动物营养学报    2021, Vol. 33 Issue (12): 6792-6801    PDF    
微生态制剂对产蛋后期种母鸡生产性能、肠道菌群和消化吸收的影响
陈猜猜 , 张红星 , 金君华 , 谢远红 , 熊利霞 , 刘慧     
北京农学院食品科学与工程学院, 微生态制剂关键技术开发北京市工程实验室, 食品质量与安全北京实验室, 农产品有害微生物及农残安全检测与控制北京市重点实验室, 北京 102206
摘要: 本试验旨在研究副干酪乳杆菌KL1和枯草芽孢杆菌Liu-c1微生态制剂对产蛋后期种母鸡的生产性能、肠道菌群和消化吸收能力的影响。将384只54周龄的京红1号父母代种母鸡随机分为4组(每组6个重复,每个重复16只),空白组饲喂基础饲粮,KL1组、Liu-c1组和复合组在基础饲粮中分别添加8.0×107 CFU/只的副干酪乳杆菌KL1、枯草芽孢杆菌Liu-c1和复合微生态制剂(副干酪乳杆菌KL1:枯草芽孢杆菌Liu-c1=1:1)。结果表明:1)复合组产蛋率较空白组提高8.84%(P < 0.01),较KL1组和Liu-c1组分别提高2.90%和3.29%(P < 0.05)。复合组种蛋合格率较空白组提高14.43%(P < 0.01),较Liu-c1组提高4.84%(P < 0.05),与KL1组无显著性差异(P>0.05)。复合组料蛋比较空白组降低5.45%(P < 0.01),较KL1组降低3.26%(P < 0.05),与Liu-c1组无显著性差异(P>0.05)。2)与空白组回肠菌群多样性相比,复合组厚壁菌门相对丰度增加35.68%(P < 0.05),变形菌门相对丰度减少92.02%(P < 0.01),乳杆菌属和芽孢菌属相对丰度分别增加111.73%和300.00%(P < 0.01)。与空白组相比,复合组乳酸杆菌和芽孢杆菌数量分别增加34.51%和23.37%(P < 0.05)。3)与空白组相比,复合组十二指肠鸡胰蛋白酶活性增加15.98%(P < 0.01),中性蛋白酶活性和粗蛋白质表观消化率分别增加13.13%和48.50%(P>0.05),十二指肠和回肠绒腺比分别增加150.44%和51.87%(P < 0.01)。综上所述,复合微生态制剂(副干酪乳杆菌KL1:枯草芽孢杆菌Liu-c1=1:1)对提高产蛋后期种母鸡的肠道蛋白酶活性、绒腺比、粗蛋白质表观消化率及调节肠道菌群等效果最佳。
关键词: 微生态制剂    种母鸡    生产性能    肠道菌群    消化吸收    
Effects of Microecologics on Performance, Intestinal Flora and Digestive Absorption of Breeding Hens in Late Laying Period
CHEN Caicai , ZHANG Hongxing , JIN Junhua , XIE Yuanhong , XIONG Lixia , LIU Hui     
Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Laboratory of Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
Abstract: This experiment was conducted to investigate the effects of Lactobacillus paracasei KL1 and Bacillus subtilis Liu-c1 microecologics on the performance, intestinal flora and digestive absorption of breeding hens in late laying hens. A total of 384 Jinghong No.1 laying hens at 54 weeks of age were randomly assigned to 4 groups, with 6 replicates of 16 birds. Blank group were fed a basal diet, and those in KL1, Liu-c1 and compound groups were fed the basal diets supplemented with 8.0×107 CFU/hen of KL1, Liu-c1 and compound microecologics (Lactobacillus paracasei KL1:Bacillus subtilis Liu-c1=1:1), respectively. The results showed as follows: 1) laying rate in compound group was significantly increased by 8.84% (P < 0.01), and that in KL1 group and Liu-c1 group was increased by 2.90% and 3.29% (P < 0.05) compared with blank group. Hatchable egg rate in the compound group was significantly increased by 14.43% compared with blank group (P < 0.01), and by 4.84% compared with Liu-c1 group (P < 0.05), but there was no significant difference with the KL1 group (P>0.05). Feed/egg in the compound group was significantly increased by 5.45% compared with blank group (P < 0.01), and by 3.26% compared with KL1 group (P < 0.05), but there was no significant difference with the Liu-c1 group (P>0.05). 2) Compared with blank group, the relative abundance of Firmicutes in compound group was significantly increased by 35.68% (P < 0.05), that of Proteobacteria was significantly decreased by 92.02% (P < 0.01), and that of Lactobacillus and Bacillus were significantly increased by 111.73% and 300.00% (P < 0.01), respectively, the number of Lactobacillus and Bacillus was significantly increased by 34.51% and 23.37% (P < 0.05), respectively. 3) Compared with blank group, the trypsin activity in duodenum in compound group was significantly increased by 15.98% (P < 0.01), the activity of neutral protease and the apparent digestibility of crude protein were increased by 13.13% and 48.50% (P>0.05), respectively, and the villous height/crypt depth in duodenum and ileum were significantly increased by 150.44% and 51.87% (P < 0.01), respectively. In conclusion, compound probiotics (Lactobacillus paracei KL1:Bacillus subtilis Liuc-c1=1:1) has the best effect on improving intestinal protease activity, villous height/crypt depth, crude protein apparent digestibility and intestinal flora of breeding hens in late laying period.
Key words: microecologics    laying hens    performance    intestinal flora    digestive absorption    

产蛋后期种母鸡肠道菌群失调,代谢能力下降,对营养物质的消化吸收能力减弱,导致生产性能降低,严重影响养殖业经济效益[1-2]。目前家禽养殖过程中已禁止使用促生长添加剂,与此同时,微生态制剂作为遵循微生物环境自然循环法则的无公害制剂,因其具有改善机体肠道菌群环境、提高消化吸收的功能而备受关注[3-5]。乳酸菌微生态制剂可定植于肠道中,通过降解碳水化合物产生乳酸及其他有机酸降低肠道环境pH,抑制其他病菌和杂菌的生长繁殖,不仅起到调节菌群、防治疾病和促生长的作用,而且避免了使用抗生素类药物产生的药物残留问题[6-7]。好氧的芽孢杆菌微生态制剂不仅能够消耗肠道多余的氧气利于乳酸菌生长,还可分泌各种消化酶促进肠道对营养物质的消化吸收能力[8-9]。Behnamifar等[10]研究证明,在产蛋后期蛋鸡饲粮中添加105 CFU/(只·d)乳酸杆菌活菌制剂8周,可显著增加蛋鸡的回肠绒腺比,增强蛋鸡消化吸收能力,提高生产性能。黄晨轩等[11]在产蛋后期蛋鸡饲粮中连续4周添加108 CFU/(只·d)枯草芽孢杆菌微生态制剂,改善了蛋鸡的肠道菌群平衡,增加饲粮中的粗蛋白质表观消化率,从而提高其生产性能。Zhang等[12]在产蛋高峰期蛋鸡饲粮中添加106 CFU/(只·d)枯草芽孢杆菌制剂8周,显著提高其肠道消化吸收能力,改善生产性能。Lei等[13]在产蛋高峰期蛋鸡饲粮中添加107 CFU/(只·d)地衣芽孢杆菌制剂8周,可显著增加空肠绒腺比,增强肠道消化吸收能力,提高蛋鸡产蛋率和合格率。目前,有关副干酪乳杆菌和枯草芽孢杆菌复合微生态制剂对产蛋后期种母鸡生产性能、肠道菌群和消化吸收影响的研究鲜有报道。因此,本试验旨在研究副干酪乳杆菌、枯草芽孢杆菌微生态制剂及两者复合使用对产蛋后期种母鸡肠道菌群平衡和消化吸收能力的影响,明确微生态制剂对产蛋后期种母鸡生产性能的作用,为家禽业生产绿色和安全的微生态生物饲料添加剂提供理论依据。

1 材料与方法 1.1 微生态制剂

副干酪乳杆菌KL1(CGMCC No.11533)为本课题组高产胆盐水解酶和胞外多糖的专利菌株[14-15];枯草芽孢杆菌Liu-c1(CGMCC No.20840)为本课题组高产蛋白酶和淀粉酶的专利菌株,均冻藏保存于中国普通微生物菌种保藏管理中心。将副干酪乳杆菌KL1和枯草芽孢杆菌Liu-c1的-80 ℃甘油保藏菌种经活化扩培、高密度发酵、离心浓缩、加入冻干保护剂、预冻和真空冷冻干燥等工序分别制备活菌数为8.0×1010 CFU/g的副干酪乳杆菌KL1和枯草芽孢杆菌Liu-c1微生态制剂[16],将2种微生态制剂分别用麦芽糊精稀释,得到活菌数为8.0×108 CFU/g的复合微生态制剂(副干酪乳杆菌KL1 ∶枯草芽孢杆菌Liu-c1=1 ∶ 1),储存于-20 ℃条件下备用。

1.2 试验设计与饲养条件

选取饲养条件一致且体重接近的54周龄京红1号父母代种母鸡384只(由北京市华都峪口禽业有限责任公司提供),随机分为4组,每组96只(每组6个重复,每个重复16只),空白组饲喂基础饲粮,试验组(KL1组、Liu-c1组和复合组)分别在基础饲粮中添加1.0 g/kg的副干酪乳杆菌KL1、枯草芽孢杆菌Liu-c1和复合微生态制剂,使各试验组摄入活菌数量均为8.0×107 CFU/只,试验期为8周,基础饲粮由北京市华都峪口禽业提供,其组成及营养水平见表 1。饲养条件依据峪口禽业饲养管理规定操作:3层A字型阶梯式笼养(47 cm×47 cm),每笼4只,光照强度10~15 lx,时长恒定15.5 h,温度18~25 ℃,相对湿度40%~70%,按正常免疫程序进行免疫接种,鸡只自由采食、饮水,湿帘降温,风机通风,定期清理粪便,环境,用具皆定期消毒。

表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the basal diet (air-dry basis)  
1.3 生产性能测定

试验期间,每天统计各组种母鸡的产蛋总重量、产蛋总数、合格种蛋数(破壳蛋、砂壳蛋、软壳蛋、畸形蛋、钢皮蛋、蛋重 < 53 g或>72 g均为不合格种蛋)、日耗料量,计算第8周种母鸡的平均蛋重、产蛋率、种蛋合格率和料蛋比。

1.4 肠道菌群结构测定 1.4.1 肠道菌群多样性测定

试验第8周末,每组选取6只接近平均体重的种母鸡进行解剖,立即采集回肠内容物2 g,置于无菌冻存管中,液氮速冻,转移至-80 ℃冰箱保存备检。微生物基因组总DNA提取过程按照DNA抽提试剂盒(E.Z.N.A. ® Soil DNA Kit, Omega Bio-Tek, 美国)说明书进行,经1%的琼脂凝胶电泳检测提取DNA的完整性,NanoDrop2000(Thermo Fisher Scientific, 美国)检测提取DNA的纯度和浓度,采用上游引物338F(5′-ACTCCTACGGGAGGCAGCAG-3′)和下游引物806R(5′-GGACTACHVGGGTWTCTAAT-3′)对16S rRNA基因V3~V4可变区进行PCR扩增(PCR仪:GeneAmp ® 9700,ABI,美国)。将PCR产物经2%的琼脂凝胶检测鉴定后,严格按照AxyPrep DNA Gel Extraction Kit(Axygen Biosciences, Axygen, Union City, CA, 美国)试剂盒进行纯化、2%琼脂糖凝胶电泳检测并采用QuantusTM Fluorometer(Promega,美国)进行定量检测。使用NEXTFLEX ® Rapid DNA-Seq Kit进行建库:1)接头链接;2)使用磁珠筛选去除接头自连片段;3)利用PCR扩增进行文库模板的富集;4)磁珠回收PCR产物得到最终的文库。利用Illumina MiSeq 2×300 bp平台进行高通量测序(上海美吉生物医药科技有限公司,上海),根据97%的相似度对扩增产物序列进行操作分类单元(OTU)聚类,分析回肠菌群多样性[17]

1.4.2 肠道乳酸杆菌和芽孢杆菌数量的测定

解剖后,分别准确称取每只种母鸡的回肠内容物1 g,放入装有99 mL含0.1%吐温生理盐水的无菌均质袋中,用拍击式匀浆器以6 T/S拍打20 min,得到10-2样品稀释液。准确吸取1 mL上述稀释液于9 mL灭菌生理盐水,漩涡振荡30 s,得到10-3样品稀释液,依此重复上述操作,连续稀释得到10-7稀释度的菌液。分别选取10-4、10-5和10-6稀释梯度样品各1 mL于无菌平皿中,倒入溶化并冷却至46 ℃的改良MRS固体培养基、改良PCA固体培养基约15 mL,迅速轻旋平皿使其与稀释液混匀,每个稀释度3个重复;待培养基凝固后,改良MRS固体培养基37 ℃倒置培养(48±2) h、改良PCA固体培养基45 ℃倒置培养(24±2) h,统计平板菌落数量,结果用每克回肠内容物中菌数的对数(lg CFU/g)表示。

1.5 消化吸收能力的测定 1.5.1 十二指肠蛋白酶活性、粗蛋白质表观消化率的测定

解剖后,采集十二指肠段2 cm,于液氮速冻状态下研磨,取10 mg加入磷酸盐缓冲液100 μL,严格按照试剂盒的操作步骤检测十二指肠中性蛋白酶和胰蛋白酶活性,试剂盒由上海酶联生物科技有限公司提供。

试验最后3 d,采用全收粪法,将粪盘固定在鸡笼下,每天收集粪便并小心清除其中的饲粮和毛屑等杂物,混合均匀后取100 g加入10 mL 10% H2Cl固氮,再次充分混匀,65 ℃烘干至恒重,回潮过夜,粉碎均匀后过60目筛,采用内源指示剂法(在样品中加入4 mol/L盐酸)测定饲粮和粪便中的粗蛋白质及酸不溶灰分含量,计算粗蛋白质表观消化率。计算公式如下:

式中:a为粪样中粗蛋白质含量;b为饲粮中粗蛋白质含量;c为饲粮中酸不溶灰分含量;d为粪样中酸不溶灰分含量。

1.5.2 小肠绒毛形态观察和绒腺比的测定

解剖后,采集种母鸡的十二指肠和回肠段约2 cm,浸于10%中性福尔马林固定液中1周,经冲水、梯度酒精脱水、二甲苯透明、石蜡包埋、切片等处理后,进行常规苏木精-伊红(HE)染色,得到十二指肠和回肠的组织切片[18],以Olympus CX21显微镜观察绒毛形态并测定绒毛高度和隐窝深度,计算绒毛高度与隐窝深度的比值,即为绒腺比。每个样本观察3张非连续切片,每张切片选取5个具有完整组织的视野,每个视野分别测定4组数据,其平均值作为1个测定数据。

1.6 数据处理

采用SPSS 22.0统计软件进行单因素方差分析(one-way ANOVA LSD),采用Duncan氏法进行多重比较检验。数据用平均值±标准误(X±SD)表示,P < 0.05表示差异显著,P < 0.01表示差异极显著。

2 结果与分析 2.1 微生态制剂对产蛋后期种母鸡生产性能的影响

表 2所示,与空白组相比,KL1组、Liu-c1组和复合组的平均体重和平均蛋重皆无显著性差异(P>0.05);产蛋率分别增加5.77%、5.37%和8.85%(P < 0.05);种蛋合格率分别提高12.65%、9.15%和14.43%(P < 0.01);KL1组料蛋比减少2.27%(P < 0.05),Liu-c1组和复合组减少4.09%和5.45%(P < 0.01)。这表明2种微生态制剂单独和复合使用皆能不同程度提高产蛋后期种母鸡的产蛋率和种蛋合格率,降低料蛋比,其中复合微生态制剂效果最佳。

表 2 微生态制剂对产蛋后期种母鸡生产性能的影响 Table 2 Effects of microecologics on performance of breeding hens in late laying period
2.2 微生态制剂对产蛋后期种母鸡肠道菌群结构的影响 2.2.1 微生态制剂对产蛋后期种母鸡回肠菌群多样性的影响

利用Illumina MiSeq 2×300 bp平台进行高通量测序,分析不同微生态制剂对回肠微生物多样性的影响。由图 1可知,在门水平上,各组回肠菌群主要为厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、变形菌门(Proteobacteria)和放线菌门(Actinobacteria),其中厚壁菌门多为优势菌群,如乳酸杆菌和芽孢杆菌,变形菌门多为致病菌和条件致病菌,如沙门氏菌和大肠杆菌。与空白组相比,KL1组和复合组厚壁菌门相对丰度分别增加29.37%和35.68%(P < 0.05),变形菌门相对丰度分别减少65.33% 和92.02%(P < 0.01);Liu-c1组厚壁菌门相对丰度增加5.15%(P>0.05),变形菌门相对丰度减少48.32%(P < 0.05)。由图 2可知,在属水平上,与空白组相比,KL1组、Liu-c1组和复合组的乳杆菌属相对丰度分别增加109.87%、77.86%和111.73%(P < 0.01),芽孢菌属相对丰度分别增加107.43%、171.43%和300.00%(P < 0.01);显示2种微生态制剂单独和复合使用皆可促进乳酸杆菌和芽孢杆菌在回肠中定植,增加肠道有益菌相对丰度,调节肠道菌群平衡,其中复合微生态制剂效果最佳。

Firmicutes:厚壁菌门;Proteobacteria:变形菌门;Actinobacteria:放线菌门;Bacteroidetes:拟杆菌门;Others: 其他。
A:空白组blank group;B:KL1组KL1 group;C:Liu-c1组Liu-c1 group;D:复合组compound group。下图同the same as below。
图 1 产蛋后期种母鸡肠道菌群门水平多样性分析 Fig. 1 Analysis diversity on phylum level of intestinal flora of breeding hens in late laying period
Lactobacillus: 乳酸菌属;Romboutsia: 罗姆布茨菌;Enterococcus: 肠球菌属;Escherichia-Shigella: 大肠埃希氏菌属-志贺氏菌;Burkholderia-Caballeronia-Burkholderia: 伯克霍尔德菌-卡巴拉氏菌-伯克霍尔德菌;Turicibacter: 苏黎世杆菌属;Clostridium sensu stricto-1:严格厌氧梭状芽胞杆菌-1;Ruminococcus torques-group: 瘤胃球菌属群;Olsenella: 欧陆森氏菌属;Blautia: 布劳特氏菌;Streptococcus: 链球菌属;unclassified-f-Lachnospiraceae: 未分类革兰氏菌-毛螺菌科;Rikenellaceae-RC9-gut-group: 理研菌科-RC9肠道菌群;Gallibacteriu: 加利细菌属;Acinetobacter: 不动杆菌属; norank-f-F082:未分类革兰氏菌属-F082;Ruminococcaceae-UCG-014:瘤胃菌科-UCG-014; Prevotella-1:普氏菌属-1;Collinsella: 柯林斯氏菌属;Peptococcus: 消化球菌;Aeriscardovia: 卡多维亚氏菌属;Bacillus: 芽孢杆菌属;norank-f-norank-o-Saccharimonadales: 未分类革兰氏菌- SaccharimonadalesEubacterium hallii group: 霍氏真杆菌群;Campylobacter: 弯曲菌属;Bacteroides: 拟杆菌属;Others: 其他。 图 2 产蛋后期种母鸡肠道菌群属水平多样性分析 Fig. 2 Analysis diversity on the genus level of intestinal flora of breeding chickens in late laying period
2.2.2 微生态制剂对产蛋后期种母鸡回肠乳酸杆菌和芽孢杆菌数量的影响

表 3所示,与空白组相比,KL1组、Liu-c1组和复合组乳酸杆菌数量分别增加28.70%、16.90%和34.51%(P < 0.05);KL1组芽孢杆菌数量增加4.60%(P>0.05),Liu-c1组和复合组芽孢杆菌数量分别增加13.35%和23.37%(P < 0.05)。显示2种微生态制剂单独和复合使用皆可不同程度增加回肠乳酸杆菌和芽孢杆菌数量,调节肠道菌群平衡,其中复合微生态制剂效果最佳。此结果与回肠高通量测序多样性分析相一致。

表 3 微生态制剂对产蛋后期种母鸡回肠乳酸杆菌和芽孢杆菌数量的影响 Table 3 Effects of microecologics on Lactobacillus and Bacillus counts in ileum of breeding hens in late laying period  
2.3 微生态制剂对产蛋后期种母鸡消化吸收功能的影响 2.3.1 微生态制剂对产蛋后期种母鸡十二指肠蛋白酶活性和粗蛋白质表观消化率的影响

表 4所示,与空白组相比,KL1组和复合组十二指肠中性蛋白酶活性分别增加4.20%和13.13%(P>0.05),胰蛋白酶活性分别增加21.46%和15.98%(P < 0.01),粗蛋白质表观消化率分别增加44.67%和48.50%(P < 0.01);Liu-c1组十二指肠中性蛋白酶、胰蛋白酶活性和粗蛋白质表观消化率分别增加31.35%、43.84%和102.44%(P < 0.01)。显示2种微生态制剂单独和复合使用均能提高产蛋后期种母鸡十二指肠蛋白酶活性和粗蛋白质表观消化率,其中Liu-c1组和复合微生态制剂效果最佳。

表 4 微生态制剂对产蛋后期种母鸡十二指肠蛋白酶活性和粗蛋白质表观消化率的影响 Table 4 Effects of microecologics on activity of duodenal protease and apparent digestibility of crude protein in breeding hens in late laying period
2.3.2 微生态制剂对产蛋后期种母鸡十二指肠和回肠绒毛形态的影响

表 5所示,与空白组相比,KL1组、Liu-c1组和复合组十二指肠绒毛高度分别增加53.99%、56.47%和58.19%(P < 0.01),隐窝深度分别减少19.86%、31.91%和36.88%(P < 0.01),绒腺比分别增加92.13%、129.15%和150.44%(P < 0.01)。与空白组相比,KL1组回肠绒毛高度增加16.41%(P < 0.05),Liu-c1组和复合组绒毛高度分别增加34.49%和61.58%(P < 0.01);KL1组、Liu-c1组和复合组的隐窝深度无显著变化(P>0.05),绒腺比分别增加9.45%、34.40%和51.87%(P < 0.01)。这表明2种微生态制剂单独和复合使用均可增加产蛋后期种母鸡十二指肠和回肠的绒腺比,提高肠道消化吸收能力,其中复合微生态制剂效果最佳。

表 5 微生态制剂对产蛋后期种母鸡十二指肠和回肠绒毛形态的影响 Table 5 Effects of microecologics on villi morphology of duodenum and ileum of breeding hens in late laying period
3 讨论 3.1 微生态制剂对产蛋后期种母鸡生产性能的影响

众所周知,随着日龄的增加,产蛋后期种母鸡代谢水平逐渐减缓,肠道功能逐步退化,导致生产性能下降。研究表明,副干酪乳杆菌KL1具有耐受胃肠道逆环境特性,能够定植于雏鸡肠道,改善菌群平衡,提高雏鸡的生长性能[19],并且具有增加产蛋高峰期蛋鸡产蛋率和合格率,提高生产性能的作用[20]。本试验结果表明,将副干酪乳杆菌KL1与枯草芽孢杆菌Liu-c1复合后,不仅显著提高种母鸡产蛋率,而且极显著提高其种蛋合格率,极显著降低料蛋比,显示复合微生态制剂提高生产性能效果最佳。这是由于枯草芽孢杆菌Liu-c1不仅能够消耗肠道内氧气,利于副干酪乳杆菌KL1的生长,而且能够提高肠道蛋白酶活性,促进肠道对营养物质的吸收利用,有效地提高种母鸡的生产性能。于雷等[21]研究发现,添加107 CFU/(只·d)枯草芽孢杆菌和地衣芽孢杆菌复合微生态制剂4周,可提高产蛋后期种母鸡的产蛋率和种蛋合格率,降低料蛋比。Abdelqader等[22]研究报道添加107 CFU/(只·d)枯草芽孢杆菌制剂10周能显著提高蛋鸡的产蛋率和合格率,降低料蛋比。胡昌艳[23]研究表明,添加106 CFU/(只·d)乳酸杆菌和芽孢杆菌复合微生态制剂4周显著提高了产蛋后期蛋鸡的产蛋率和合格率等生产性能。以上研究结果和本试验结果皆一致。

3.2 微生态制剂对产蛋后期种母鸡肠道菌群的影响

家禽饲粮及原料中普遍存在霉菌毒素,蛋鸡长期摄入含有低剂量霉菌毒素的饲粮,肠道菌群逐渐失调,生产性能受到严重影响[24-26]。副干酪乳杆菌KL1具有耐胃肠道逆环境特性,能够调节肠道菌群平衡,改善肠道微生态环境,且其代谢产生的乳酸可酸化肠内环境,阻止饲料中的霉菌等有害微生物附着肠道黏膜,维持肠道微生态平衡,对动物生长和健康有重要意义[19, 27]。枯草芽孢杆菌通过消耗肠道内的氧气,降低肠道内的氧化还原电势,创造有利于乳酸菌生长的环境,扶植肠道内的优势菌群,使失调的肠道菌群结构恢复到正常状态,起到抗菌防病的作用[28]。本试验结果表明,副干酪乳杆菌KL1和枯草芽孢杆菌Liu-c1复合微生态制剂可显著增加产蛋后期种母鸡回肠乳酸杆菌和芽孢杆菌的相对丰度及数量,调节肠道菌群平衡,改善肠道健康,从而提高生产性能。Abdelqader等[29]在产蛋后期蛋鸡饲粮中添加108 CFU/(只·d)枯草芽孢杆菌制剂12周,回肠乳酸杆菌和芽孢杆菌数量显著增加,肠道菌群平衡得到明显改善,蛋鸡生产性能得到显著提高。Abdelqader等[22]在产蛋后期蛋鸡的饲粮中添加107 CFU/(只·d)枯草芽孢杆菌10周,能够增加乳酸杆菌和双歧杆菌等有益微生物数量,调节盲肠菌群平衡,改善肠道健康并促进肠道消化吸收能力,从而提高生产性能。以上研究结果皆与本试验结果一致。

3.3 微生态制剂对产蛋后期种母鸡小肠消化吸收能力的影响

饲粮进入十二指肠后,与肠内分泌的消化酶形成食糜一起进入小肠,在小肠绒毛的作用下进行全面而强烈的消化作用。肠道黏膜结构与消化吸收功能是保证种母鸡健康高效消化吸收营养物质的必要条件。产蛋后期种母鸡的肠道消化酶活性下降,绒腺比降低,营养物质的吸收利用率减少,从而影响其生产性能[30]。研究表明,微生物定植与肠道发育密切相关,这种影响将决定机体的生长性能和健康状况[31-32]。枯草芽孢杆菌在肠内可产生多种消化酶,分解蛋白质,促进肠道内营养物质的消化吸收[33]。本试验结果表明,副干酪乳杆菌KL1和枯草芽孢杆菌Liu-c1复合微生态制剂可显著提高十二指肠中性蛋白酶和鸡胰蛋白酶活性,增加十二指肠绒腺比,促进肠道对饲粮中粗蛋白质的消化吸收,从而提高生产性能。Xing等[34]研究在产蛋后期京粉1号种母鸡饲粮中添加107 CFU/(只·d)凝结芽孢杆菌可显著提高蛋鸡十二指肠黏膜蛋白酶活性,促进营养物质的消化吸收,提高生产性能。Lei等[13]研究发现蛋鸡饲粮中添加108 CFU/(只·d)枯草芽孢杆菌制剂显著增加了十二指肠和回肠的绒毛高度,降低隐窝深度,改善绒毛形态,增强肠道吸收功能,从而提高蛋鸡的生产性能。黄晨轩等[11]在蛋鸡饲粮中添加108 CFU/(只·d)芽孢杆菌微生态制剂显著增加产蛋后期蛋鸡的粗蛋白质表观消化率,提高蛋鸡的生产性能。本试验通过添加复合微生态制剂增加产蛋后期种母鸡的肠内蛋白酶活性,从而显著提高粗蛋白质表观消化率,但其消化率总体偏低,可能原因是产蛋后期种母鸡羽毛易脱落,细小绒毛掺杂在粪便中难以分离,故导致粪样中粗蛋白质含量偏高而使其消化率结果偏低。

4 结论

京红1号父母代产蛋后期种母鸡饲粮中添加副干酪乳杆菌KL1、枯草芽孢杆菌Liu-c1和复合微生态制剂皆能增加回肠有益菌的数量,调节肠道菌群平衡,提高十二指肠中性蛋白酶和胰蛋白酶活性,增加十二指肠和回肠绒腺比,提高饲粮中粗蛋白质表观消化率,从而提高种母鸡的产蛋率和种蛋合格率,降低料蛋比,其中以复合微生态制剂效果最佳。

参考文献
[1]
DOREEN L, MÉSZÁROS G, ELLEN E D. Survival analysis of white leghorn laying hens in the early and late production period[J]. Agriculture Conspectus Scientificus, 2017, 82(2): 179-183.
[2]
LIU Y, LI Y, LIU H N, et al. Effect of quercetin on performance and egg quality during the late laying period of hens[J]. British Poultry Science, 2013, 54(4): 510-514. DOI:10.1080/00071668.2013.799758
[3]
中华人民共和国农业部. 中华人民共和国农业部公告第2045号[EB/OL]. (2013-12-30)[2021-4-12]. http://www.moa.gov.cn/nybgb/2014/dyq/201712/t20171219_6104350.htm.
The Ministry of Agriculture of the People's Republic of China. Announcement of the ministry of agriculture of the people's republic of China No. 2045[EB/OL]. (2013-12-30)[2021-4-12]. http://www.moa.gov.cn/nybgb/2014/dyq/201712/t20171219_6104350.htm. (in Chinese)
[4]
LANGE L D. Nutribiotics could replace antibiotics in feed[J]. Poultry World, 2005, 21(10): 26-28.
[5]
GAGGÌA F, MATTARELLI P, BIAVATI B. Probiotics and prebiotics in animal feeding for safe food production[J]. International Journal of Food Microbiology, 2010, 141(S1): S15-S28.
[6]
PATTERSON J A, BURKHOLDER K M. Application of prebiotics and probiotics in poultry production[J]. Poultry Science, 2003, 82(4): 627-631. DOI:10.1093/ps/82.4.627
[7]
WAN X Q, CUI Z X, LI H M, et al. Prevention of Escherichia coli-induced diarrhea with microecological complex preparation in swine[J]. Biomedical Research, 2014, 25(1): 79-83.
[8]
ZHANG S, ZHONG G, SHAO D, et al. Dietary supplementation with Bacillus subtilis promotes growth performance of broilers by altering the dominant microbial community[J]. Poultry Science, 2021, 100(3): 100935. DOI:10.1016/j.psj.2020.12.032
[9]
JEONG J S, KIM I H. Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers[J]. Poultry Science, 2014, 93(12): 3097-3103. DOI:10.3382/ps.2014-04086
[10]
BEHNAMIFAR A, RAHIMI S, KARIMI TORSHIZI M A. Effect of probiotic, thyme, garlic and caraway herbal extracts on the quality and quantity of eggs, blood parameters, intestinal bacterial population and histomorphology in laying hens[J]. Journal of Medicinal Plants and By-products, 2015, 4(1): 121-128.
[11]
黄晨轩, 岳巧娴, 徐静, 等. 复合微生态制剂对产蛋后期蛋鸡养分消化率、免疫功能和肠道菌群的影响[J]. 中国家禽, 2018, 40(6): 24-28.
HUANG C X, YUE Q X, XU J, et al. Effects of compound probiotics on nutrient utilization, immune function and intestinal microflora of laying hens at late laying period[J]. China Poultry, 2018, 40(6): 24-28 (in Chinese).
[12]
ZHANG J L, XIE Q M, JI J, et al. Different combinations of probiotics improve the production performance, egg quality, and immune response of layer hens[J]. Poultry Science, 2012, 91(11): 2755-2760. DOI:10.3382/ps.2012-02339
[13]
LEI K, LI Y L, YU D Y, et al. Influence of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activities, and intestinal barrier function of laying hens[J]. Poultry Science, 2013, 92(9): 2389-2395. DOI:10.3382/ps.2012-02686
[14]
刘慧, 熊利霞, 易欣欣, 等. 藏灵菇中高产胞外多糖乳酸菌的筛选及其发酵性能的研究[J]. 食品科学, 2007, 28(5): 211-215.
LIU H, XIONG L X, YI X X, et al. Study on screening and fermentation capability of lactobacter yielding exopolysaccharide from kefir grains[J]. Food Science, 2007, 28(5): 211-215 (in Chinese). DOI:10.3321/j.issn:1002-6630.2007.05.049
[15]
HUI L, XIE Y H, HAN T, et al. Purification and structure study on exopolysaccharides produced by Lactobacillus paracasei KL1-Liu from Tibetan Kefir[J]. Advanced Materials Research, 2013, 781/784: 1513-1518. DOI:10.4028/www.scientific.net/AMR.781-784.1513
[16]
刘慧, 张红星, 熊利霞, 等. 一种产胆盐水解酶副干酪乳杆菌干粉活菌制剂的生产技术: CN104357359A[P]. 2015-02-18.
LIU H, ZHANG H X, XIONG L X, et al. Production technology of a live dry powder preparation of Lactobacillus paracasei producing bile brine hydrolysase: CN104357359A[P]. 2015-02-18. (in Chinese)
[17]
STACKEBRANDT E, GOEBEL B M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology[J]. International Journal of Systematic Bacteriology, 1994, 44(4): 846-849.
[18]
彭豫东, 康克浪, 曲湘勇, 等. 枯草芽孢杆菌对石门土鸡生长性能、屠宰性能、血清抗氧化指标和肠道形态的影响[J]. 动物营养学报, 2019, 31(5): 2119-2126.
PENG Y D, KANG K L, QU X Y, et al. Effects of Bacillus subtilis on growth performance, slaughter performance, serum antioxidant indexes and intestinal morphology of Shimen chickens[J]. Chinese Journal of Animal Nutrition, 2019, 31(5): 2119-2126 (in Chinese). DOI:10.3969/j.issn.1006-267x.2019.05.018
[19]
CHEN C C, LI J Y, ZHANG H X, et al. Effects of a probiotic on the growth performance, intestinal flora, and immune function of chicks infected with Salmonella pullorum[J]. Poultry Science, 2020, 99(11): 5316-5323. DOI:10.1016/j.psj.2020.07.017
[20]
刘慧, 张红星, 谢远红, 等. 一种利用产胆盐水解酶的副干酪乳杆菌降低鸡蛋胆固醇的方法: CN106635886A[P]. 2017-05-10.
LIU H, ZHANG H X, XIE Y H, et al. A method for reducing cholesterol in eggs using Lactobacillus paracasei producing bile brine hydrolysase: CN106635886A[P]. 2017-05-10. (in Chinese)
[21]
于雷, 程高宾, 邹本革, 等. 芽孢杆菌微生态制剂对京红1号蛋鸡产蛋性能和蛋品质的影响[J]. 中国家禽, 2020, 42(4): 58-62.
YU L, CHENG G B, ZOU B G, et al. Effects of microecological preparations of Bacillus on laying performance and egg quality of Jinghong laying hens[J]. China Poultry, 2020, 42(4): 58-62 (in Chinese).
[22]
ABDELQADER A, IRSHAID R, AL-FATAFTAH A R. Effects of dietary probiotic inclusion on performance, eggshell quality, cecal microflora composition, and tibia traits of laying hens in the late phase of production[J]. Tropical Animal Health and Production, 2013, 45(4): 1017-1024. DOI:10.1007/s11250-012-0326-7
[23]
胡昌艳. 复合微生物制剂对蛋鸡生产性能、养分代谢及发酵粪中氨气和硫化氢散发量的影响[D]. 硕士学位论文. 乌鲁木齐: 新疆农业大学, 2016.
HU C Y. The effect of compound microecological preparation on production performance, nutrient utilization and fecal emission of ammonia and sulfureted hydrogen of layers[D]. Master's Thesis. Urumqi: Xinjiang Agricultural University, 2016. (in Chinese)
[24]
闫昭明, 李文睿, 刘霜莉, 等. 单端孢霉烯族毒素的致病机理及防治措施研究进展[J]. 动物营养学报, 2020, 32(6): 2543-2550.
YAN Z M, LI W R, LIU S L, et al. Research advances on pathogenic mechanism and control measures of trichothecenes mycotoxin[J]. Chinese Journal of Animal Nutrition, 2020, 32(6): 2543-2550 (in Chinese).
[25]
ROSSI C N, TAKABAYASHI C R, ONO M A, et al. Exposure of laying hens to mycotoxins through naturally contaminated feed[J]. World Mycotoxin Journal, 2013, 6(2): 199-207. DOI:10.3920/WMJ2012.1511
[26]
AKANDE T O, SALAMI T K, SALAKO A O. Nutrient stability in mould-infested feed and mitigating effect of dietary supplemental vitamins in brown laying hens[J]. Tropical Animal Health and Production, 2020, 52(1): 293-299. DOI:10.1007/s11250-019-02016-8
[27]
刘慧, 王世平, 冉冉, 等. 藏灵菇源酸奶复合菌发酵剂对肠道菌群平衡的作用[J]. 中国食品学报, 2011, 11(6): 7-12.
LIU H, WANG S P, RAN R, et al. The effection on enterobacteria balance from complex bacteria leaven of Tibetan Kefir[J]. Journal of Chinese Institute of Food Science and Technology, 2011, 11(6): 7-12 (in Chinese).
[28]
GANDRA J R, OLIVEIRA E R, DE SENA GANDRA E R, et al. Inoculation of Lactobacillus buchneri alone or with Bacillus subtilis and total losses, aerobic stability, and microbiological quality of sunflower silage[J]. Journal of Applied Animal Research, 2017, 45(1): 609-614. DOI:10.1080/09712119.2016.1249874
[29]
ABDELQADER A, AL-FATAFTAH A R, DAŞ G. Effects of dietary Bacillus subtilis and inulin supplementation on performance, eggshell quality, intestinal morphology and microflora composition of laying hens in the late phase of production[J]. Animal Feed Science and Technology, 2013, 179(1/4): 103-111.
[30]
YANG J J, ZHAN K, ZHANG M H. Effects of the use of a combination of two Bacillus species on performance, egg quality, small intestinal mucosal morphology, and cecal microbiota profile in aging laying hens[J]. Probiotics and Antimicrobial Proteins, 2020, 12(1): 204-213.
[31]
WANG H S, NI X E, QING X D, et al. Live probiotic Lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers[J]. Frontiers in Microbiology, 2017, 8: 1073.
[32]
RAMLUCKEN U, RAMCHURAN S O, MOONSAMY G, et al. A novel Bacillus based multi-strain probiotic improves growth performance and intestinal properties of Clostridium perfringens challenged broilers[J]. Poultry Science, 2020, 99(1): 331-341.
[33]
LARA E C, BASSO F C, DE ASSIS F D, et al. Changes in the nutritive value and aerobic stability of corn silages inoculated with Bacillus subtilis alone or combined with Lactobacillus plantarum[J]. Animal Production Science, 2016, 56(11): 1867-1874.
[34]
XING G R, LANG X R, WU J A, et al. Mechanism of the effect of Bacillus coagulans on production performance of laying hens in late laying period[J]. Animal Husbandry and Feed Science, 2019, 11(Z2): 125-130.