oleum cinnamomi improves intestinal functions in piglets[J]. International Journal of Molecular Sciences, 2018, 19(5): 1284. DOI:10.3390/ijms19051284
[13]
CHENG C S, XIA M, ZHANG X M, et al. Supplementing oregano essential oil in a reduced-protein diet improves growth performance and nutrient digestibility by modulating intestinal bacteria, intestinal morphology, and antioxidative capacity of growing-finishing pigs[J]. Animals, 2018, 8(9): 159. DOI:10.3390/ani8090159
[14]
LI P F, PIAO X S, RU Y J, et al. Effects of adding essential oil to the diet of weaned pigs on performance, nutrient utilization, immune response and intestinal health[J]. Asian-Australasian Journal of Animal Sciences, 2012, 25(11): 1617-1626. DOI:10.5713/ajas.2012.12292
[15]
李方方, 杨晶晶, 张瑞阳, 等. 植物精油对断奶仔猪生长性能、血清生化指标及养分表观消率的影响[J]. 动物营养学报, 2019, 31(3): 1428-1433.
LI F F, YANG J J, ZHANG R Y, et al. Effects of plant essential oils on growth performance, serum biochemical indexes and nutrient apparent digestibility of weaning piglets[J]. Chinese Journal of Animal Nutrition, 2019, 31(3): 1428-1433 (in Chinese).
[16]
VAN NOTEN N, DEGROOTE J, VAN LIEFFERINGE E, et al. Effects of thymol and thymol α-D-glucopyranoside on intestinal function and microbiota of weaned pigs[J]. Animals, 2020, 10(2): 329. DOI:10.3390/ani10020329
[17]
WEI H K, XUE H X, ZHOU Z X, et al. A carvacrol-thymol blend decreased intestinal oxidative stress and influenced selected microbes without changing the messenger RNA levels of tight junction proteins in jejunal mucosa of weaning piglets[J]. Animal, 2017, 11(2): 193-201. DOI:10.1017/S1751731116001397
[18]
GIANG H H, VIET T Q, OGLE B, et al. Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with potentially probiotic complexes of lactic acid bacteria[J]. Livestock Science, 2010, 129(1/2/3): 95-103.
[19]
LIU H, JI H F, ZHANG D Y, et al. Effects of Lactobacillus brevis preparation on growth performance, fecal microflora and serum profile in weaned pigs[J]. Livestock Science, 2015, 178: 251-254. DOI:10.1016/j.livsci.2015.06.002
[20]
PORTER M G, MURRAY R S. The volatility of components of grass silage on oven drying and the inter-relationship between dry-matter content estimated by different analytical methods[J]. Grass and Forage Science, 2001, 56(4): 405-411. DOI:10.1046/j.1365-2494.2001.00292.x
[21]
吴胜, 彭艳. 植物精油制剂对断奶仔猪生长性能及舍内空气中微生物气溶胶、氨气浓度的影响[J]. 动物营养学报, 2019, 31(10): 4729-4736.
WU S, PENG Y. Effects of plant essential oil preparation on growth performance of weaned piglets and concentration of microbial aerosol and ammonia in air in house[J]. Chinese Journal of Animal Nutrition, 2019, 31(10): 4729-4736 (in Chinese).
[22]
SU G Q, ZHOU X W, WANG Y, et al. Effects of plant essential oil supplementation on growth performance, immune function and antioxidant activities in weaned pigs[J]. Lipids in Health and Disease, 2018, 17(1): 139. DOI:10.1186/s12944-018-0788-3
[23]
王红宁. 仔猪腹泻成因及综合防治技术措施[J]. 中国畜牧杂志, 2006, 42(6): 58-60.
WANG H N. The cause and integrated control of piglet diarrhea[J]. Chinese Journal of Animal Science, 2006, 42(6): 58-60 (in Chinese).
[24]
CAMILLERI M, SELLIN J H, BARRETT K E. Pathophysiology, evaluation, and management of chronic watery diarrhea[J]. Gastroenterology, 2017, 152(3): 515-532.
[25]
赵琛, 丁健, 李艳玲. 植物精油的生物活性及其在畜禽免疫上的应用[J]. 动物营养学报, 2020, 32(9): 4070-4077.
ZHAO C, DING J, LI Y L, et al. Biological activity of plant essential oils and their application in animal immunity[J]. Chinese Journal of Animal Nutrition, 2020, 32(9): 4070-4077 (in Chinese).
[26]
WANG L, HOU Y Q, YI D, et al. Beneficial roles of dietary oleum cinnamomi in alleviating intestinal injury[J]. Frontiers in Bioscience, 2015, 20: 814-828.
[27]
WOJNICKI S J, MORRIS A, SMITH B N, et al. Immunomodulatory effects of whole yeast cells and capsicum in weanling pigs challenged with pathogenic Escherichia coli[J]. Journal of Animal Science, 2019, 97(4): 1784-1795.
[28]
LINSALATA M, RIEZZO G, CLEMENTE C, et al. Noninvasive biomarkers of gut barrier function in patients suffering from diarrhea predominant-IBS: an update[J]. Disease Markers, 2020, 2020: 2886268.
[29]
ZOU Y, XIANG Q H, WANG J, et al. Oregano essential oil improves intestinal morphology and expression of tight junction proteins associated with modulation of selected intestinal bacteria and immune status in a pig model[J]. BioMed Research International, 2016, 2016: 5436738.
[30]
SUN K J, LEI Y, WANG R J, et al. Cinnamicaldehyde regulates the expression of tight junction proteins and amino acid transporters in intestinal porcine epithelial cells[J]. Journal of Animal Science and Biotechnology, 2017, 8: 66.
[31]
AMORATI R, FOTI M C, VALGIMIGLI L. Antioxidant activity of essential oils[J]. Journal of Agricultural and Food Chemistry, 2013, 61(46): 10835-10847.
[32]
FOTI M C. Antioxidant properties of phenols[J]. Journal of Pharmacy and Pharmacology, 2007, 59(12): 1673-1685.
[33]
CHOI J, WANG L, LIU S X, et al. Effects of a microencapsulated formula of organic acids and essential oils on nutrient absorption, immunity, gut barrier function, and abundance of enterotoxigenic Escherichia coli F4 in weaned piglets challenged with E. coli F4[J]. Journal of Animal Science, 2020, 98(9): skaa259.
[34]
ZHANG T, ZHOU Y F, ZOU Y, et al. Effects of dietary oregano essential oil supplementation on the stress response, antioxidative capacity, and HSPs mRNA expression of transported pigs[J]. Livestock Science, 2015, 180: 143-149.
[35]
LUO Q, LI N, ZHENG Z, et al. Dietary cinnamaldehyde supplementation improves the growth performance, oxidative stability, immune function, and meat quality in finishing pigs[J]. Livestock Science, 2020, 240: 104221.
[36]
TIAN Q Y, PIAO X S. Essential oil blend could decrease diarrhea prevalence by improving antioxidative capability for weaned pigs[J]. Animals, 2019, 9(10): 847.
[37]
BLIKSLAGER A T, MOESER A J, GOOKIN J L, et al. Restoration of barrier function in injured intestinal mucosa[J]. Physiological Reviews, 2007, 87(2): 545-564.
[38]
GRESSE R, CHAUCHEYRAS-DURAND F, FLEURY M A, et al. Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health[J]. Trends in Microbiology, 2017, 25(10): 851-873.
[39]
YANG C B, CHOWDHURY M A K, HUO Y Q, et al. Phytogenic compounds as alternatives to in-feed antibiotics: potentials and challenges in application[J]. Pathogens, 2015, 4(1): 137-156.
[40]
BAUMGART D C, CARDING S R. Inflammatory bowel disease: cause and immunobiology[J]. The Lancet, 2007, 369(9573): 1627-1640.
[41]
CLEMENTE J C, URSELL L K, PARFREY L W, et al. The impact of the gut microbiota on human health: an integrative view[J]. Cell, 2012, 148(6): 1258-1270.
[42]
OMONIJO F A, LIU S X, HUI Q R, et al. Thymol improves barrier function and attenuates inflammatory responses in porcine intestinal epithelial cells during lipopolysaccharide (LPS)-induced inflammation[J]. Journal of Agricultural and Food Chemistry, 2019, 67(2): 615-624.
[43]
OUWEHAND A C, TIIHONEN K, KETTUNEN H, et al. In vitro effects of essential oils on potential pathogens and beneficial members of the normal microbiota[J]. Veterinární Medicína, 2010, 55(2): 71-78.
[44]
DI PASQUA R, BETTS G, HOSKINS N, et al. Membrane toxicity of antimicrobial compounds from essential oils[J]. Journal of Agricultural and Food Chemistry, 2007, 55(12): 4863-4870.
[45]
MANZANILLA E G, PEREZ J F, MARTIN M, et al. Effect of plant extracts and formic acid on the intestinal equilibrium of early-weaned pigs[J]. Journal of Animal Science, 2004, 82(11): 3210-3218.